CURRENT AWARENESS PAPERS OF THE MONTH

Efficacy and effectiveness of anti-digoxin antibodies in chronic digoxin poisonings from the DORA study (ATOM-1)

Context
We hypothesized that in chronic digoxin toxicity, anti-digoxin antibodies (Fab) would be efficacious in binding digoxin, but this may not translate into improved clinical outcomes.

Objective
This study aims to investigate changes in free digoxin concentrations and clinical effects on heart rate and potassium concentrations in chronic digoxin poisoning when anti-digoxin Fab are given.

Materials and methods
This is a prospective observational study. Patients were recruited if they have been treated with anti-digoxin Fab for chronic digoxin poisoning. Data was entered into a standardised prospective form, supplemented with medical records. Their serum or plasma was collected, analysed for free and bound digoxin and free anti-digoxin Fab concentrations.

Results
From September 2013 to February 2015, 36 patients (median age, 78 years; 22 females)
were recruited from 18 hospitals. Median heart rate (HR) was 49 beats/min. Initial median digoxin and potassium concentrations were 4.7 nmol/L (3.6 µg/L) and 5.3 mmol/L (range: 2.9–9.2 mmol/L) respectively. Beta-blockers (n = 18), calcium antagonists (n = 6), spironolactone and/or angiotensin blocking agents (n = 24) were also used concomitantly. Renal impairment and gastrointestinal symptoms were present in 31 (86%) and 22 (63%) patients respectively. Five patients died from conditions unrelated to digoxin toxicity. Median change in HR was 8 beats/min post-Fab with no effect on blood pressure; they were 4, 10 and 17 beats/min for the 1, 2 and ≥3 vials of anti-digoxin Fab groups respectively. Concomitant treatments with potassium lowering agents (12/36) and inotropic drugs (7/36) were used. Gastrointestinal effects resolved in all 22 patients. The median decrease for potassium was 0.3 mmol/L. Digoxin concentration reduced from 3.8 to 0 nmol/L post-Fab. There was a rebound observed in the free digoxin concentration in 25 patients but none had associated clinical deterioration.

Conclusions

One to two vials of anti-digoxin Fab initially bound all free digoxin confirming Fab efficacy. However, this was associated with only a moderate improvement in HR and potassium, suggesting bradyarrhythmia and hyperkalaemia may be from other co-morbidities.

Full text available from: http://dx.doi.org/10.1080/15563650.2016.1175620

A systematic analysis of methylene blue for drug-induced shock

Context

Pharmacologically induced shock can be refractory to standard resuscitation. Methylene blue (MB) acts to prevent nitric oxide-mediated vasodilation and may be a potential treatment for refractory shock. Objective: A systematic analysis of the literature to evaluate MB in pharmacologically induced shock. Primary outcome was survival and secondary outcome was hemodynamic improvement.

Materials and methods

A search of MedLine/PubMed, EMBASE, Cochrane Library, TOXLINE, Google Scholar and Google was performed 10 August 2015 using a combination of text words and keywords related to MB, shock and specific drugs. We included primary literature articles reporting clinical outcomes in humans.

Results

The searches yielded 928 citations, with 255 exact duplicates. Of the 673 entries screened, 16 citations met study criteria and comprised 17 cases. Calcium channel blockers (CCBs) represented ten cases (six amlodipine, two verapamil, and two diltiazem), atenolol three cases as conogetant with amlodipine, five metformin, one ibuprofen, and one multidrug (quetiapine, carbamazepine, valproic acid, oxazepam, and fluoxetine). Twelve patients survived and nine had hemodynamic improvement following MB administration. Four did not respond to MB but survived with other advanced resuscitative measures. None of the seven cases had BP improvement and four died when lipid was given prior to MB, compared to one death and nine cases of BP improvement when lipid was not given. In all cases, MB was used after failing several other treatments. Bolus doses ranging from 1 to 3 mg/kg, with repeat boluses or maintenance infusions. Reported adverse events were temporary self-limited blue discolorations.

Conclusion

While there are compelling cases describing an improved hemodynamic status following MB,
there are also several cases without observed change. Currently, there is not enough evidence available to recommend the routine administration of MB in refractory pharmacologically induced shock.

Full text available from: http://dx.doi.org/10.1080/15563650.2016.1180390

Epidemiology and clinical features of toxicity following recreational use of synthetic cannabinoid receptor agonists: a report from the United Kingdom National Poisons Information Service

Context

Toxicity from the use of synthetic cannabinoid receptor agonists (SCRAs) has been encountered increasingly frequent in many countries.

Objective

To characterise presentation rates, demographic profiles and reported clinical features for users of SCRAs referred by health professionals in the United Kingdom to the National Poisons Information Service (NPIS), to compare reported toxicity between commonly used branded products, and to examine the impact of legal control measures on enquiry numbers.

Methods

NPIS telephone enquiry records were searched for SCRA-related terms for the 8-year period 1st January 2007 to 31st December 2014, consolidating multiple enquiries about the same case into a single record. Demographic data, reported exposure details, clinical features and poisoning severity were analysed, excluding cases where SCRA exposure was unlikely.

Results

Enquiries to the NPIS were made concerning 510 individuals relating to probable SCRA use, with annual numbers increasing year on year. Most patients were male (80.8%) and <25 years old (65.1%). Common clinical features reported in the 433 (84.9%) patients reporting SCRA use without other substances included tachycardia (n = 73, 16.9%), reduced level of consciousness (n = 70, 16.2%), agitation or aggression (n = 45, 10.4%), vomiting (n = 30, 6.9%), dizziness (n = 26, 6.0%), confusion (n = 21, 4.8%), mydriasis (n = 20, 4.6%) and hallucinations (n = 20, 4.6%). The Maximum Poisoning Severity Score (PSS) indicated severe toxicity in 36 cases (8.3%). Legal control of "second generation" SCRAs did not affect the rate of growth in enquiry numbers or the proportion with severe toxicity. The three most commonly reported products were "Black Mamba" (n = 88, 20.3%), "Pandora's Box" (n = 65, 15.0%) and "Clockwork Orange" (n = 27, 6.2%). Neurological and general features were recorded more often with "Clockwork Orange" than for "Black Mamba" and "Pandora's Box", but moderate or severe toxicity was significantly less common after reported use of this product.

Conclusions

Enquiries about SCRA-related toxicity have become increasingly frequent in the UK in spite of legal controls and commonly involve younger males. Differences in the patterns of toxicity associated with different branded preparations may occur, although further work with larger patient numbers is needed to confirm this.

Full text available from: http://dx.doi.org/10.3109/15563650.2016.1171329
Four analytically confirmed cases of use of third-generation synthetic cannabinoid receptor agonists incorporating an adamantyl group

Full text available from: http://dx.doi.org/10.1080/15563650.2016.1175005

Difference of the clinical course and outcome between dapsone-induced methemoglobinemia and other toxic-agent-induced methemoglobinemia

Context
Acquired methemoglobinemia is a potentially fatal condition that leads to tissue hypoxia. Although the clinical features of methemoglobinemia depend on the methemoglobin levels, the clinical course would differ depending on the causative agents.

Objective
We attempted to clarify this issue by comparing the clinical course of methemoglobinemia caused by dapsone and that caused by other toxic agents.

Materials and methods
A retrospective case–control study was performed. All patients with methemoglobinemia and who were admitted to the emergency department (ED) of our hospital from 1 January 2002 to 31 December 2014 were included.

Results
Of the 34 patients with methemoglobinemia, 15 ingested dapsone (14 with acute overdose and one with chronic therapeutic use) and 19 had been exposed to other toxic agents, such as sodium nitrites, indoxacarb, primaquine, and lidocaine. The clinical characteristics and the course of dapsone-induced and other toxic-agent-induced methemoglobinemia were compared. There was no significant difference in clinical presentation and methemoglobin level (38.5% vs. 35.0%, \(p = 0.456\)) upon their ED arrival between the two groups. However, the methemoglobin level after use of methylene blue and the total dose of methylene blue were higher in patients with dapsone-induced methemoglobinemia than in those with other agent-induced methemoglobinemia (11.9% vs. 1.7%, \(p = 0.001\), 455 mg vs. 144 mg, \(p = 0.006\)). The majority of dapsone-induced methemoglobinemia (93.3%) required more than 72 h for normalization of the methemoglobin level, despite the use of methylene blue. Five of the study patients died due to multiorgan failure, and all of whom were inpatients with dapsone-induced methemoglobinemia.

Conclusion
The clinical course of dapsone-induced methemoglobinemia was worse than that of other toxic-agent-induced methemoglobinemia despite no significant difference in their initial clinical presentation. Continuous treatment with serial monitoring of the serum methemoglobin is necessary for patients with dapsone-induced methemoglobinemia.

Full text available from: http://dx.doi.org/10.1080/15563650.2016.1178759
A prospective study of ketamine versus haloperidol for severe prehospital agitation

Context
Ketamine is an emerging drug for the treatment of acute undifferentiated agitation in the prehospital environment, however no prospective comparative studies have evaluated its effectiveness or safety in this clinical setting.

Objective
We hypothesized 5 mg/kg of intramuscular ketamine would be superior to 10 mg of intramuscular haloperidol for severe prehospital agitation, with time to adequate sedation as the primary outcome measure.

Methods
This was a prospective open label study of all patients in an urban EMS system requiring chemical sedation for severe acute undifferentiated agitation that were subsequently transported to the EMS system's primary Emergency Department. All paramedics were trained in the Altered Mental Status Scale and prospectively recorded agitation scores on all patients. Two 6-month periods where either ketamine or haloperidol was the first-line therapy for severe agitation were prospectively compared primarily for time to adequate sedation. Secondary outcomes included laboratory data and adverse medication events.

Results
146 subjects were enrolled; 64 received ketamine, 82 received haloperidol. Median time to adequate sedation for the ketamine group was 5 minutes (range 0.4-23) vs. 17 minutes (range 2–84) in the haloperidol group (difference 12 minutes, 95% CI 9–15). Complications occurred in 49% (27/55) of patients receiving ketamine vs. 5% (4/82) in the haloperidol group. Complications specific to the ketamine group included hypersalivation (21/56, 38%), emergence reaction (5/52, 10%), vomiting (5/57, 9%), and laryngospasm (3/55, 5%). Intubation was also significantly higher in the ketamine group; 39% of patients receiving ketamine were intubated vs. 4% of patients receiving haloperidol.

Conclusions
Ketamine is superior to haloperidol in terms of time to adequate sedation for severe prehospital acute undifferentiated agitation, but is associated with more complications and a higher intubation rate.

Full text available from: http://dx.doi.org/10.1080/15563650.2016.1177652

Plasma paracetamol concentration at hospital presentation has a dose-dependent relationship with liver injury despite prompt treatment with intravenous acetylcysteine

Context
Paracetamol (acetaminophen) overdose is a common reason for emergency hospital admission in the UK and the leading cause of acute liver failure in the Western world.
Currently, the antidote acetylcysteine (NAC) is administered at a dose determined only by body weight without regard for the body burden of paracetamol.

Objective

To determine whether higher plasma paracetamol concentrations are associated with increased risk of liver injury despite prompt treatment with intravenous NAC.

Methods

Patients admitted to hospital for treatment with intravenous NAC following a single acute paracetamol overdose entered the study if NAC was commenced within 24 h of drug ingestion (N = 727 hospital presentations). Based on the plasma paracetamol concentration at first presentation to hospital, a series of nomograms were created: 0–100, 101–150, 151–200, 201–300, 301–500 and over 501 mg/L. The primary endpoints were acute liver injury (ALI – peak serum ALT activity >150 U/L and double the admission value) and hepatotoxicity (peak ALT >1000 U/L).

Results

ALI and hepatotoxicity were more common in patients with higher admission plasma paracetamol concentrations despite NAC treatment (ALI: nomogram 0–100: 6%, 101–150: 3%, 151–200: 3%, 201–300: 9%, 301–500: 13%, over 501 mg/dL: 27%. p < 0.0001). This dose-response relationship between paracetamol concentration and ALI persisted even in patients treated with NAC within 8 h of overdose (nomogram 0–100: 0%, 101–150: 0.8%, 151–200: 2%, 201–300: 3.6%, 301–500: 12.5%, over 501mg/L: 33%. p < 0.0001) and in patients with normal ALT activity at first presentation (nomogram: 0–100: 0%, 101–150: 1.2%, 151–200: 1.5%, 201–300: 5.3%, 301–500: 10.8% p < 0.0001).

Discussion

Patients with increased concentrations of plasma paracetamol at hospital presentation are at higher risk of liver injury even when intravenous NAC is promptly administered before there is biochemical evidence of toxicity.

Conclusion

This study supports theoretical concerns that the current intravenous dose of NAC may be too low in the setting of higher paracetamol exposure.

Full text available from: http://dx.doi.org/10.3109/15563650.2016.1159309

Outcomes of patients with premature discontinuation of the 21-h Intravenous N-acetylcysteine protocol after acute acetaminophen overdose

Abstract and full text available from: http://dx.doi.org/10.1016/j.jemermed.2015.12.004

Lipid rescue – Efficacy and safety still unproven

Abstract and full text available from: http://dx.doi.org/10.1111/bcpt.12607
A review of pitfalls and progress in chelation treatment of metal poisonings
Abstract and full text available from: http://dx.doi.org/10.1016/j.jtemb.2016.03.013

Pediatric exposures to laundry and dishwasher detergents in the United States: 2013–2014
Abstract and full text available from: http://dx.doi.org/10.1542/peds.2015-4529

Reactivation of nerve agent-inhibited human acetylcholinesterase by obidoxime, HI-6 and obidoxime+HI-6: kinetic in vitro study with simulated nerve agent toxicokinetics and oxime pharmacokinetics
Abstract and full text available from: http://dx.doi.org/10.1016/j.tox.2016.05.001

Neurologic, psychiatric, and other medical manifestations of nitrous oxide abuse: a systematic review of the case literature
Abstract and full text available from: http://dx.doi.org/10.1111/ajad.12372

Maternal use of selective serotonin-reuptake inhibitors and risk of persistent pulmonary hypertension of the newborn
Abstract and full text available from: http://dx.doi.org/10.1002/cpt.376

Ondansetron use in pregnancy and birth defects: a systematic review
Abstract and full text available from: http://dx.doi.org/10.1097/AOG.0000000000001388
TOXICOLOGY
Analytical toxicology

Seywright A, Torrance HJ, Wyle FM, McKeown DA, Lowe DJ, Stevenson R. Analysis and clinical findings of cases positive for the novel synthetic cannabinoid receptor agonist MDMB-CHMICA. Clin Toxicol 2016; online early:
doi: 10.1080/15563650.2016.1186805:

doi: 10.1093/jat/bkw036:

Biomarkers

Body packers

Carcinogenicity

Cardiotoxicity
Abass MA, Arafa MH, El-shal AS, Atteia HH. Asymmetric dimethylarginine and heart-type fatty acid-binding protein 3 are risk markers of cardiotoxicity in carbon monoxide poisoning cases in Zagazig university hospitals. Hum Exp Toxicol 2016; online early: doi: 10.1177/0960327116646621:

Benowitz NL, Burbank AD.
Cardiovascular toxicity of nicotine: Implications for electronic cigarette use.
Trends Cardiovasc Med 2016; online early: doi: 10.1016/j.tcm.2016.03.001:
Cavallari JM, Fang SC, Eiseen EA, Mittelman MA, Christiani DC.
Environmental and occupational particulate matter exposures and ectopic heart beats in welders.
Occup Environ Med 2016; online early: doi: 10.1136/oemed-2015-103256:
Chai PR, Hack JB.
Intravenous lipid emulsion in the resuscitation of cocaine-induced cardiovascular arrest in a rat model.
Coupland C, Hill T, Morriss R, Moore M, Arthur A, Hippsley-Cox J.
Antidepressant use and risk of cardiovascular outcomes in people aged 20 to 64: cohort study using primary care database.
Gobbi M, Beeg M, Toropova MA, Toropov AA, Salmona M.
Monte Carlo method for predicting of cardiac toxicity: hERG blocker compounds.
Kalay N.
What are the cardiac effects of carbon monoxide poisoning in the acute and chronic periods?
Li Z, Zhang H, Li S-H, Byard RW.
Fatal phenol toxicity following attempted tattoo removal.
The Canadian Network for Observational Drug Effect Studies (CNOIDES) Investigators.
Ventricular tachyarrhythmia and sudden cardiac death with domperidone use in Parkinson’s Disease.
Verbree FC, Reijnen TMAJ, Mitrov-Winkelmolnen L, Overdiek JWPM, Dennesen PJW.
Tricyclic antidepressant poisoning: cardiovascular and neurological toxicity.
Dermal toxicity
Tobacco-induced contact dermatitis.
Skin necrosis caused by prallethrin-A worldwide used insecticide.
Held M, Medved F, Rothenberger J, Rahamanian-Schwarz A, Schaller H-E.
Methyl iodide exposure presenting as severe chemical burn injury with neurological complications and prolonged respiratory insufficiency.
J Burn Care Res 2016; online early: doi: 10.1097/BCR.0000000000000349:
Hvid L, Svendsen MT, Andersen KE.
Occupational allergic contact dermatitis caused by heroin (diacetylmorphine) and morphine.
Inci R, Kelekci KH, Oguz N, Karaca S, Karadas B, Bayrakci A.
Dermatological aspects of synthetic cannabinoid addiction.
Developmental toxicology
Acar S, Kaplan YC, Kucuksoyak G, Karadas B, Kaya-Temiz T.
Betahistine exposure during pregnancy: a case series.
Reprod Toxicol 2016; 60: 177.
Alwan S, Bandoli G, Chambers CD.
Maternal use of selective serotonin-reuptake inhibitors and risk of persistent pulmonary hypertension of the newborn.
Atropinic burden of drugs during pregnancy and psychological development of children: a cohort study in the EFEMERIS database.
Br J Clin Pharmacol 2016; online early: doi: 10.1111/bcp.12978:
Beghin D, Vauzelle-Gardier C, Elefant E.
Pregnancy outcome after in utero exposure to oxybutynin.
Bellinger DC, O’Leary K, Rainis H, Gibb HJ.
Country-specific estimates of the incidence of intellectual disability associated with prenatal exposure to methylmercury.
Environ Res 2016; 147: 159-63.
Carstairs SD.
Ondansetron use in pregnancy and birth defects: a systematic review.
Exposure to bisphenol A and phthalates during pregnancy and ultrasound measures of fetal growth in the INMA-Sabadell cohort.
In utero and lactational exposure to fipronil in female rats: pregnancy outcomes and sexual development.
Dunstan HJ, Richardson JL, Stephens S, Yates LM, Thomas SHL.
First trimester exposure to amisulpride and the risk of adverse pregnancy outcomes: a case series.

Fejzo MS, MacGibbon KW, Mullin PM.
Ondansetron in pregnancy and risk of adverse fetal outcomes in the United States.

Maternal illness in pregnancy and perinatal exposure to pesticides are associated with risk for pediatric onset MS.
Neurology 2016; 86: S29.005.

Hoeltzenbein M, Beck E, Rajwanshi R, Skorpen CG, Berber E, Schaefer C, Østensen M.
Tocilizumab use in pregnancy: analysis of a global safety database including data from clinical trials and post-marketing data.

Exposure of methyl mercury in utero and the risk of neural tube defects in a Chinese population.

Keskin-Arslan E, KaplanYC, Küçüksolak G, Akyol F, Karadas B, Kaya-Temiz T.
Pregnancy outcomes following thiocolchicoside exposure: preliminary results of 48 cases.

Air pollution exposure during pregnancy and fetal markers of metabolic function: the MIREC study.

Magby JP, Richardson JR.
Developmental pyrethroid exposure causes long-term decreases of neuronal sodium channel expression.

Overscash RT, Marc-Aurele KL, Hull AD, Ramos GA.
Maternal iodine exposure: a case of fetal goiter and neonatal hearing loss.
Pediatrics 2016; 137:

Pereira G, Bracken MB, Bell ML.
Particulate air pollution, fetal growth and gestational length: the influence of residential mobility in pregnancy.

Scott-Goodwin AC, Puerto M, Moreno I.
Toxic effects of prenatal exposure to alcohol, tobacco and other drugs.

Maternal levels of endocrine disruptors, polybrominated diphenyl ethers, in early pregnancy are not associated with lower birth weight in the Canadian birth cohort GESTE.
Environ Health 2016; 15: 49.

Shariati-Kohbanani M, Taghavi MM, Shabanizadeh A, Jafari Naveh HR, Taghipour Z, Kazemi Arababadi M.
Different ideas associated renal malformation and laminin α5 expression caused by maternal nicotine exposures.

Trentini JF, O'Neill JT, PolUCHS, Juliano SL.
Prenatal carbon monoxide impairs migration of interneurons into the cerebral cortex.
Neurotoxicology 2016; 53: 31-44.

Vivekanandarajah A, Chan YL, Chen H, Machaalani R.
Prenatal cigarette smoke exposure effects on apoptotic and nicotinic acetylcholine receptor expression in the infant mouse brainstem.

Driving under the influence of alcohol and other drugs

Papoutsis I, Nikolopou L, Spiliopoulou C, Athanasselas S.
Different aspects of driving under the influence of benzodiazepines.

Epidemiology

Ansong D, Nkya C, Appiah CO, Amuzu EX, Frimpong CA, Nyanor I, Nguah SB, Sylverken J.
Epidemiology of paediatric poisoning reporting to a tertiary hospital in Ghana.

Brink LA, Talbott EO, Marsh GM, Sharma R, Benson S, Wu WC, Duan C.

Byers N, Ritchey M, Vaidyanathan A, Brandt AJ, Yip F.
Short-term effects of ambient air pollutants on asthma-related emergency department visits in Indianapolis, Indiana, 2007–2011.

Collett GA, Song K, Jaramillo CA, Potter JS, Finley EP, Pugh MJ.
Drugs Real World Outcomes 2016; 3: 45-52.

Forrester MB.
Pattern of mefloquine ingestions reported to Texas poison centers.

Furtado SS, Belmino JFB, Diniz AGQ, Leite RS.
Epidemiology of scorpion envenomation in the state of Ceará, Northeastern Brazil.

Use of syndromic surveillance data to monitor poisonings and drug overdoses in state and local public health agencies.

Khadem-Rezaian M, Afshari R.
Carbon monoxide poisoning in northeast of Iran.

Lee D, Delcher C, Maldonado-Molina MM, Thomgartin JR, Goldberger BA.
Manners of death in drug-related fatalities in Florida.

Marks CJ, van Hoving DJ.
A 3-year survey of acute poisoning exposures in infants reported in telephone calls made to the tygerberg poison information centre, South Africa.

Rudd RA, Aleshire N, Zibbell JE, Matthew R.

Tagne-Fotso R, Leroyer A, Howsam M, Dehon B, Richeval C, Members of Health Examination Centres of Nord-Pas-de-Calais region network, Nisse C.
Current sources of lead exposure and their relative contributions to the blood lead levels in the general adult population of Northern France: the IMPEOG study, 2008–2010.

Wel B, Blount BC, Xia B, Wang L.

Wigen Skjerdal J, Andrew E, Gjersten F.

Yablonsky TA, Thompson GL.
Overdose deaths in West Virginia.

Forensic toxicology
Anilamert B, Çavus F, Narin I, Cengiz S, Sertler S, Özdemir AA, Açikkol M.
Simultaneous analysis method for GHB, ketamine, norketamine, phcenobarbital, thiopental, zolpidem, zopiclone and phenytoin in urine, using C18 poroshell column.

Arslan MN, Özgün A, Das T, Kumru D, Sam B, Köç S.
Colchicine-induced rhabdomyolysis: an autopsy case.

Cappelletti S, Aromataro M, Bottoni E, Fiore PA, Straccamore M, Ronchi FU, De Mari GM, Ciallella C.
Drug-related deaths with evidences of body packing: two case reports and medico-legal issues.

A case of acute intoxication due to combined use of fentanyl and 3,4-dichloro-N-[2-(dimethylamino)cyclohexyl]-N-methyl-benzamide (U-47700).
Forensic Sci Int 2016; online early: doi: 10.1016/j.forsciint.2016.05.001:

Lee D, Delcher C, Maldonado-Molina MM, Thomgartin JR, Goldberger BA.
Manners of death in drug-related fatalities in Florida.

Li Z, Zhang H, Li S-H, Byard RW.
Fatal phenol toxicity following attempted tattoo removal.

Palmiere C.
Postmortem diagnosis of drug-induced anaphylactic death.

Genotoxicity
Cui Y, Choudhury SR, Irudayaraj J.
Epigenetic toxicity of trichloroethylene: a single-molecule perspective.

Hepatotoxicity
Cairney DG, Beckwith HKS, Al-Hourani K, Edleston M, Bateman DN, Dear JW.
Plasma paracetamol concentration at hospital presentation has a dose-dependent relationship with liver injury despite prompt treatment with intravenous acetylcysteine.

Katselis C, Apostolou K, Feretis T, Papanikolaou I, Zografos GC, Toutouzas K, Papalos A.
Role of stem cells transplantation in tissue regeneration after acute or chronic acetaminophen induced liver injury.

Lefkowitch JH.
The pathology of acute liver failure.

Marashi SM.
What is the real cause of hepatic dysfunction after zinc phosphide containing rodenticide poisoning?
Indian J Gastroenterol 2016; online early: doi: 10.1007/s12664-016-0640-5:

Rollason V, Spahr L, Escher M.
Severe liver injury due to a homemade flower pollen preparation in a patient with high CYP3A enzyme activity: a case report.

Sleeba SK, Raj M, Kabeer PA, Dipu KP.
A rare case of yellow phosphorous poisoning with acute cholestatic hepatitis, bicytopenia, and impending hepatic failure.
Inhalation toxicity

Kinetics

Medication errors

Metabolism

Nephrotoxicity

Neurotoxicity

Occupational toxicology

Ocular toxicity

Paediatric toxicology

Poisons information and poison information centres

Psychiatric aspects

Reprotoxicity

Barrow P. Revision of the ICH guideline on detection of toxicity to reproduction for medicinal products: SWOT analysis. Reprod Toxicol 2016; online early; doi: 10.1016/j.reprotox.2016.03.048.

Risk assessment

Surgery
Arens A, Smollin C.
Case files of the University of California, San Francisco medical toxiology fellowship: seizures and a persistent anion gap metabolic acidosis.
Bashini MM, Rajavel VP, Rahulan V.
Complications and management of attempted suicide by intrapleural injection of prallethrin.
Collett GA, Song K, Jaramillo CA, Potter JS, Finley EP, Pugh MJ.
Prevalence of central nervous system polypharmacy and associations with overdose and suicide-related behaviors in Iraq and Afghanistan war veterans in VA care 2010-2011.
Drugs Real World Outcomes 2016; 3: 45-52.
Galway K, Gossrau-Breen D, Mallon S, Hughes L, Rosato M, Rondon-Sulbaran J, Leavey G.
Substance misuse in life and death in a 2-year cohort of suicides.
A life saved: one poison neutralizes another.
Yamada T, Shojima N, Yamauchi T, Kadowaki T.
Lactic acidoses due to attempted suicide with metformin overdose: a case report.
Diabetes Metab 2016; online early: doi: 10.1016/j.diabet.2016.03.005:
Management
General
Akyol S, Yuksel S, Pehlivan S, Erdemli HK, Gulec MA, Adam B, Akyol O.
Possible role of antioxidants and nitric oxide inhibitors against carbon monoxide poisoning: having a clear conscience because of their potential benefits.
Probing the activity of a non-oxime reactivator for acetylcholinesterase inhibited by organophosphorus nerve agents.
Chibishev A, Markoski V, Smokovski I, Shikole E, Stecevska A.
Nutritional therapy in the treatment of acute corrosive intoxication in adults.
Chippaux J-P, Akaffou MH, Allali BK, Dotso M, Massougbodji A, Barraviera B.
The 6th international conference on envenomation by snakebites and scorpion stings in Africa: a crucial step for the management of envenomation.
Cooper ZD.
Adverse effects of synthetic cannabinoids: management of acute toxicity and withdrawal.
Dorooshii G, Mesri M, Taheri S, Habibollahi S.
Comparative study of gastrointestinal disposal facility following administration of magnesium hydroxide, lactulose and polyethylene glycol in poisoned patients.
Dürsteler KM, Vogel M.
Effective drug therapy for cocaine dependence: a milestone.
Lancet 2016; online early: doi: 10.1016/S0140-6736(16)00563-8:
Kim H, Heverling H, Cordeiro M, Vasquez V, Stolbach A.
Internet training resulted in improved trainee performance in a simulated opioid-poisoned patient as measured by checklist.
Panahi Y, Ghanei M, Vahedi E, Mousavi SH, Imani S, Sahebkar A.
Efficacy of probiotic supplementation on quality of life and pulmonary symptoms due to sulfur mustard exposure: a randomized double-blind placebo-controlled trial.
Ramasubbu B, James D, Scurr A, Sandilands EA.
Serum alkalisation is the cornerstone of treatment for amitriptyline poisoning.
BMJ Case Rep 2016; doi: 10.1136/bcr-2016-214685:
Routine biological tests in self-poisoning patients: results from an observational prospective multicenter study.
Salerno A, Bolzinger M-A, Rolland P, Chevalier Y, Josse D, Briançon S.
Pickering emulsions for skin decontamination.
Toxicol In Vitro 2016; 34: 45-54.
Schmidt KJ, Doshi MR, Holzki JM, Natavio A, Cadiz M, Winegardner JE.
Treatment of severe alcohol withdrawal.
Sherman BJ, McRae-Clark AL.
Treatment of cannabis use disorder: current science and future outlook.
Pharmacotherapy 2016; online early: doi: 10.1002/phar.1747:
Wightman RS, Read KB, Hoffman RS.
Evidence-based management of caustic exposures in the emergency department.
Yadav A, Flora SJS.
Nano drug delivery systems: a new paradigm for treating metal toxicity.
Antidotes

Taking stock: UK national antidote availability increasing, but further improvements are required.

The mastery of antidotes: a survey of antidote knowledge and availability among emergency physicians in registered hospitals in China.

Polack CV, Jr.
Antidotes for bleeding caused by novel oral anticoagulants.
Circulation 2016; 133: e18-e19.

Shihana F, Dawson AH, Dobbins T, Dissanayake D, Buckley NA.
A bedside test for methaemoglobinemia improved antidote use in propanil poisoning.
Clin Toxicol 2016; online early: doi: 10.1080/15563650.2016.1177651:

Suthari S, Raju VS.
Antidote botanicals for snake bites from Koyas of Warangal District, Telangana, India.

Acetylcysteine

Cairney DG, Beckwith HKS, Al-Hourani K, Eddleston M, Bateman DN, Dear JW.
Plasma paracetamol concentration at hospital presentation has a dose-dependent relationship with liver injury despite prompt treatment with intravenous acetylcysteine.

Ghannoum M, Kazim S, Grunbaum AM, Villeneuve E, Goosselin S.
Massive acetaminophen overdose: effect of hemodialysis on acetaminophen and acetylcysteine kinetics.
Clin Toxicol 2016; online early: doi: 10.1080/15563650.2016.1175006:

Outcomes of patients with premature discontinuation of the 21-h Intravenous N-acetylcysteine protocol after acute acetaminophen overdose.

Antivenom

Cost-effectiveness of antivenoms for snakebite envenoming in 16 countries in West Africa.

Lim AY, Singh PN, Isbister GK.
Severe rhabdomyolysis from red-bellied black snake (Pseudechis porphyriacus) envenoming despite antivenom.

Mong R, Tan HH.
Snakebite by the shore pit viper (Trimeresurus purpureomaculatus) treated with polyvalent antivenom.
Wilderness Environ Med 2016; online early: doi: 10.1016/j.wem.2016.01.001:

Tan KY, Tan CH, Fung SY, Tan NH.
Neutralization of the principal toxins from the venoms of Thai Naja kaouthia and Malaysian Hydrophis schistosus: insights into toxin-specific neutralization by two different antivenoms.
Toxins (Basel) 2016; 8: 86.

Chelating agents

Andersen O, Aaseth J.
A review of pitfalls and progress in chelation treatment of metal poisonings.

Kontogiorghe CN, Kontogiorghes GJ.
New developments and controversies in iron metabolism and iron chelation therapy.

Fab fragments

Chan BS, Isbister GK, O’Leary M, Chiew A, Buckley NA.
Efficacy and effectiveness of anti-digoxin antibodies in chronic digoxin poisonings from the DORA study (ATOM-1).
Clin Toxicol 2016; online early: doi: 10.1080/15563650.2016.1175620:

Hauptman PJ, Blume SW, Lewis EF, Ward S.
Digoxin toxicity and use of digoxin immune fab: insights from a national hospital database.
JACC Heart Fail 2016; 4: 357-64.

Flumazenil

Aghabiklooei A, Sangsefidi J.
The effects of intravenous aminophylline on level of consciousness in acute intentional benzodiazepines poisoning in comparison to flumazenil.
Hum Exp Toxicol 2016; online early: doi: 10.1177/0960327116646619:

Djordjevic S, Jovic-Stosic J, Kilibarda V, Segrît Z, Perkovic-Vukovic N.
Determination of flumazenil in serum by liquid chromatography-mass spectrometry: application to kinetics study in acute diazepam overdose.
Vojnosanit Pregl 2016; 73: 146-51.

Hyperbaric oxygen therapy

Hyperbaric programs in the United States: Locations and capabilities of treating decompression sickness, arterial gas embolisms, and acute carbon monoxide poisoning: survey results.

Lipid emulsion therapy

Besserer F, Chuang R, Mink M, Massey L, Cloud B.
Tilmicosin toxicity: a case of accidental human tilmicosin injection managed with calcium, high-dose insulin and intravenous lipid emulsion therapy.
Clin Toxicol 2016; online early:
doi: 10.1080/15563650.2016.1185109:

Chai PR, Hack JB.
Intravenous lipid emulsion in the resuscitation of cocaine-induced cardiovascular arrest in a rat model.
Am J Emerg Med 2016; online early:
doi: 10.1016/j.ajem.2016.04.026:

Heinonen J, Skrifvars M, Haasio J, Backman J, Rosenberg P, Litosius E.
Intravenous lipid emulsion for levobupivacaine intoxication in acidic and hypoxaemic pigs.

Höjer J, Jacobsen D, Neuvonen P, Rosenberg PH.
Lipid rescue - Efficacy and safety still unproven.
Basic Clin Pharmacol Toxicol 2016; online early:
doi: 10.1111/bcpt.12607:

Rosenthal G, Wetsch WA, Neumann T, Padosch SA, Büttiger BW, Marcus HE.
Local anesthetic toxicity: Who is ready for lipid resuscitation? - A survey of German Hospitals.

Tulgar S, Kose HC, Demir Pirolu I, Karakilic E, Ates NG, Demir A, Gergerli R, Guven S, Pirolu MD.
Comparison of effects of separate and combined sugammadex and lipid emulsion administration on hemodynamic parameters and survival in a rat model of verapamil toxicity.

Intralipid™ administration attenuates the hypotensive effects of acute intravenous amiodarone overdose in a swine model.
Am J Emerg Med 2016; online early:
doi: 10.1016/j.ajem.2016.04.001:

Zyoud SH, Waring WS, Al-Jabi SW, Sweileh WM, Rahhal B, Awang R.
Intravenous lipid emulsion as an antidote for the treatment of acute poisoning: a bibliometric analysis of human and animal studies.
Basic Clin Pharmacol Toxicol 2016; online early:
doi: 10.1111/bcpt.12609:

Methylthioninium chloride (Methylene blue)

Warrick BJ, Tataru AP, Smolinske S.
A systematic analysis of methylene blue for drug-induced shock.
Clin Toxicol 2016; online early:
doi: 10.1080/15563650.2016.1180390:

Naloxone

Anon.
Opioid overdose and naloxone: the antidote to an epidemic?
Drug Alcohol Depend 2016; online early:
doi: 10.1016/j.drugalcdep.2016.03.024:

Anon.
Naloxone prescriptions by emergency physicians.

Bird SM, McAuley A, Perry S, Hunter C.
Effectiveness of Scotland’s national naloxone programme: response to letter to editor.
Addiction 2016; online early:
doi: 10.1111/add.13391:

Lott DC, Rhodes J.
Opioid overdose and naloxone education in a substance use disorder treatment program.

McAuley A, Munro A, Bird SM, Hutchinson SJ, Goldberg DJ, Taylor A.
Engagement in a national naloxone programme among people who inject drugs.

Rudd-Barnard G, Pangarkar S, Moelej N, Glassman P.
Epidemiology of naloxone use for opioid overdose in a tertiary care medical center.

Sandhu A, Kao D, Mehler PS, Haigney MC, Krantz MJ.
Cardiovascular disorders associated with naloxone monotherapy and in fixed-dose combination with opioids: data from international safety surveillance.
Int J Cardio 2016; 212: 360-3.

Walsh SL, Nuzzo PA, Babalonis S, Casselton V, Lofwall MR.
Intranasal buprenorphine alone and in combination with naloxone: abuse liability and reinforcing efficacy in physically dependent opioid abusers.

Oximes

Worek F, Koller M, Thiermann H, Willie T.
Reactivation of nerve agent-inhibited human acetylcholinesterase by obidoxime, HI-6 and obidoxime+HI-6: kinetic in vitro study with simulated nerve agent toxicokinetics and oxime pharmacokinetics.

Aminophylline

Aghabiklooei A, Sangsefidi J.
The effects of intravenous aminophylline on level of consciousness in acute intentional benzodiazepines poisoning in comparison to flumazenil.
Hum Exp Toxicol 2016; online early:
doi: 10.1177/0960327116646619:

Anisodamine

Eisenkraft A, Falk A.
Possible role for anisodamine in organophosphate poisoning.

Buprenorphine

Walsh SL, Nuzzo PA, Babalonis S, Casselton V, Lofwall MR.

Clonidine

Dexamfetamine

Doxapram

Dronabinol

Extracorporeal treatments

Haemodialysis

Haloperidol
McAllister MW, Woodhall DM. Bupropion-induced stuttering treated with haloperidol.

Inulin

Insulin

Nalmefene

Propofol

Sugammadex

DRUGS General

Barrow P. Revision of the ICH guideline on detection of toxicity to reproduction for medicinal products: SWOT analysis. Reprod Toxicol 2016; online early: doi: 10.1016/j.reprotox.2016.03.048:

Collett GA, Song K, Jaramillo CA, Potter JS, Finley EP, Pugh MJ.

Acetaminophen (see paracetamol)

Amfetamines and MDMA (ecstasy)

Anabolic steroids

Anaesthetics

Levobupivacaine

Analgesics

Thiocolchicoside

Antiarrhythmic drugs

Amiodarone

Ünal E, Perkin P, Konca Degertekin C, Ergül G. Hyperpigmentation on face and arms and thyrotoxicosis induced by amiodarone treatment. Cutan Ocul Toxicol 2016; online early:
Intralipid™ administration attenuates the hypotensive effects of acute intravenous amiodarone overdose in a swine model.

Flecainide
Valentino M, Panakos A, Ragupathi L, Williams J, Pavri B.
Flecainide toxicity mimicking incessant ventricular tachycardia.
J Am Coll Cardiol 2016; 67: 1037.

Antibiotics
Tilmicosin
Besserer F, Chuang R, Mink M, Massey L, Cloud B.
Tilmicosin toxicity: a case of accidental human tilmicosin injection managed with calcium, high-dose insulin and intravenous lipid emulsion therapy.
Clin Toxicol 2016; online early: doi: 10.1080/15563650.2016.1185109:

Anticholinergic drugs
Oxybutynin
Beghin D, Vauzelle-Gardier C, Elefant E.
Pregnancy outcome after in utero exposure to oxybutynin.

Anticoagulants
Warfarin
Anon.
Warfarin, sulfonylureas and serious hypoglycaemic events.

Nannaka VB, Jani N, Niaz M, Lvosky D.
Acute warfarin toxicity as initial manifestation of metastatic liver disease.

Race-specific influence of CYP4F2 on dose and risk of hemorrhage among warfarin users.

Anticonvulsants
Lamotrigine
Kohn E, Brandriss N, Soback S, Bar-Haim A, Berkovitch M.
Levetiracetam and lamotrigine excretion in breast milk.

Antidepressants
Coupland C, Hill T, Morniss R, Moore M, Arthur A, Hipperson-Cox J.
Antidepressant use and risk of cardiovascular outcomes in people aged 20 to 64: cohort study using primary care database.

Bupropion
Bolen RD, Campbell Z, Bonilha L, Edwards JC.
Alpha coma related to intentional bupropion overdose.

McAllister MW, Woodhall DM.
Bupropion-induced stuttering treated with haloperidol.
Clin Toxicol 2016; online early: doi: 10.1080/15563650.2016.1179749:

Antifungal drugs
Cottreau JM, Barr VO.
A review of antiviral and antifungal use and safety during pregnancy.
Pharmacotherapy 2016; online early: doi: 10.1002/phar.1764:

Antihistamines
Loratadine
Arens A, Smollin C.
Case files of the University of California, San Francisco medical toxicology fellowship: seizures and a persistent anion gap metabolic acidosis.

Antimalarial drugs
Mefloquine
Forrester MB.
Pattern of mefloquine ingestions reported to Texas poison centers.

Antineoplastic drugs
Thornton SL, Liu J, Soleymani K, Romasco RL, Farid H, Clark RF, Cantrell FL.
Review of experience of a statewide poison control center with pediatric exposures to oral antineoplastic drugs in the nonmedical setting.
Am J Ther 2016; 23: e377-e381.

Bleomycin
Patil N, Paulose RM, Udupa KS, Ramakrishna N, Ahmed T.
Pulmonary toxicity of bleomycin - A case series from a tertiary care center in southern India.

Methotrexate
El Helou T, Watters KA, Colmegna I.
Reply to Arthritis & Rheumatology Keratinocyte dystrophy as a marker of low-dose methotrexate induced skin toxicity. Letter from Delyon et al.
Arthritis Rheumatol 2016; online early: doi: 10.1002/art.39671:

Antipsychotics
Choy BNK, Ng ALK, Shum JWH, Fan MCY, Lai JSM.
A case report: anti-psychotic agents related ocular toxicity.
Medicine 2016; 95: e3360.

Amisulpride
Dunstan HJ, Richardson JL, Stephens S, Yates LM, Thomas SHL.
First trimester exposure to amisulpride and the risk of adverse pregnancy outcomes: a case series.
Promethazine

Antiviral drugs

Baclofen

Benzodiazepines

Diazepam

Benzylpiperazine

Beta-blockers

Carvedilol

Baclofen

Caffeine

Calcium channel blockers

Amlodipine

Verapamil

Cannabis (marijuana)

Lynskey MT, Hindocha C, Freeman TP. Legal regulated markets have the potential to reduce population levels of harm associated with cannabis use. Addiction 2016; online early: doi: 10.1111/add.13390:

Cocaine

Colchicine

Corticosteroids

Dexamethasone

Dapsone

Designer drugs

Synthetic cannabinoids

Dextromethorphan

Digoxin
Chan BS, Isbister GK, O'Leary M, Chiew A, Buckley NA. Efficacy and effectiveness of anti-digoxin antibodies in chronic digoxin poisonings from the DORA study (ATOM-1). Clin Toxicol 2016; online early: doi: 10.1080/15563650.2016.1175620:

Dopamperone

Fenethylline

Gamma hydroxybutyrate

Hallucinogenic drugs

Herbal medicines, ethnic remedies and dietary supplements

2,4-Dinitrophenol
Holborow A, Purnell RM, Wong JF. Beware the yellow slimming pill: fatal 2,4-dinitrophenol overdose. BMJ Case Rep 2016; doi: 10.1136/bcr-2016-214689:

Heroin (diacetylmorphine)

Darke S, Duflou J.

Hvid L, Svendsen MT, Andersen KE. Occupational allergic contact dermatitis caused by heroin (diacetylmorphine) and morphine. Contact Derm 2016; 74: 301-2.

Hypoglycaemics

Metformin

Yamada T, Shojima N, Yamauchi T, Kadowaki T. Lactic acidosis due to attempted suicide with metformin overdose: a case report. Diabetes Metab 2016; online early: doi: 10.1016/j.diabet.2016.03.005:

Immunosuppressants

Tacrolimus

Tocilizumab

Ketamine

Kratom

Levamisole

Levetiracetam

Mephedrone

Methoxetamine

Methoxyflurane

Monoamine oxidase inhibitors

Phenelzine

Monoclonal antibodies

Belimumab

Muscle relaxants

Nicotine

Nitrous oxide

NSAIDs

Diclofenac

Ibuprofen

Omeprazole

Ondansetron

Opioids

Anon.

Codeine

Paracetamol (acetaminophen)

Salbutamol

Salicylates

Sodium nitroprusside

SSRIs and SNRIs

Venlafaxine

Substance abuse

McAuley A, Munro A, Bird SM, Hutchinson SJ, Goldberg DJ, Taylor A.
Engagement in a national naloxone programme among people who inject drugs.

McCabe SE, Veliz P, Boyd CJ.

Early exposure to stimulant medications and substance-related problems: the role of medical and nonmedical contexts.

Drug Alcohol Depend 2016; online early: doi: 10.1016/j.drugalcdep.2016.03.019:

Murphy Y, Wilson E, Goldner EM, Fischer B.

Benzodiazepine use, misuse, and harm at the population level in Canada: a comprehensive narrative review of data and developments since 1995.

Thompson JK, Ordaz DL.

Chasing the ideal: the role of body image in anabolic steroid misuse.

Ticagrelor

J Anal Toxicol 2016; online early: doi: 10.1093/jat/bkw039:

Tricyclic antidepressants

Verbee F, Reijn J, TMAJ, Mitrov-Winkelmolen L, Overdieck JWPM, Dennesen PJW.

Tricyclic antidepressant poisoning: cardiovascular and neurological toxicity.

Amitriptyline

Ramasubbu B, James D, Scarr A, Sandilands EA.

Serum alkalisation is the cornerstone of treatment for amitriptyline poisoning.

BMJ Case Rep 2016; doi: 10.1136/bcr-2016-214685:

Vitamins

Calciferol

Belaidi N, Georges A, Lacroix I, Croisonnier A, Ducros V, Souberbielle J-C, Corcuff J-B.

Hypercalcemia and elevated concentration of vitamin D: a case report too easy to be true.

CHEMICAL INCIDENTS AND POLLUTION

Air pollution

Becerra AZ, Georas S, Brenna JT, Hopke PK, Kane C, Chalupa D, Frampton MW, Block R, Rich DQ.

Increases in ambient particulate matter air pollution, acute changes in platelet function, and effect modification by aspirin and omega-3 fatty acids: a panel study.

Byers N, Ritchey M, Vaidyanathan A, Brandt AJ, Yip F.

Short-term effects of ambient air pollutants on asthma-related emergency department visits in Indianapolis, Indiana, 2007–2011.

Cavallari JM, Fang SC, Eisen EA, Mittleman MA, Christiani DC.

Environmental and occupational particulate matter exposures and ectopic heart beats in welders.

Occup Environ Med 2016; online early: doi: 10.1136/oemed-2015-103256:

Greenberg N, Carel RS, Derazne E, Bibi H, Shpriz M, Tzur D, Portnov BA.

Different effects of long-term exposures to SO2 and NO2 air pollutants on asthma severity in young adults.

Air pollution exposure during pregnancy and fetal markers of metabolic function: the MIREC study.

Am J Epidemiol 2016; online early: doi: 10.1093/aje/kww256:

Pant P, Guttikunda SK, Peltier RE.

Exposure to particulate matter in India: a synthesis of findings and future directions.

Pereira G, Bracken MB, Bell ML.

Particulate air pollution, fetal growth and gestational length: the influence of residential mobility in pregnancy.

Lifetime exposure to ambient pollution and lung function in children.

Sack CS, Kaufman JD.

Air pollution levels and children's lung health. How low do we need to go?

Long-term metal PM2.5 exposures decrease cardiac acceleration and deceleration capacities in welders.

What we breathe impacts our health: improving understanding of the link between air pollution and health.

Exhaust fumes

Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials.

Chemical incidents

CHEMICALS
General

Ogawa Y. Chemical poisonings, new and old. Ind Health 2016; 54: 99-100.

Alpha-diketones
Morgan DL, Jokinen MP, Johnson CL, Price HC, Grinn WM, Bousquet RW, Flake GP. Chemical reactivity and respiratory toxicity of the alpha-diketone flavoring agents: 2,3-butanedione, 2,3-pentanedione, and 2,3-hexanedione. Toxicol Pathol 2016; online early: doi: 10.1177/0192623316638962:

Asbestos

Benzene

Benzoic acid
Hameed A, Shifaat F, Din MU, Budoo S, Khanday S, Taj A. An unusual case of acute poisoning with paraformaldehyde, benzoic acid, and kaolin.

Bisphenol A

Carbon monoxide

Kalay N.

What are the cardiac effects of carbon monoxide poisoning in the acute and chronic periods? Am J Emerg Med 2016; online early: doi: 10.1016/j.ajem.2016.03.071:

Ceramics

Chlorine

Copper sulphate

Corrosives

Cyanide
Cyanohydrins
Two fatal intoxications with cyanohydrins.

Detergents
Davis MG, Casavant MJ, Spiller HA, Chounthirath T, Smith GA.
Pedicatrics 2016; 137: e20154529.

E-cigarettes
Benowitz NL, Burbank AD.
Cardiovascular toxicity of nicotine: Implications for electronic cigarette use.
Trends Cardiovasc Med 2016; online early: doi: 10.1016/j.tcm.2016.03.001:

Kaolin
Hameed A, Shifaat F, Din MU, Budoo S, Khanday S, Taj A.
An unusual case of acute poisoning with paraformaldehyde, benzoic acid, and kaolin.

Methanol
Adewole A.

Methyl isothiazolinone
Scientific Committee of Consumer Safety - SCCS, Giménez Arnau AM.
Opinion of the Scientific Committee on Consumer safety (SCCS) - Opinion on the safety of the use of methylisothiazolinone (MI) (PH4), in cosmetic products (sensitisation only).

Nanoparticles
Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials.

Oxygen
Sanchez-De-Toledo J, Bayir H.
Oxygen: a luxurious life-giving and potentially toxic gas.

Perfluorinated compounds
Christensen KY, Raymond M, Thompson BA, Anderson HA.
Perfluoroalkyl substances in older male anglers in Wisconsin.

Persulphates
Kleniewska A, Wiszniewska M, Krawczyk A, Nowakowska-Swirta E, Walusia-Skorupa J.
Anaphylactic reaction in a hairdresser due to sensitization to persulphates.
Occup Med (Oxf) 2016; online early: doi: 10.1093/occmed/kqw037:

Petrol (gasoline) and petroleum oils
Fowles JR, Banton MI, Boogaard PJ, Ketelslegers HB, Rohde AM.
Assessment of petroleum streams for thyroid toxicity.
Toxicol Lett 2016; online early: doi: 10.1016/j.toxlet.2016.05.001:
O’Callaghan-Gordo C, Orta-Martínez M, Kogevinas M.
Health effects of non-occupational exposure to oil extraction.
Environ Health 2016; 15: 56.

Phenol
Li Z, Zhang H, Li S-H, Byard RW.
Fatal phenol toxicity following attempted tattoo removal.

Phthalate esters
Exposure to bisphenol A and phthalates during pregnancy and ultrasound measures of fetal growth in the INMA-Sabadell cohort.

Polybrominated diphenyl ethers
Maternal levels of endocrine disruptors, polybrominated diphenyl ethers, in early pregnancy are not associated with lower birth weight in the Canadian birth cohort GESTE.

Environ Health 2016; 15: 49.

Polychlorinated biphenyls
Cerná M, Krsková A, Šmíd J, Malý M.
Exposure and risk assessment of the Czech population to chlorinated pesticides and polychlorinated biphenyls using archived serum samples from the period 1970 to 1990.

Polycyclic aromatic hydrocarbons
Rai R, Glass DC, Heyworth JS, Saunders C, Fritschi L.
Occupational exposures to engine exhausts and other PAHs and breast cancer risk: a population-based case-control study.

Radiation
O’Malley GF.
The grave is wide: the Hibakusha of Hiroshima and Nagasaki and the legacy of the atomic bomb casualty commission and the radiation effects research foundation.

Smoke
Chatzivasilioglou F, Katsenos S, Psara A, Tsintiris K.
Orange-pigmented sputum as a manifestation of smoke grenade inhalation injury.

Sodium arsenate
Souza ACF, Marchesi SC, Ferraz RP, Lima GDdA, de Oliveira JA, Machado-Neves M.
Effects of sodium arsenate and arsenite on male reproductive functions in Wistar rats.

Solvents
Yang H-Y, Shie R-H, Chen P-C.
Hearing loss in workers exposed to epoxy adhesives and noise: a cross-sectional study.
BMJ Open 2016; 6: e010533.

Tobacco
Tobacco-induced contact dermatitis.
Kamboj A, Spiller HA, Casavant MJ, Chounthirath T, Smith GA.
Pediatric exposure to e-cigarettes, nicotine, and tobacco products in the United States.
Pediatrics 2016; 137: e20160041:
Scott-Goodwin AC, Puerto M, Moreno I.
Toxic effects of prenatal exposure to alcohol, tobacco and other drugs.
Sidani JE, Shensa A, Shifman S, Switzer GE, Primack BA.
Public health implications of waterpipe tobacco use in the United States warrant initial steps towards assessing dependence.

Toluene

Trichloroethylene

Triclosan

Turpentine

Volatile organic compounds

Water

Yellow phosphorus

METALS

General

Aluminium

Arsenic
Flora SJS.
Arsenic and dichlorvos: possible interaction between two environmental contaminants.

Goyal T, Zawar V, Varshney A.
Chronic arsenic toxicity: a spectrum of clinical manifestations in a single patient, a diagnostic challenge!
G Ital Dermatol Venereol 2016; online early: PMID:27070302:

Griffin JD.
Blood's 70th anniversary: arsenic - From poison pill to magic bullet.

Kordas K, Queirolo EI, Mañay F, Peregalli F, Hsiao PY, Lu Y, Vahter M.
Low-level arsenic exposure: nutritional and dietary predictors in first-grade Uruguayan children.

Arsenic metabolism in children differs from that in adults.
Toxicol Sci 2016; online early: doi: 10.1093/toxsci/kfw060:

Cadmium
Christensen PS, Bonde JP, Bungum L, Giwercman A, Toft G, Jönsson BAG, Specht JO.
Environmental cadmium and lead exposure and anti-Müllerian hormone in pregnant women.

Lead
Brink LA, Talbott EO, Marsh GM, Sharma R, Benson S, Wu WC, Duan C.

Bustamante ND, Macias-Konstantopoulos WL.
Retained lumbar bullet: a case report of chronic lead toxicity and review of the literature.

Christensen PS, Bonde JP, Bungum L, Giwercman A, Toft G, Jönsson BAG, Specht JO.
Environmental cadmium and lead exposure and anti-Müllerian hormone in pregnant women.

Conlon E, Ferguson K, Dack S, Cathcart S, Azizi A, Keating A.
Unusual cases of lead poisoning in the UK.

Cowen V, Blakley B.
Acute lead poisoning in western Canadian cattle - A 16-year retrospective study of diagnostic case records.

Eid A, Zawia N.
Consequences of lead exposure, and it's emerging role as an epigenetic modifier in the aging brain.

Ford DM, Margaritis V, Mendelsohn AB.
Characteristics of childhood lead poisoning among Tennessee children ages one to five years, 2009–2013.
Public Health 2016; online early: doi: 10.1016/j.puhe.2016.02.027:

Gostin LO.
Lead in the water: a tale of social and environmental injustice.

Hore P, Ahmed MS, Sedlar S, Saper RB, Nagin D, Clark N.
Blood lead levels and potential risk factors for lead exposures among South Asians in New York city.

Kasperczyk S, Dobrakowski M, Kasperczyk A, Nogaj E, Boron M, Birkner E.
The effects of α-tocopherol administration in chronically lead exposed workers.

Khan SY, Arshad M, Arshad N, Shafaat S, Tahir HM.
A probable role of blood lead levels on some haematological parameters in traffic police, Lahore, Pakistan.
Toxicol Ind Health 2016; 32: 795-800.

Occupational lead exposure from indoor firing ranges in Korea.

Tagne-Fotso R, Leroyer A, Howsam M, Dehon B, Richeval C, Members of Health Examination Centres of Nord-Pas-de-Calais region network, Nisse C.
Current sources of lead exposure and their relative contributions to the blood lead levels in the general adult population of Northern France: the IMEPOGE study, 2008–2010.

Thompson R, Rabie H.
Pica - a public health perspective.

Lithium
Harari F, Åkesson A, Casimiro E, Lu Y, Vahter M.
Exposure to lithium through drinking water and calcium homeostasis during pregnancy: a longitudinal study.

Manganese
Hines EQ, Soomro I, Howland MA, Hoffman RS, Smith SW.
Massive intravenous manganese overdose due to compounding error: minimal role for hemodialysis.
Clin Toxicol 2016; online early: doi: 10.1080/15563650.2016.1178390:

Mercury
Bellinger DC, O'Leary K, Rainis H, Gibb HJ.
Country-specific estimates of the incidence of intellectual disability associated with prenatal exposure to methylmercury.
Environ Res 2016; 147: 159-63.
Bose-O'Reilly S, Schierl R, Nowak D, Siebert U, William JF, OwI FT, Jr YI.
A preliminary study on health effects in villagers exposed to mercury in a small-scale artisanal gold mining area in Indonesia.
Exposure of methyl mercury in utero and the risk of neural tube defects in a Chinese population.
Lai O, Pansì KK, Wu D, Konia TH, Yonts A, Sinha N, McNelis A, Sharon VR.
Mercury toxicity presenting as acrodynia and a papulovesicular eruption in a 5-year-old girl.
Marques RC, Bernardi JVE, Cunha MPL, Dórea JG.
Impact of organic mercury exposure and home delivery on neurodevelopment of Amazonian children.
Int J Hyg Environ Health 2016; online early: doi: 10.1016/j.ijeh.2016.05.002:
A rare case of self-injection of elemental mercury.
Vejrup K, Schjalberg S, Knutsen HK, Kvalen HE, Brantsæter AL, Meltzer HM, Alexander J, Magnus P, Haugen M.
Prenatal methylmercury exposure and language delay at three years of age in the Norwegian Mother and Child Cohort Study.
Uranium
Amason JG, Pellegrini CN, Moore JL, Lewis-Michl EL, Parsons PJ.
Depleted and enriched uranium exposure quantified in former factory workers and local residents of NL Industries, Colonie, NY USA.

PESTICIDES
General
Akpinar-Eli M, Nguyen MT, Bidaisee S, Eli OC.
Pesticide exposure in the Caribbean: a case from nutmeg processing.
Maternal illness in pregnancy and perinatal exposure to pesticides are associated with risk for pediatric onset MS.
Neurology 2016; 86: S29.005.
Activity and determinants of cholinesterases and paraoxonase-1 in blood of workers exposed to non-cholinesterase inhibiting pesticides.
Madani FZ, Hafida M, Merzouk SA, Loukidi B, Taouli K, Narce M.
Hemostatic, inflammatory, and oxidative markers in pesticide user farmers.
Olfactory function in Latino farmworkers: subclinical neurological effects of pesticide exposure in a vulnerable population.
Development of a new categorization system for pesticides exposure to support harmonized reporting between EU member states.

Acrolein
Proposed mode of action for acrolein respiratory toxicity associated with inhaled tobacco smoke.
Toxicol Sci 2016; online early: doi: 10.1093/toxsci/kfw051:

Aluminium phosphide
Mendonca M, Tamas C, Kiraly L, Talo H, Rajah J.
Successful use of ECLS in cardiopulmonary failure due to aluminium phosphide poisoning.

Pesticides and cancer
Hernández AF, Menéndez P.
Linking pesticide exposure with pediatric leukemia: potential underlying mechanisms.

Carbamate insecticides
Mancozeb
Pirozzi AVA, Stellavato A, La Gatta A, Lamberti M, Schiraldi C.
Mancozeb, a fungicide routinely used in agriculture, worsens nonalcoholic fatty liver disease in the human HepG2 cell model.

Fipronil
de Barros AL, Rosa JL, Cavariani MM, Borges CS, Villela e Silva P, Bae JH, Anselmo-Franci JA, Cristina Arena A.
In utero and lactational exposure to fipronil in female rats: pregnancy outcomes and sexual development.

Fungicides
Paraformaldehyde
Hameed A, Shifaat F, Din MU, Budoo S, Khanda MR, Taj A.
An unusual case of acute poisoning with paraformaldehyde, benzoic acid, and kaolin.
Herbicides

Atrazine
Campbell JL, Jr., Andersen ME, Hinderliter PM, Yi KD, Pastoor TP, Breckenridge CB, Clewell HJ, III.
PBPK Model for Atrazine and Its Chlorotrizaine Metabolites in Rat and Human.

Propanil
Shihana F, Dawson AH, Dobbins T, Dissanayake D, Buckley NA.
A bedside test for methaemoglobinemia improved antidote use in propanil poisoning.
Clin Toxicol 2016; online early: doi: 10.1080/15563650.2016.1177651:

Organochlorine pesticides

General
Cerná M, Krsková A, Šmid J, Malý M.
Exposure and risk assessment of the Czech population to chlorinated pesticides and polychlorinated biphenyls using archived serum samples from the period 1970 to 1990.

Organophosphorus insecticides

General
Attia MY, Abdelbary AA, Khaled MM, Abdel fattah AH.
Veno-venous extracorporeal membrane oxygenation in a case of organophosphorus poisoning.

Coban A, Carr RL, Chambers HW, Willeford KO, Chambers JE.
Comparison of inhibition kinetics of several organophosphates, including some nerve agent surrogates, using human erythrocyte and rat and mouse brain acetylcholinesterase.

Eisenkraft A, Falk A.
Possible role for anisodamine in organophosphate poisoning.

Modeling and simulation of organophosphate-induced neurotoxicity: prediction and validation by experimental studies.
Neurotoxicology 2016; 54: 140-52.

The role of diet in children’s exposure to organophosphate pesticides.

Feasibility of hair sampling to assess levels of organophosphate metabolites in rural areas of Sri Lanka.

Ramasubramanian T, Paramasivam M.
Development and validation of a multiresidue method for the simultaneous determination of organophosphorus insecticides and their toxic metabolites in sugarcane juice and refined sugar by gas chromatography with flame photometric detection.
J Sep Sci 2016; online early: doi: 10.1002/jssc.201600154:

Rathish D, Agampodi SB, Jayasumana MACS, Sin baddana SH.
From organophosphate poisoning to diabetes mellitus: the incretin effect.

Suratman S, Ross KE, Babina K, Edwards JW.
The effectiveness of an educational intervention to improve knowledge and perceptions for reducing organophosphate pesticide exposure among Indonesian and South Australian migrant farmworkers.

Taghavian F, Vaezi G, Abdollahi M, Malekirad AA.
Comparative toxicological study between exposed and non-exposed farmers to organophosphorus pesticides.

Tang W, Ruan F, Chen Q, Chen S, Shao X, Gao J, Zhang M.
Independent prognostic factors for acute organophosphorus pesticide poisoning.
Respir Care 2016; online early: doi: 10.4187/respcare.04514:

Worek F, Schilha M, Neumaier K, Aurbek N, Wille T, Thiermann H, Kehe K.
On-site analysis of acetylcholinesterase and butyrylcholinesterase activity with the CHE check mobile test kit: Determination of reference values and their relevance for diagnosis of exposure to organophosphorus compounds.

Chlorpyrifos
Deeba F, Raza I, Muhammad N, Rahman H, ur Rehman Z, Azizullah A, Khattak B, Ullah F, Daud MK.
Chlorpyrifos and lambda cyhalothrin-induced oxidative stress in human erythrocytes: in vitro studies.
Toxicol Ind Health 2016; online early: doi: 10.1177/0748233716635003:

Dichlorvos
Flora SJS.
Arsenic and dichlorvos: possible interaction between two environmental contaminants.

Paraquat and diquat
Marashi SM, Raji H, Nasr-Nasrabadi Z, Majidi M.
Use of extracorporeal removal techniques in patients with paraquat toxicity and unknown hepatitis viral marker status.

Tsai J-L, Chen C-H, Wu M-J, Tsai S-F.
Paraquat poisoning in patients with HIV infection: a case report and literature review.
Medicine 2016; 95: e3350.

Picaridin
Charlton NP, Murphy LT, Parker Cote JL, Vakkalanka JP.
The toxicity of picaridin containing insect repellent reported to the National Poison Data System.
Clin Toxicol 2016; online early:
Pyrethroid insecticides

General
Cham EYK, Tse JCL, Chong YK, Chen ML, Wong OF, Fung HT.
A case of pyrethroid poisoning with clinical presentation mimicking organophosphate poisoning.

Magby JP, Richardson JR.
Developmental pyrethroid exposure causes long-term decreases of neuronal sodium channel expression.

Deltamethrin
Ben Slima A, Chtourou Y, Barkallah M, Fetoui H, Boudawara T, Gdoura R.
Endocrine disrupting potential and reproductive dysfunction in male mice exposed to deltamethrin.
Hum Exp Toxicol 2016; online early: doi: 10.1177/0960327116646617:

Lambda cyhalothrin
Deeba F, Raza I, Muhammad N, Rahman H, ur Rehman Z, Azzullah A, Khattak B, Ullah F, Daud MK.
Chlorpyrifos and lambda cyhalothrin-induced oxidative stress in human erythrocytes: in vitro studies.
Toxicol Ind Health 2016; online early: doi: 10.1177/0748233716635003:

Prallethrin
Bashini MM, Rajavel VP, Rahulan V.
Complications and management of attempted suicide by intrapleural injection of prallethrin.

Skin necrosis caused by prallethrin-A worldwide used insecticide.

Rodenticides
Marashi SM.
What is the real cause of hepatic dysfunction after zinc phosphide containing rodenticide poisoning?
Indian J Gastroenterol 2016; online early: doi: 10.1007/s12664-016-0640-5:

Zinc phosphide
Gunaratne WMSN, Wijeratne AT, Pilapitiya SD, Siribaddana SH.
A case of severe zinc phosphide poisoning.

Marashi SM.
What is the real cause of hepatic dysfunction after zinc phosphide containing rodenticide poisoning?
Indian J Gastroenterol 2016; online early: doi: 10.1007/s12664-016-0640-5:

CHEMICAL WARFARE,
BIOLOGICAL WARFARE AND RIOT CONTROL AGENTS

Biological warfare

Anthrax
Pshenichnaya N, Mamedova N, Ambalov Y, Usatkin A, Shmaylenko O, Zhuravlev A.
Cutaneous anthrax in the Rostov region of Russia: difficulties in the clinical diagnostics.

Chemical warfare

Mustard gas
ADAM17 inhibitors attenuate corneal epithelial detachment induced by mustard exposure.

Panahi Y, Ghanei M, Vahedi E, Mousavi SH, Imani S, Sahebkar A.
Efficacy of probiotic supplementation on quality of life and pulmonary symptoms due to sulfur mustard exposure: a randomized double-blind placebo-controlled trial.

Nerve agents
Probing the activity of a non-oxime reactivator for acetylcholinesterase inhibited by organophosphorus nerve agents.

Coban A, Carr RL, Chambers HW, Willeford KO, Chambers JE.
Comparison of inhibition kinetics of several organophosphates, including some nerve agent surrogates, using human erythrocyte and rat and mouse brain acetylcholinesterase.

Worek F, Koller M, Thierrmann H, Wille T.
Reactivation of nerve agent-inhibited human acetylcholinesterase by obidoxime, HI-6 and obidoxime+HI-6: kinetic in vitro study with simulated nerve agent toxicokinetics and oxime pharmacokinetics.

VX
Salerno A, Bolzinger M-A, Rolland P, Chevalier Y, Josse D, Brianson S.
Pickering emulsions for skin decontamination.
Toxicol In Vitro 2016; 34: 45-54.

PLANTS

Gelsemium elegans (Heartbreak grass)
Xiang H, Zhou YJ, Huang PL, Yu CN, Liu J, Liu LY, He P.
Lethal poisoning with Gelsemium elegans in Guizhou, China.
Public Health 2016; online early: doi: 10.1016/j.puhe.2016.02.031:
Mushrooms and other fungi

Bakkum M, van Cruyssen H, Kooter AJ.
A 39-year-old woman with a mushroom intoxication.

Shao D, Tang S, Healy RA, Imerman PM, Schrunk DE, Rumbelha WK.
A novel orellanine containing mushroom *Cortinarius armillatus*.

Mycoxotins

Taevernier L, Verryer L, Roche N, Peremans K, Burvenich C, Dellesalle C, De Spiegeleer B.
Human skin permeation of emerging mycoxotins (beauvericin and enniatins).

Rhododendron japonicum (Japanese Azalea)

Hypotension and bradycardia caused by the inadvertent ingestion of *Rhododendron japonicum*.

Ricinus communis (Castor oil plant)

de Hann P, Reidinga-Saenen LM, Korporeaal-Heijman JA.
Intoxication by ingestion of castor beans.

ANIMALS

Fish/marine poisoning

Ciguatera

Clinical diagnosis and chemical confirmation of ciguatera fish poisoning in New South Wales, Australia.

Jellyfish

Friedel N, Scolnik D, Adir D, Glatstein M.
Severe anaphylactic reaction to mediterranean jellyfish (*Ropilema nomadica*) envenomation: case report.

Scorpions

Chippaux J-P, Akaffou MH, Allali BK, Dosso M, Massougbdjji A, Barraviera B.
The 6th international conference on envenomation by snakebites and scorpion stings in Africa: a crucial step for the management of envenomation.

Snake bites

Ajay Kumar S, Vinay Kumar MS, Raghavendra Babu YP, Mahadeshwara Prasad DR.
An unusual site for a snakebite.
Med Leg J 2016; online early:
doi: 10.1177/0025817216645043:

Chippaux J-P, Akaffou MH, Allali BK, Dosso M, Massougbdjji A, Barraviera B.
The 6th international conference on envenomation by snakebites and scorpion stings in Africa: a crucial step for the management of envenomation.

Gutiérrez JM, Escalante T, Rucavado A, Herrera C.
Hemorrhage caused by snake venom metalloproteinases: a journey of discovery and understanding.
Toxins (Basel) 2016; 8: 93.

Cost-effectiveness of antivenoms for snakebite envenoming in 16 countries in West Africa.

Suthari S, Raju VS.
Antidote botanicals for snake bites from Koyas of Warangal District, Telangana, India.

Tan KY, Tan CH, Fung SY, Tan NH.
Neutralization of the principal toxins from the venoms of Thai *Naja kaouthia* and Malaysian *Hydrophis schistosus*: insights into toxin-specific neutralization by two different antivenoms.
Toxins (Basel) 2016; 8: 86.

Wood D, Sartorius B, Hift R.
Ultrasound findings in 42 patients with cytotoxic tissue damage following bites by South African snakes.

Atractaspidae (Burrowing asps)

Tilbury CR, Verster J.
A fatal bite from the burrowing asp *Atractaspis corpulenta* (Hallowell 1854).

Crotalinae (Pit vipers)

Mong R, Tan HH.
Snakebite by the shore pit viper (*Trimeresurus purpureomaculatus*) treated with polyvalent antivenom.
Wilderness Environ Med 2016; online early: doi: 10.1016/j.wem.2016.01.001:

Elapidae

Lim AY, Singh PN, Isbister GK.
Severe rhabdomyolysis from red-bellied black snake (*Pseudechis porphyriacus*) envenoming despite antivenom.

Padula AM, Winkel KD.
Red-bellied black snake (*Pseudechis porphyriacus*) envenomation in the dog: diagnosis and treatment of nine cases.
Toxicon 2016; 117: 69-75.

Viperinae (True vipers)

Su M, Hines EQ.
Letter in response to "hyperglycemia is a risk factor for high-grade envenomations after European viper bites (*Vipera* spp.) in children".
Clin Toxicol 2016; online early:
doi: 10.3109/15563650.2016.1166230:
INDEX

2,4-dinitrophenol .. 24
Acetaminophen .. 27
Acetylcholinesterase ... 17
Acrolein .. 35
Acrylamide .. 22
Air pollution .. 28
Alcohol ... 29
Alpha-diketones .. 29
Aluminium .. 33
Aluminium phosphide .. 35
Amfepramone ... 36
Aminophylline .. 18
Amiodarone .. 20
Amisulpride .. 21
Amnoxetine .. 28
Amlodipine .. 22
Anabolic steroids ... 20
Anaesthetics .. 20
Analgesics .. 20
Analytical toxicology ... 8
Animals, general ... 38
Anisodamine .. 18
Anthrax ... 37
Antihistamines .. 21
Anticoagulants .. 21
Anticonvulsants .. 21
Antidepressants .. 21
Antidotes ... 17
Antifungal drugs ... 21
Antihistaamines .. 21
Antimalarial drugs .. 21
Antineoplastic drugs ... 21
Antipsychotics ... 21
Antivenom ... 17
Antiviral drugs .. 22
Arsenic ... 34
Asbestos ... 29
Atractaspideae .. 38
Atrazine ... 36
Baclofen ... 22
Belaumbum ... 25
Benfotiamine .. 29
Benzene ... 23
Benzodiazepines ... 22
Benzoic acid .. 29
Benzylperazine ... 22
Beta-blockers .. 22
Betaistine ... 22
Biological warfare .. 37
Biomarkers ... 8
Bisphenol A ... 30
Bleomycin .. 21
Body packers .. 8
Buprenorphine ... 18
Bupropion ... 21
Burrowing asps ... 38
Cadmium .. 34
Caffeine ... 22
Calciferol .. 28
Calcium channel blockers 22
Cannabis ... 22
Carbamate insecticides ... 35
Carbon monoxide .. 35
Carcinogenicity ... 8
Cardioxicity .. 8
Carvedilol ... 22
Castor oil plant ... 38
Ceramics .. 30
Chelating agents ... 17
Chemical incidents ... 29
Chemical warfare, general 37
Chemicals, general ... 29
Chlorine .. 30
Chlorpyrifos .. 39
Ciguatera .. 38
Clonidine ... 19
Cocaine .. 23
Codeine .. 27
Colchicine .. 23
Copper sulphate ... 38
Corrosives .. 30
Corticosteroids .. 23
Crotilinae ... 38
Cyanide .. 30
Cyanohydrins .. 31
Dapsone ... 23
Deltamethrin ... 37
Dermal toxicity ... 9
Designer drugs ... 23
Developmenal toxicology 9
Dexamethasone .. 23
Dexamfetamine .. 19
Dextromethorphan ... 24
Dicacetylumorphine ... 24
Diazepam .. 22
Dichlorvos ... 36
Diclofenac ... 26
Dietary supplements ... 24
Digoxin ... 24
Diquat ... 36
Dormiforin ... 24
Doxapram ... 19
Driving under the influence 10
Dronabinol .. 19
Drugs, general ... 19
E-cigarettes .. 31
Ecstasy .. 20
Elapidae .. 38
Epidemiology .. 10
Ethanol ... 29
Ethnic remedies .. 24
Ethylene glycol .. 34
Exhaust fumes ... 28
Extracorporal treatments 19
Fab fragments .. 17
Fenethylline .. 24
Fipronil ... 35
Fish/marine poisoning .. 38
Flame retardants .. 31
Flecainide .. 21
Flumazenil ... 17
Fluride ... 31
Forensic toxicology ... 11
Formaldehyde .. 31
Formaldehyde .. 29
Gamma hydroxybutyrate .. 24
Gasoline .. 32
Gelsemim eagens .. 37
Genotoxicity .. 11
Glycols .. 31
Haemodialysis ... 19
Hallucinogenic drugs ... 19
Haloperidol .. 19
Heartbreak grass .. 37
Hepatotoxicity .. 11
Herbal medicines .. 24
Herbicides .. 36
Heroin ... 24
Oxygen

Paraldehyde

Oximes

Perfluorinated compounds

Ondansetron

Persulphates

Inhalation toxicity

Pesticides and cancer

Insulin

Pesticides, general

Iodine

Petrol

Japanese Azalea

Phenazine

Jellyfish

Phenelzine

Kaolin

Phenol

Ketamine

Phthalate esters

Kinetics

Picardin

Kratom

Pit vipers

Lambda cyhalothrin

Plants, general

Lamotriginine

Poison information centres

Lamotrigine

Poisons information

Lead

Polybrominated diphenyl ethers

Levamisole

Polychlorinated biphenyls

Levetiracetam

Polycyclic aromatic hydrocarbons

Levobupivacaine

Pramidone

Lipid emulsion therapy

Promethazine

Lithium

Propofol

Loratadine

Propylthiouracil

Management, general

Psychiatric aspects

Manganese

Pyrethroid insecticides, general

MDMA

Radiation

Medication errors

Reprotoxicity

Mefloquine

Rhododendron japonicum

Mephenedrine

Ricinus communis

Mercury

Risk assessment

Metabolism

Salbutamol

Metals, general

Salicylates

Mefetamine

Scorpions

Melatonin

Smoke

Methotrexate

Snake bites

Methoxyflurane

Sodium arsenate

Methyl iodide

Sodium nitroprusside

Methylene blue

Solvents

Methylene chloride

Substance abuse

Methylisothiazolinone

Sugammadex

Methylthioninium chloride

Suicide

Monoamine oxidase inhibitors

Synthetic cannabinoids

Monoclonal antibodies

Tacrolimus

Muscle relaxants

Thiocilchicoside

Mushrooms

Ticagrelor

Mustard gas

Tilmosol

Mycoxins

Tobacco

Nalmefene

Tocilizumab

Naloxone

Toluene

Nanoparticles

Toxicology, general

Nephrotoxicity

Trichloroethylene

Neurotoxicity

Tricosan

Nicotine

Tricyclic antidepressants

Nitrous oxide

True vipers

NSAIDs

Turpentine

Occupational toxicology

Uranium

Ocular toxicity

Verapamil

Omegabazole

Viperae

Ondansetron

Vitamins

Opioids

Volatile organic compounds

Organochlorine pesticides, general

VX

Organophosphorus insecticides, general

Warfarin

Oximes

Water

Oxypentidin

Yellow phosphorus

Oxygen

Zinc phosphide

Paediatric toxicology

alpha-tocopherol

Paracetamol

Current Awareness in Clinical Toxicology is produced monthly for the American Academy of Clinical Toxicology by the Birmingham Unit of the UK National Poisons Information Service, with contributions from the Cardiff, Edinburgh, and Newcastle Units.

The NPIS is commissioned by Public Health England