Systematic review of clinical adverse events reported after acute intravenous lipid emulsion administration

Background
Intravenous lipid emulsions (ILEs) were initially developed to provide parenteral nutrition. In recent years, ILE has emerged as a treatment for poisoning by local anesthetics and various other drugs. The dosing regimen for the clinical toxicology indications differs significantly from those used for parenteral nutrition. The evidence on the efficacy of ILE to reverse acute toxicity of diverse substances consists mainly of case reports and animal experiments. Adverse events to ILE are important to consider when clinicians need to make a risk/benefit analysis for this therapy.

Methods
Multiple publication databases were searched to identify reports of adverse effects associated with acute ILE administration for either treatment of acute poisoning or parenteral nutrition. Articles were selected based on pre-defined criteria to reflect acute
use of ILE. Experimental studies and reports of adverse effects as a complication of long-term therapy exceeding 14 days were excluded.

Results

The search identified 789 full-text articles, of which 114 met the study criteria. 27 were animal studies, and 87 were human studies. The adverse effects associated with acute ILE administration included acute kidney injury, cardiac arrest, ventilation perfusion mismatch, acute lung injury, venous thromboembolism, hypersensitivity, fat embolism, fat overload syndrome, pancreatitis, extracorporeal circulation machine circuit obstruction, allergic reaction, and increased susceptibility to infection.

Conclusion

The emerging use of ILE administration in clinical toxicology warrants careful attention to its potential adverse effects. The dosing regimen and context of administration leading to the adverse events documented in this review are not generalizable to all clinical toxicology scenarios. Adverse effects seem to be proportional to the rate of infusion as well as total dose received. Further safety studies in humans and reporting of adverse events associated with ILE administration at the doses advocated in current clinical toxicology literature are needed.

Full text available from: http://dx.doi.org/10.3109/15563650.2016.1151528

Use of intravenous fat emulsion in the emergency department for the critically ill poisoned patient

Abstract and full text available from: http://dx.doi.org/10.1016/j.jemermed.2016.02.008

Antipsychotic-related fatal poisoning, England and Wales, 1993–2013: impact of the withdrawal of thioridazine

Context

Use of second generation antipsychotics in England and Wales has increased in recent years whilst prescription of first generation antipsychotics has decreased.

Methods

To evaluate the impact of this change and of the withdrawal of thioridazine in 2000 on antipsychotic-related fatal poisoning, we reviewed all such deaths in England and Wales 1993–2013 recorded on the Office for National Statistics drug poisoning deaths database. We also reviewed antipsychotic prescribing in the community, England and Wales, 2001–2013.

Use of routine mortality data

When an antipsychotic was recorded with other drug(s), the death certificate does not normally say if the antipsychotic caused the death rather than the other substance(s). A second consideration concerns intent. A record of "undetermined intent" is likely to have been intentional self-poisoning, the evidence being insufficient to be certain that the individual intended to kill. A record of drug abuse/dependence, on the other hand, is likely to have been associated with an unintentional death.

Accuracy of the diagnosis of poisoning

When investigating a death in someone prescribed antipsychotics, toxicological analysis of
biological samples collected post-mortem is usually performed. However, prolonged attempts at resuscitation, or diffusion from tissues into blood as autolysis proceeds, may serve to alter the composition of blood sampled after death from that circulating at death. With chlorpromazine and with olanzapine a further factor is that these compounds are notoriously unstable in post-mortem blood.

Deaths from antipsychotics

There were 1544 antipsychotic-related poisoning deaths. Deaths in males (N = 948) were almost twice those in females. For most antipsychotics, the proportion of deaths in which a specific antipsychotic featured either alone, or only with alcohol was 30–40%, but for clozapine (193 deaths) such mentions totalled 66%. For clozapine, the proportion of deaths attributed to either intentional self-harm, or undetermined intent was 44%, but for all other drugs except haloperidol (20 deaths) the proportion was 56% or more. The annual number of antipsychotic-related deaths increased from some 55 per year (1.0 per million population) between 1993 and 1998 to 74 (1.5 per million population) in 2000, and then after falling slightly in 2002 increased steadily to reach 109 (1.9 per million population) in 2013.

Intent

The annual number of intentional and unascertained intent poisoning deaths remained relatively constant throughout the study period (1993: 35 deaths, 2013: 38 deaths) hence the increase in antipsychotic-related deaths since 2002 was almost entirely in unintentional poisoning involving second generation antipsychotics. Clozapine, olanzapine, and quetiapine were the second generation antipsychotics mentioned most frequently in unintentional poisonings (99, 136, and 99 deaths, respectively). Mentions of diamorphine/morphine and methadone (67 and 99 deaths, respectively) together with an antipsychotic were mainly (84 and 90%, respectively) in either unintentional or drug abuse-related deaths.

Deaths and community prescriptions

Deaths involving antipsychotics (10 or more deaths) were in the range 11.3–17.1 deaths per million community prescriptions in England and Wales, 2001–2013. Almost all (96%) such deaths now involve second generation antipsychotics. This is keeping with the increase in annual numbers of prescriptions of these drugs overall (<1 million in 2000, 7 million in 2013), largely driven by increases in prescriptions for olanzapine and quetiapine. In contrast, deaths involving thioridazine declined markedly (from 40 in 2000 to 10 in 2003–2013) in line with the fall in prescriptions for thioridazine from 2001.

Conclusions

The removal of thioridazine has had no apparent effect on the incidence of antipsychotic-related fatal poisoning in England and Wales. That such deaths have increased steadily since 2001 is in large part attributable to an increase in unintentional deaths related to (i) clozapine, and (ii) co-exposure to opioids, principally diamorphine and methadone.

Full text available from: http://dx.doi.org/10.3109/15563650.2016.1164861

Missed opportunities?: an evaluation of potentially preventable poisoning deaths

Introduction

Although most poisoning deaths are not preventable with current medical technology, in some cases different management decisions may have prevented fatal outcomes.
Objective
This study aims to review reported poisoning-related deaths for preventability to provide insight to improve future care.

Methods
Fatality abstracts published in the US National Poison Data System (NPDS) Annual Reports (2008–2012) were analyzed. Preventability was graded using a Likert scale of 1 (definitely non-preventable) to 6 (definitely preventable). Two medical toxicologists screened all cases. Cases deemed definitely not preventable (score 1) by both reviewers were excluded from further review and considered to be "non-preventable". All cases considered at least possibly preventable by either screener were reviewed by a multidisciplinary panel of 5 physicians for preventability scoring. Differences were resolved by consensus. Cases determined to be "preventable" (scores 4–6) were characterized by type of improvement issue involved (diagnosis, treatment, monitoring, other) and recurring scenarios.

Results
Of 390 published abstracts, 78 (20.0%) deaths were considered at least possibly preventable by at least one screener. Of these, 34 (8.7%) deaths were determined to be "preventable" by the panel. Inter-observer agreement by weighted kappa analysis was 0.58 for screening, 0.24 for preventability, and 0.44 for specific aspects of care. The most common toxicants were salicylates (n = 9), opioids (n = 4), toxic alcohols (n = 3), fluoride containing product (n = 3), and bupropion (n = 3). The most common improvement opportunities involved treatment and monitoring.

Discussion
Most of the ingested substances in preventable deaths have delayed GI absorption or require metabolic activation to produce a delayed effect (such as salicylates, opioids, and toxic alcohols), and therefore provide an opportunity for early recognition and successful interventions. Most improvement opportunities are clearly described in the literature but may be not recognized.

Conclusions
Based on an analysis of published NPDS data, a considerable number of poisoning-related deaths reaching medical attention may be preventable. The most common scenarios involved in potentially preventable poisoning fatalities related to monitoring and treatment. Salicylates and opioids were the most common agents involved in preventable deaths.

Full text available from: http://dx.doi.org/10.3109/15563650.2016.1157721

Could chest wall rigidity be a factor in rapid death from illicit fentanyl abuse?

Background
There has been a significant spike in fentanyl-related deaths from illicit fentanyl supplied via the heroin trade. Past fentanyl access was primarily oral or dermal via prescription fentanyl patch diversion. One factor potentially driving this increase in fatalities is the change in route of administration. Rapid intravenous (IV) fentanyl can produce chest wall rigidity. We evaluated post-mortem fentanyl and norfentanyl concentrations in a recent surge of lethal fentanyl intoxications.

Methods
Fentanyl related deaths from the Franklin County coroner’s office from January to
September 2015 were identified. Presumptive positive fentanyl results were confirmed by quantitative analysis using liquid chromatography tandem mass spectrometry (LC/MS/MS) and were able to quantify fentanyl, norfentanyl, alfentanyl, and sufentanyl.

Results
48 fentanyl deaths were identified. Mean fentanyl concentrations were 12.5 ng/ml, (range 0.5 ng/ml to >40 ng/ml). Mean norfentanyl concentrations were 1.9 ng/ml (range none detected to 8.3 ng/ml). No appreciable concentrations of norfentanyl could be detected in 20 of 48 cases (42%) and were less than 1 ng/ml in 25 cases (52%). Elevated fentanyl concentrations did not correlate with rises in norfentanyl levels. In several cases fentanyl concentrations were strikingly high (22 ng/ml and 20 ng/ml) with no norfentanyl detected.

Discussion
The lack of any measurable norfentanyl in half of our cases suggests a very rapid death, consistent with acute chest rigidity. An alternate explanation could be a dose-related rapid onset of respiratory arrest. Deaths occurred with low levels of fentanyl in the therapeutic range (1-2 ng/ml) in apparent non-naïve opiate abusers. Acute chest wall rigidity is a well-recognized complication in the medical community but unknown within the drug abuse community. The average abuser of illicit opioids may be unaware of the increasing fentanyl content of their illicit opioid purchase.

Conclusion
In summary we believe sudden onset chest wall rigidity may be a significant and previously unreported factor leading to an increased mortality, from illicit IV fentanyl use. Fentanyl and norfentanyl ratios and concentrations suggest a more rapid onset of death given the finding of fentanyl without norfentanyl in many of the fatalities. Chest wall rigidity may help explain the cause of death in these instances, in contrast to the typical opioid-related overdose deaths. Intravenous heroin users should be educated regarding this potentially fatal complication given the increasingly common substitution and combination with heroin of fentanyl.

Full text available from: http://dx.doi.org/10.3109/15563650.2016.1157722

Diglycolic acid, the toxic metabolite of diethylene glycol, chelates calcium and produces renal mitochondrial dysfunction in vitro

Context
Diethylene glycol (DEG) has caused many cases of acute kidney injury and deaths worldwide. Diglycolic acid (DGA) is the metabolite responsible for the renal toxicity, but its toxic mechanism remains unclear.

Objective
To characterize the mitochondrial dysfunction produced from DGA by examining several mitochondrial processes potentially contributing to renal cell toxicity.

Materials and methods
The effect of DGA on mitochondrial membrane potential was examined in normal human proximal tubule (HPT) cells. Isolated rat kidney mitochondria were used to assess the effects of DGA on mitochondrial function, including respiratory parameters (States 3 and 4), electron transport chain complex activities and calcium-induced opening of the mitochondrial permeability transition pore. DGA was compared with ethylene glycol tetraacetic acid (EGTA) to determine calcium chelating ability. DGA cytotoxicity was assessed using lactate dehydrogenase leakage from cultured proximal tubule cells.
Results

DGA decreased the mitochondrial membrane potential in HPT cells. In rat kidney mitochondria, DGA decreased State 3 respiration, but did not affect State 4 respiration or the ADP/O ratio. DGA reduced glutamate/malate respiration at lower DGA concentrations (0.5 mmol/L) than succinate respiration (100 mmol/L). DGA inhibited Complex II activity without altering Complex I, III or IV activities. DGA blocked calcium-induced mitochondrial swelling, indicating inhibition of the calcium-dependent mitochondrial permeability transition. DGA and EGTA reduced the free calcium concentration in solution in an equimolar manner. DGA toxicity and mitochondrial dysfunction occurred as similar concentrations.

Discussion

DGA inhibited mitochondrial respiration, but without uncoupling oxidative phosphorylation. The more potent effect of DGA on glutamate/malate respiration and the inhibition of mitochondrial swelling was likely due to its chelation of calcium.

Conclusion

These results indicate that DGA produces mitochondrial dysfunction by chelating calcium to decrease the availability of substrates and of reducing equivalents to access Complex I and by inhibiting Complex II activity at higher concentrations.

Full text available from: http://dx.doi.org/10.3109/15563650.2016.1162312

Incidence and patterns of cardiomyopathy in carbon monoxide-poisoned patients with myocardial injury

Objectives

Sustained myocardial injury is a significant predictor of mortality in carbon monoxide (CO) poisoning. There are few reports in the literature regarding the presence of CO-induced cardiomyopathy from early stages in the emergency department (ED). We prospectively investigated the early incidence of CO-induced cardiomyopathy and its patterns in patients with cardiomyopathy.

Materials and methods

During a 10-month period, transthoracic echocardiography (TTE) was performed in 43 consecutive patients with CO poisoning and myocardial injury, which was defined as elevated high-sensitive troponin I within 24 h after ED arrival. Measurements of left ventricular ejection fraction and wall motion abnormalities were performed to evaluate cardiac function. If a patient had CO-induced cardiomyopathy, we measured cardiac function at the time of patient admission, day 1, day 2, and once within seven days of hospitalization.

Results

The incidence of cardiomyopathy was as high as 74.4% (32 of 43 patients) in CO-poisoned patients with myocardial injury based on initial ED results. Echocardiographic patterns included non-cardiomyopathy (25.6%), global dysfunction (51.2%), and Takotsubo-like cardiomyopathy (23.2%). Patients in the global dysfunction group had significantly more normalized cardiac dysfunction within 72 h than did those in the Takotsubo-like cardiomyopathy group (81.8% vs. 22.2%, $p = 0.001$).

Discussion and conclusion

Patients with CO poisoning and myocardial injury experienced cardiomyopathy, including reversible global dysfunction and a Takotsubo-like pattern. Investigation of cardiomyopathy
needs to be considered in patients with CO poisoning and myocardial injury.

Full text available from: http://dx.doi.org/10.3109/15563650.2016.1162310

Management of cocaine-induced myocardial infarction: 4–year experience at an urban medical center

Abstract and full text available from: http://dx.doi.org/10.14423/SMJ.0000000000000430

Acute animal and human poisonings from cyanotoxin exposure – A review of the literature

Wood R. Environ Int 2016; 91: 276-82.

Abstract and full text available from: http://dx.doi.org/10.1016/j.envint.2016.02.026

Irritant gases

Abstract and full text available from: http://dx.doi.org/10.1016/j.mpmed.2015.12.004

Drugs of abuse

Abstract and full text available from: http://dx.doi.org/10.1016/j.mpmed.2015.12.030

Corrosives

Abstract and full text available from: http://dx.doi.org/10.1016/j.mpmed.2015.12.007

Plants

Abstract and full text available from: http://dx.doi.org/10.1016/j.mpmed.2015.11.017

Metabolic effects of poisoning

Abstract and full text available from: http://dx.doi.org/10.1016/j.mpmed.2015.11.013

Venomous animals

Abstract and full text available from: http://dx.doi.org/10.1016/j.mpmed.2015.11.001
Neuropathy target esterase in mouse whole blood as a biomarker of exposure to neuropathic organophosphorus compounds.
J Appl Toxicol 2016; online early: doi: 10.1002/jat.3305:

Margalho C, Castanheira A, Real FC, Gallardo E, López-Rivadulla M.
Determination of “new psychoactive substances” in postmortem matrices using microwave derivitization and gas chromatography-mass spectrometry.

McGeegan J, Denny L.
Electrochemiluminescent detection of methamphetamine and amphetamine.

Metushi IG, Fitzgerald RL, McIntyre IM.
Assessment and comparison of vitreous humor as an alternative matrix for forensic toxicology screening by GC-MS.
J Anal Toxicol 2016; online early: doi: 10.1093/jat/bkw009:

Mikkelsen CR, Jornil JR, Andersen LV, Banner J, Hasselstrøm JB.
Quantification of 16 QT-prolonging drugs and metabolites in human postmortem blood and cardiac tissue using UPLC-MS-MS.
J Anal Toxicol 2016; online early: doi: 10.1093/jat/bkw014:

Raju KS, Taneya I, Rashid M, Sonkar AK, Wahajuddin M, Singh SP.
DBS-platform for biomonitoring and toxicokinetics of toxicants: proof of concept using LC-MS/MS analysis of fipronil and its metabolites in blood.

Quantification of ethanol in plasma by electrochemical detection with an unmodified screen printed carbon electrode.

Sensitive liquid chromatography/tandem mass spectrometry method for the simultaneous determination of nine local anesthetic drugs.

Vindenes V, Strand DH, Koksæter P, Gjerde H.
Detection of nitrobenzodiazepines and their 7-amino metabolites in oral fluid.
J Anal Toxicol 2016; online early: 10.1093/jat/bkw020:

Wertlake PT, Henson MD.

Biomarkers
Pyruvate kinase M2: a novel biomarker for the early detection of acute kidney injury.

Makhaeva GF, Rudakova EV, Sigolaeva LV, Kurochkin IN, Richardson RJ.
Neuropathy target esterase in mouse whole blood as a biomarker of exposure to neuropathic organophosphorus compounds.
J Appl Toxicol 2016; online early: doi: 10.1002/jat.3305:
Body packers

Fatal cocaine intoxication in a body packer.

Cappelletti S, Placentino D, Sani G, Bottoni E, Fiore PA, Aromatario M, Ciallella C.
Systematic review of the toxicological and radiological features of body packing.

Carcinogenicity

Harada T, Takeda M, Kojima S, Tomiyama N.
Toxicity and carcinogenicity of dichlorodiphenyltrichloroethane (DDT).

Shammas MA, Rajput SA, Ahmad D, Ahmed M, Mustafa Z, Ahmad G.
Inclusion of "toxicological review expiry dates" in art material labels may further reduce the risk of chronic toxicity, including that of cancer.

Cardiotoxicity

Abeyaratne DDK, Liyanapathirana C, Gamage A, Karunaratne P, Botheju M, Indrakumar J.
Survival after severe amitriptyline poisoning with prolonged ventricular tachycardia and cardiac arrest.

Cha YS, Kim H, Hwang SO, Kim JY, Yun KK, Choi EH, Kim OH, Kim HI, Cha KC, Lee KH.
Incidence and patterns of cardiomyopathy in carbon monoxide-poisoned patients with myocardial injury.

Management of cocaine-induced myocardial infarction: 4-year experience at an urban medical center.

Antidepressants and antipsychotics classified with torsades de pointes arrhythmia risk and mortality in older adults - a Swedish nationwide study.

Devkota AR, Dufrense A, Parajuli P.
Acute reversible cardiomyopathy due to methamphetamine overdose.

Galovic B, Fair J, Caravati EM.
The echoes of intoxication.

Hurtado-Torres GF, Sandoval-Munro RL.
An additional clinical scenario of risk for loperamide cardi-ac-induced toxicity.

Jedidi M, Hadj MB, Masmoudi T, Adelkarim SB, Mlayeh S, Dhiab MB, Souguir MK.
Fatal toxic myocarditis induced by paraphenylenediamine.
A case report.

Jovic-Stojić J, Putić V, Zivanović D, Mladenov M, Brajkovíc G, Djordjević S.
Failure of intravenous lipid emulsion in treatment of cardiotoxicity caused by mixed overdose including dihydropyridine calcium channel blockers.

Methylene blue counteracts H₂S toxicity induced cardiac depression by restoring L-type Ca channel activity.

Kane EM, Hinson JS, Jordan CD, Paziana K, Sauber NJ, Rothman RE, Stoilbach AI.
Bradycardia and hypotension after synthetic cannabinoid use: a case series.

Carboxyhemoglobin levels predict the long-term development of acute myocardial infarction in carbon monoxide poisoning.

Bradycardia as a rare symptom of cisplatin cardiotoxicity: a case report.

Drug-induced torsades de pointes in an underserved urban population. Methadone: is there therapeutic equipoise?

Sward DG, Sethuraman KN, Wong JS, Rossenthal RE.
Carbon monoxide and ST-elevation myocardial infarction: case reports.

Wightman RS, Hoffman RS, Howland MA, Rice B, Biary R, Lagussy D.
Not your regular high: cardiac dysrhythmias caused by loperamide.

Wisniowska B, Tylutki Z, Wyszogrodzka G, Polak S.
Drug-drug interactions and QT prolongation as a commonly assessed cardiac effect - Comprehensive overview of clinical trials.
BMC Pharmacol Toxicol 2016; 17: 12.

Wong LY, Greene SL, Odell M, Wong K.
Severe prolonged posture-evoked tachycardia after massive overdose of paliperidone.
Dermal toxicity

Developmental toxicity

Driving under the influence of alcohol and other drugs

McKay MP, Groff L.
Epidemiology

Malejko K, Graf H, Gahr M. Survival of very high blood alcohol concentration without consequential damage in a patient without a previous substance use disorder. J Forensic Sci 2016; online early; doi: 10.1111/1556-4029.13082:

Metushi IG, Fitzgerald RL, McIntyre IM. Assessment and comparison of vitreous humor as an alternative matrix for forensic toxicology screening by GC-MS. J Anal Toxicol 2016; online early; doi: 10.1093/jat/bkw009:

Olsson MO, Bradvik L, Öjehagen A, Hakansson A. Risk factors for unnatural death: fatal accidental intoxication, undetermined intent and suicide: register follow-up in a criminal justice population with substance use problems. Drug Alcohol Depend 2016; online early; doi: 10.1016/j.drugalcdep.2016.03.009:

Shanks KG, Behonick GS. Death after use of the synthetic cannabinoid 5F-AMB. Forensic Sci Int 2016; online early; doi: 10.1016/j.forsciint.2016.03.004:

Genotoxicity

Hepatotoxicity

Couturier FJ, Colemont LJ, Fierens H, Verhoeven VM. Toxic hepatitis due to a food supplement: "Natural" is no synonym for "harmless". Clin Res Hepatol Gastroenterol 2016; online early; doi: 10.1016/j.clinre.2015.12.016:

Curtis RM, Sivilotti MLA. Reply to Cantrell and Nordt ["Prescription acetaminophen ingestions associated with hepatic injury and death"]. Clin Toxicol 2016; online early; doi: 10.3109/15563650.2016.1162313:

Ghanem CI, Pérez MJ, Manautou JE, Mottino AD. Risk of acute and serious liver injury case-control study in Italy. Br J Clin Pharmacol 2016; online early; doi: 10.1111/bcp.12938:

Inhalation toxicity

Jørgensen RB, Buhagen M, Føreland S. Personal exposure to ultrafine particles from PVC welding and concrete work during tunnel rehabilitation. Occup Environ Med 2016; online early:

do: 10.1136/oemed-2015-103411:

Kinetics

Mechanisms of toxicity

Medication errors

Urban M, Leššo R, Pelclova D. Unintentional pharmaceutical-related medication errors caused by laypersons reported to the Toxicological Information Centre in the Czech Republic.

Metabolism
Franz F, Angerer V, Hermanns-Clausen M, Auwärter V, Moosmann B.
Metabolites of synthetic cannabinoids in hair-proof of consumption or false friends for interpretation?

Jones AF.
Metabolic effects of poisoning.

Zaitsu K, Hayashi Y, Kusano M, Tsuchihashi H, Ishii A.
Application of metabolomics to toxicology of drugs of abuse: a mini review of metabolomics approach to acute and chronic toxicity studies.
Drug Metab Pharmacokinet 2016; 31: 21-6.

Nephrotoxicity
Argamany JR, Reveles KR, Duhon B.
Synthetic cannabinoid hyperemesis resulting in rhabdomyolysis and acute renal failure.

Pyruvate kinase M2: a novel biomarker for the early detection of acute kidney injury.

Engelhardt J.A.
Comparative renal toxicopathology of antisense oligonucleotides.
Nucleic Acid Ther 2016; online early: doi: 10.1089/nat.2015.0998:

Lam RP, Yip WL, Tsui MS, Ng SW, Ching CK, Mak TW.
Severe rhabdomyolysis and acute kidney injury associated with methoxphenidine.

Neghab M, Hosseinzadeh K, Hassanzadeh J.
Early liver and kidney dysfunction associated with occupational exposure to sub-threshold limit value levels of benzene, toluene, and xylene in unleaded petrol.

Pawar NN, Badgujar PC, Sharma LP, Telang AG, Singh KP.
Oxidative impairment and histopathological alterations in kidney and brain of mice following subacute lambda-cyhalothrin exposure.
Toxicol Ind Health 2016; online early: doi: 10.1177/074823715627736:

Neurotoxicity
Neurotoxicity induced by alkyl nitrites: Impairment in learning/memory and motor coordination.

Chan TYK.
Herbal medicines induced anticholinergic poisoning in Hong Kong.
Toxins (Basel) 2016; 8: 80.

Childhood exposure to polybrominated diphenyl ethers and neurodevelopment at six years of age.
Neurotoxicology 2016; online early: doi: 10.1016/j.neuro.2016.03.002:

Colon-Perez LM, Tran K, Thompson K, Pace MC, Blum K, Goldberger BA, Gold MS, Bruijnzeel AW, Setlow B, Febo M.
The psychoactive designer drug and bath salt constituent MDPV causes widespread disruption of brain functional connectivity.
Neuropsychopharmacology 2016; online early: doi: 10.1038/npp.2016.40:

Cosentino C, Torres L, Apaza L.
Methanol-induced parkinsonism.

Larsen J.K.
Neurotoxicity and LSD treatment: a follow-up study of 151 patients in Denmark.
Hist Psychiatry 2016; online early: doi: 10.1177/0957154X16629902:

Okita K, Ghahremani DG, Payer DE, Robertson CL, Dean AC, Mandelkern MA, London ED.
Emotion dysregulation and amygdala dopamine D2-type receptor availability in methamphetamine users.

Pawar NN, Badgujar PC, Sharma LP, Telang AG, Singh KP.
Oxidative impairment and histopathological alterations in kidney and brain of mice following subacute lambda-cyhalothrin exposure.
Toxicol Ind Health 2016; online early: doi: 10.1177/074823715627736:

Pletz J, Sánchez-Bayo F, Tennekes HA.
Dose-response analysis indicating time-dependent neurotoxicity caused by organic and inorganic mercury - implications for toxic effects in the developing brain.
Toxicology 2016; 347:349: 1-5.

Ramirez-Zamora A, Ramani H, Pastena G.
Neurological picture. Bilateral pallidal and medial temporal lobe ischaemic lesions after opioid overdose.

Testai E, Scardala S, Vichi S, Buratti FM, Funari E.
Risk to human health associated with the environmental occurrence of cyanobacterial neurotoxic alkaloids anatoxins and saxitoxins.

Verlinde M, Hollmann MW, Stevens MF, Hermanns H, Werdehausen R, Lirk P.
Local anesthetic-induced neurotoxicity.

Occupational toxicology
Aerts O, van Dyck F, van Tichelen W, Lambert J.
The many faces of coconut oil derivatives: occupational hand dermatitis caused by a liquid soap containing cocamidopropylamine oxide.

Bhattacharjee P, Paul S, Bhattacharjee P.

Jørgensen RB, Buhagen M, Føreland S. Personal exposure to ultraviolet particles from PVC welding and concrete work during tunnel rehabilitation. Occup Environ Med 2016; online early; doi: 10.1136/oem-2015-103411:

Richard EE, Augusta Chinyere NA, Jeremiah OS, Opara UC, Henrieta EM, Ifunanya ED. Cement dust exposure and perturbations in some elements and lung and liver functions of cement factory workers. J Toxicol 2016; 6104719.

Ocular toxicity

Clinical progression of ocular injury following arsenical vesicant lewisite exposure.

Cutan Ocul Toxicol 2016; online early: doi: 10.3109/15569527.2015.1127253:

Paediatric toxicology

Alaygut D, Klic SC, Kaya A, Oflaz MB, Bolat F, Cevit Ö, Icagasioglu FD.

Assessment of 17 pediatric cases with colchicine poisoning in a 2-year period.

Allegaert K, van den Anker JN.

Neonatal withdrawal syndrome: reaching epidemic proportions across the globe.

Arch Dis Child Fetal Neonatal 2016; 101: 2-3.

Arbuckle TE, Davis K, Boylan K, Fisher M, Fu J.

Neurotoxicology 2016; online early: doi: 10.1016/j.neuro.2016.03.014:

Does acute alcohol intoxication cause transaminase elevations in children and adolescents?

Alcohol 2016; 51: 57-62.

Elevated blood lead levels in infants and mothers in Benin and potential sources of exposure.

A pseudoencephalitis presentation of a pediatric non-intentional intoxication.

Eur J Paediatr Neurol 2016; online early: doi: 10.1016/j.ejpn.2016.02.010:

Childhood exposure to polybrominated diphenyl ethers and neurodevelopment at six years of age.

Neurotoxicology 2016; online early: doi: 10.1016/j.neuro.2016.03.002:

Claudet I, Grouetteau E, Cordier L, Franchitto N, Bréhin C.

Answers to comments about ‘Hyperglycemia is a risk factor for high-grade envenomations after European viper bites (Vipera spp.) in children’.

Clin Toxicol 2016; online early: doi: 10.3109/15563650.2016.1166231:

Das K, Mondal NK.

Dental fluorosis and urinary fluoride concentration as a reflection of fluoride exposure and its impact on IQ level and BMI of children of Laxmisagar, Simlapal Block of Bankura District, W.B., India.

Neonatal drug withdrawal syndrome: cross-country comparison using hospital administrative data in England, the USA, Western Australia and Ontario, Canada.

Duan Y, Wang Z.

To explore the characteristics of fatality in children poisoned by paraquat - With analysis of 146 cases.

Int J Artif Organs 2016; online early: doi: 10.5301/ijao.5000471:

Forrester MB, Bojes H.

Adolescent pesticide exposures reported to Texas poison centers.

Long-term outcomes after adolescent in-patient treatment due to alcohol intoxication: a control group study.

Drug Alcohol Depend 2016; online early: doi: 10.1016/j.drugalcdep.2016.02.037:

Perfluoroalkyl substances in serum from South Korean infants with congenital hypothyroidism and healthy infants – Its relationship with thyroid hormones.

Lee HA, Park SH, Hong YS, Ha EH, Park H.

The effect of exposure to persistent organic pollutants on metabolic health among KOREAN children during a 1-year follow-up.

The risk factors of child lead poisoning in China: a meta-analysis.

Moawad EMI, Badawy NM, Manawill M.

Environmental and occupational lead exposure among children in Cairo, Egypt: a community-based cross-sectional study.

Medicine 2016; 95: e2976.

Ortiz MTy, Téllez-Rojo MM, Wright RJ, Coull BA, Wright RO.

Longitudinal associations of age and prenatal lead exposure on cortisol secretion of 12–24 month-old infants from Mexico City.

Patil MM, Patil SV, Akki A, Lakshkar B, Badiger S.

An arrow poison (Abrus precatorius) causing fatal poisoning in a child.

Pelic W, Pawlas N, Dobrakowski M, Kasperczyk S.

Environmental and socioeconomic factors contributing to elevated blood lead levels in children from industrial area of Upper Silesia.

Environ Toxicol Chem 2016; online early: doi: 10.1002/etc.3429:

Pena MÁ, Pérez S, Zazo MC, Acalá PJ, Cuello JD, Zapater P, Reig R.

A case of toxic epidermal necrolysis secondary to acetyaminophen in a child.

Rodrigues EG, Bellinger DC, Valeri L, Hasan MOSI, Quanrussaman Q, Golam M, Kile ML, Christiani DC, Wright RO, Mazumdar M. Neurodevelopmental outcomes among 2- to 3-year-old children in Bangladesh with elevated blood lead and exposure to arsenic and manganese in drinking water. Environ Health 2016; 15: 44.

Poisons information and poison information centres

Psychiatric aspects

Reprotoxicity

Risk assessment

Suicide

Falkowitz D.
In response to: Poisonings with suicidal intent aged 0–21 years reported to poison centers 2003–12.

Arch Suicide Res 2016; online early: doi: 10.1080/13811118.2016.1162239:

Drug Alcohol Depend 2016; online early: doi: 10.1016/j.drugalcdep.2016.03.009:

Schneir A, Rentmeester L. Carbon monoxide poisoning and pulmonary injury from the mixture of formic and sulfuric acids.

Forensic Sci Int 2016; online early: doi: 10.1016/j.forsciint.2016.03.005:

Management
General
Prescrire Int 2015; 24: 300–1.

Bradberry S. Methaemoglobinemia.

Dion KA. Improving outcomes of opioid overdose: preparing nursing students to intervene.

Medicine 2016; 44: 103-5.

Kitanaka J, Kitanaka N, Hall FS, Uhl GR, Takemura M. Brain histamine N-methyltransferase as a possible target of treatment for methamphetamine overdose.

Quax RAM, Alisma J. On calcium channel antagonist poisoning: towards evidence-based decision making in poisoned patients.

Rafique I, Akhtar U, Farooq U, Khan M, Bhatti JA. Emergency care outcomes of acute chemical poisoning cases in Rawalpindi.

Srisuma S, Cao D, Kleinschmidt K, Heffner AC, Lavonas EJ. Missed opportunities?: an evaluation of potentially preventable poisoning deaths.

Swami D, Karade HN, Acharya J, Kumar P. In vivo protection studies of bis-quaternary 2-(hydroxyimino)-N(pyridin-3-yl) acetamide derivatives against sarin poisoning in mice.
Hum Exp Toxicol 2016; online early: doi: 10.1177/0960327116637109:

Vale A, Bradberry S. Assessment and diagnosis of the poisoned patient.
Medicine 2016; 44: 82-6.

Vale A. Reducing absorption and increasing elimination.

Vale A, Bradberry S. Management of poisoning: initial management.

Antidotes
Acetylcysteine
American College of Medical Toxicology.
ACMT position statement: duration of intravenous acetylcysteine therapy following acetaminophen overdose.

Antivenom

Padula AM, Winkel KD. Fatal presumed tiger snake (Notechis scutatus) envenomation in a cat with measurement of venom and antivenom concentration. Toxicon 2016; 113: 7-10.

Bispyridinium-non-oxime-compounds

Hyperbaric oxygen therapy

Lipid emulsion therapy

Methylthioninium chloride (Methylene blue)

Naloxone

Lobmaier PP, Clausen T. Radical red tape reduction by government supported nasal naloxone: the Norwegian pilot project is innovative, safe and an important contribution to further development and dissemination of take-home naloxone. Addiction 2016; 111: 586-7.

Strang J, McDonald R. New approved nasal naloxone welcome, but unlicensed improvised naloxone spray kits remain a concern: proper scientific study must accompany innovation. Addiction 2016; 111: 590-2.

Oximes

An easy method for the determination of active concentrations of cholinesterase reactivators in blood samples: application to the efficacy assessment of non quaternary reactivators compared to HI-6 and pralidoxime in VX-poisoned mice. Chem Biol Interact. 2016; online early; doi: 10.1016/j.cbi.2016.03.009:

Antibodies

Beta-blockers

Dimethyl trisulfide

Glycyrrhizin

Haemofiltration
Smollin CG, Petrie MS, Kearney T. Carbamazepine and carbamazepine-10,11-epoxide clearance measurements during continuous venovenous hemofiltration in a massive overdose. Clin Toxicol 2016; online early; doi: 10.3109/15563650.2016.1148721:

Haemoperfusion

Lactulose

Opioid maintenance therapy

Buprenorphine

Methadone

Polymethoxyflavonos

Prothrombin complex concentrate

Sodium oxybate

Sodium polystyrene sulfonate

DRUGS

General

Saucier CD, Zaller N, Macmadu A, Green TC. An initial evaluation of law enforcement overdose training in Rhode Island. Drug Alcohol Depend 2016; online early: doi: 10.1016/j.drugalcdep.2016.03.011:

Acetaminophen (see paracetamol)

Alkyl Nitrites

Amfetamines and MDMA (ecstasy)

Bahmanabadi L, Akhgari M, Jokar F, Sadeghi HB.

Anaesthetics

Lidocaine

Antiarrhythmic drugs

Amiodarone

Antibiotics

Amoxicillin

Clarithromycin

Anticoagulants

Dabigatran

Warfarin

Anticonvulsants

Carbamazepine

Gabapentin

Hamm CE, Gary RD, McIntyre IM.
Gabapentin concentrations and postmortem distribution. Forensic Sci Int 2016; online early: doi: 10.1016/j.forsciint.2016.03.028:

Phenytoin

Antidepressants

Antihistamines

Antimalarial Drugs

Antineoplastic Drugs

Azacitidine

Bleomycin

Cisplatin

Vincristine
Chotsampancharoen T, Sripomsawan P, Wongchanchailert M. Two fatal cases of accidental intrathecal vincristine administration: learning from death events.

Antipsychotics

Paliperidone

Risperidone

Antituberculous Drugs

Antiviral Drugs

Benzodiazepines

Clonazepam
Kacirova I, Grundmann M, Silhan P, Brozmanova H.
Medicine 2016; 95: e2881.

Flunitrazepam
Ali EM, Edwards HG.
The detection of flunitrazepam in beverages using portable Raman spectroscopy.

Beta-Blockers
Khouri C, Blaise S, Carpentier P, Villier C, Cracowski JL, Roustit M.
Drug-induced Raynaud's phenomenon: beyond beta-blockers.

Beta2 Agonists
Vale A.
$$\beta$$-Agonists.
Medicine 2016; 44: 146.

Caffeine
Laskowski LK, Nelson LS, Smith SW, Hoffman RS.
Authors' response to: "Beta-blocker treatment of caffeine-induced tachydysrhythmias".

Calcium Channel Blockers
Jovic-Stosic J, Putil V, Zivanovic D, Mladenov M, Brjakovic G, Djordjevic S.
Failure of intravenous lipid emulsion in treatment of cardiotoxicity caused by mixed overdose including dihydropropyridine calcium channel blockers.

Cannabis (marijuana)
Costa MA.
The endocannabinoid system: a novel player in human placentation.

Chloroquine
Imran M, Ashiq MZ, Shafi H, Usman HF, Wattou SA, Sarwar M, Tahir MA.
Hair analysis of an unusual case of chloroquine intoxication.

Cholinesterase Inhibitors
Thornton SL, Pchelnikova JL, Cantrell FL.
Characteristics of pediatric exposures to antidementia drugs reported to a Poison Control System.

Cocaine
Fatal cocaine intoxication in a body packer.

Cannabinoids
Quax RAM, Alsm J.
On calcium channel antagonist poisoning: towards evidence-based decision making in poisoned patients.

Calcium Channel Antagonists
Rietjens SJ, de Lange DW, Donker DW, Meulenbelt J.
Practical recommendations for calcium channel antagonist poisoning.

Whyte I, Buckley N, Dawson A.
Calcium channel blockers.

Nielsen LS, Villesen P, Lindholst C.

Colchicine

Alaygut D, Kilic SC, Kaya A, Oflaz MB, Bolat F, Cevit Ö, Icagasioglu FD.

Designer Drugs

Colon-Perez LM, Tran K, Thompson K, Pace MC, Blum K, Goldberger BA, Gold MS, Bruijnzeel AW, Setlow B, Febo M.

The psychoactive designer drug and bath salt constituent MDPV causes widespread disruption of brain functional connectivity. Neuropsychopharmacology 2016; online early: doi: 10.1038/npp.2016.40:

Gerostamoulos D, Elliott S, Walls HC, Peters FT, Lynch M, Drummer OH.

To measure or not to measure? That is the NPS question. J Anal Toxicol 2016; online early: doi: 10.1093/jat/bkw013:

Margalho C, Castanheira A, Real FC, Gallardo E, López-Rivadulla M.

Methodoxphenidine

Lam RP, Yip WC, Tsui MS, Ng SW, Ching CK, Mak TW.

Synthetic Cannabinoids

Argamany JR, Reveles KR, Duohon B.

Couceiro J, Bandarra S, Sultan H, Bell S, Constantino S, Quintas A.

Franz F, Angerer V, Hermanns-Clausen M, Auwärter V, Moosmann B.

Kane EM, Hinson JS, Jordan CD, Paziana K, Sauber NJ, Rothman RE, Stolbach AI.

Saglam O, Bahsi R, Akkoa Y, Filip K.

Shanks KG, Behonick GS.

Death after use of the synthetic cannabinoid 5F-AMB. Forensic Sci Int 2016; online early: doi: 10.1016/j.forsciint.2016.03.004:

Synthetic Cathinones

Adamowicz P, Gieron J, Gil D, Lechowicz W, Skulska A, Tokarczyk B.

Quesada L, Gomila I, Yates C, Barcelo C, Puiguriguer J, Barcelo B.

Digoxin

Dawson AH, Buckley NA.

MacLeod-Glover N, Mink M, Yarema M, Chuang R.

Yurtlu BS, Özbilgin S, Yurtlu DA, Boztas N, Kamaci G, Akaltun M, Hanci V, Yilmaz O.

Eye Drops

Acute corneal toxicity of combined antiglaucoma topical eyedrops. Curr Eye Res 2016; 31: 1122811:

Herbal medicines, ethnic remedies and dietary supplements

Avigan MI, Mozersky RP, Seeff LB.

Chan TYK.

Herbal medicines induced anticholinergic poisoning in Hong Kong. Toxins (Basel) 2016; 8: 80.

Couturier FJ, Colemont LJ, Fierens H, Verhoeven VM.

Toxic hepatitis due to a food supplement: "Natural" is no synonym for "harmless".
Energy and protein supplementation does not affect protein and amino acid kinetics or pregnancy outcomes in underweight Indian women.

Guo X, Mei N.
Aloe vera – A review of toxicity and adverse clinical effects.

Hohmann N, Maus A, Carls A, Haefeli WE, Mikus G.
St. John’s wort treatment in women bears risks beyond pharmacokinetic drug interactions.
Arch Toxicol 2015; 90: 1013-5.

Adverse effects of plant food supplements and plants consumed as food: results from the poisons centres-based PlantLIBRA study.
Phytother Res 2016; online early: doi: 10.1002/ptr.5604:

Pokladnikova J, Meyboom RH, Meincke R, Niedrig D, Russmann S.
Allergy-like immediate reactions with herbal medicines: a retrospective study using data from VigiBase®.

Rehman SU, Choe K, Yoo HH.

Hydroxychloroquine
Kim JE.
Which test is the best for hydroxychloroquine toxicity screening?

Modi YS, Singh RP, Fine HF.
Hydroxychloroquine: a brief review on screening, toxicity, and progression.

Hypoglycaemics
Waring WS.
Antidiabetic drugs.

Immunosuppressants
Azathioprine
Siramolpwat S, Sakonlaya D.
Clinical and histologic features of azathioprine-induced hepatotoxicity.

Ciclosporin
Unver Dogan N, Uysal II, Fazliogullari Z, Karabulut AK, Acar H.
Investigation of developmental toxicity and teratogenicity of cyclosporine A, tacrolimus and their combinations with prednisolone.

Iron
Dear JW, Bateman DN.
Iron.

Porter JB, de Witte T, Cappellini MD, Gattermann N.
New insights into transfusion-related iron toxicity: implications for the oncologist.

Refaat MM, El Hage L, Steffensen AB, Hotait M, Schmitt N, Scheinman M, Badhwar N.
Iron overload leading to torsades de pointes in β-thalassemia and long QT syndrome.

Ketamine
Favretto D, Vogliardi S, Tucci M, Simoncelli I, Mazloum RE, Shenghri G.
Occupational exposure to ketamine detected by hair analysis: a retrospective and prospective toxicological study.

Ketamine—the real perspective.

Lithium
Bradberry S.
Lithium.

Mostafazadeh B, Ghotb S, Najari F, Farzaneh E.
Acute lithium intoxication and factors contributing to its morbidity: a 10-year review.

Musfeldt D, Levinson A, Nykiel J, Carino G.
Lithium toxicity after Roux-en-Y bariatric surgery.
BMJ Case Rep 2016; doi: 10.1136/bcr-2015-214056:

Use of sodium polystyrene sulfonate in an acute-on-chronic lithium poisoned patient: a case report.

Loperamide
Hurtado-Torres GF, Sandoval-Munro RL.
An additional clinical scenario of risk for loperamide cardiac-induced toxicity.

Wightman RS, Hoffman RS, Howland MA, Rice B, Biary R, Lugassy D.
Not your regular high: cardiac dysrhythmias caused by loperamide.

LSD
Larsen JK.

Mephedrone

Methylphenidate

Nicotine

Weishaar H, Trevisan F, Hilton S. "Maybe they should regulate them quite strictly until they know the true dangers": a focus group study exploring UK adolescents' views on e-cigarette regulation. Addiction 2016; online early: doi: 10.1111/add.13377:

Nitrites

NSAIDs

Oligonucleotides
Engelhardt JA. Comparative renal toxicopathology of antisense oligonucleotides. Nucleic Acid Ther 2016; online early: doi: 10.1089/nat.2015.0598:

Opioids

Lobmaier PP, Clausen T. Radical red tape reduction by government supported nasal naloxone: the Norwegian pilot project is innovative, safe and an important contribution to further development and dissemination of take-home naloxone. Addiction 2016; 111: 586-7.

Sandilands EA, Bateman DN.
Opioids.

Strang J, McDonald R.
New approved nasal naloxone welcome, but unlicensed improvised naloxone spray kits remain a concern: proper scientific study must accompany innovation.
Addiction 2016; 111: 590-2.

Wise J.
Most US patients continue to be prescribed opioids after overdose.

Codeine

Frost J, Lakken TN, Helland A, Nordrum IS, Sørland L.
Post-mortem levels and tissue distribution of codeine, codeine-6-glucuronide, norcodeine, morphine and morphine glucuronides in a series of codeine-related deaths.

Kean J.
Illicit and over-the-counter codeine dependence after acute back pain-successful treatment and ongoing recovery after buprenorphine/naloxone taper.

Fentanyl

Burns G, DeRienzo RT, Baker DD, Casavant M, Spiller HA.
Could chest wall rigidity be a factor in rapid death from illicit fentanyl abuse?

Methadone

Drug-induced torsades de pointes in an underserved urban population. Methadone: is there therapeutic equipoise?

Oral Contraceptives

Weerasinghe M, Konradsen F, Eddleston M, Pearson M, Agampodi T, Storm F, Agampodi S.
Overdose of oral contraceptive pills as a means of intentional self-poisoning amongst young women in Sri Lanka: considerations for family planning.
J Fam Plann Reprod Health Care 2016; online early: doi: 10.1136/jfprhc-2015-101171:

Paracetamol (acetaminophen)

American College of Medical Toxicology.
ACMT position statement: duration of intravenous acetylcysteine therapy following acetaminophen overdose.

Bateman DN, Vale A.
Paracetamol (acetaminophen).

Bushel PR, Fannin RD, Gerrish K, Watkins PB, Paules RS.
Blood gene expression profiling of an early acetaminophen response.
Pharmacogenomics J 2016; online early: doi: 10.1038/tbj.2016.8:

Cantrell FL, Nordt SP.
In response - A descriptive analysis of aspartate and alanine aminotransferase rise and fall following acetaminophen overdose.

Curtis RM, Sivilotti MLA.
Reply to Cantrell and Nordt ["Prescription acetaminophen ingestions associated with hepatic injury and death"].

Du K, Jaeschke H.
Liuweiwuling tablets protect against acetaminophen hepatotoxicity: what is the protective mechanism?

Ghanem CI, Pérez MJ, Manautou JE, Mottino AD.
Acetaminophen; from liver to brain: new insights into drug pharmacological action and toxicity.

Mcgill MR, Kennon-McGill S, Durham D, Jaeschke H.
Hearing, reactive metabolite formation, and oxidative stress in cochleae after a single acute overdose of acetaminophen: an in vivo study.

Pena MÁ, Pérez S, Zazo MC, Alcalá PJ, Cuello JD, Zapater P, Reig R.
A case of total epidermal necrolysis secondary to acetaminophen in a child.

Vrbová M, Roušarová E, Brucková L, Cesla P, Roušar T.
Characterization of acetaminophen toxicity in human kidney HK-2 cells.
Physiol Res 2016; online early: PMID:26988152:

Glycyrrhizin protects against acetaminophen-induced acute liver injury via alleviating TNFα mediated apoptosis.
Drug Metab Dispos 2016; online early: doi: 10.1124/dmd.116.069419:

Phencyclidine

Gallagher R, Dangers J, Thornton SL.
Do trauma patients with phencyclidine positive urine drug screens have increased morbidity or mortality?

Proton Pump Inhibitors

Proton pump inhibitor associated hypomagnesaemia - a cause for concern?

Psychotropic Drugs

Esmaily A, Alavian G, Afzal G, Ghane T.
Psychotropic agents poisoning: analysis of cases reported to Shahid Beheshti drug and poison information center.
Salicylates
Ayalon I, Aider MN, Langner TR, Haftberg ET, Miethke AG, Kaplan JM.
A case of salicylate intoxication complicated by coagulopathy, pulmonary edema, and pancreatitis.
Am J Ther 2016; online early:
doi: 10.1097/MJT.0000000000003385:

Thompson TM, Toerne T, Erickson TB.
Salicylate toxicity from genital exposure to a methysalicylate-containing rubefacient.

Vale A.
Salicylates.

Substance abuse
Bouchatta O, Ouahaz Z, Ba-Mhamed S, Kerekes N, Bennis M.
Acute and chronic glue sniffing effects and consequences of aggression on women and men.
Life Sci 2016; online early:
doi: 10.1016/j.lfs.2016.03.013:

Prevalence of alcohol and drug use in injured British Columbia drivers.
BMJ Open 2016; 6: e009278.

Burns G, DeRienz RT, Baker DD, Casavant M, Spiller HA.
Could chest wall rigidity be a factor in rapid death from illicit fentanyl abuse?
Clin Toxicol 2016; online early:
doi: 10.3109/15563650.2016.1157722:

Cheatle MD.
Facing the challenge of pain management and opioid misuse, abuse and opioid-related fatalities.
Expert Rev Clin Pharmacol 2016; online early:
doi: 10.1586/17512433.2016.1160776:

Ciesielski T, Iyengar R, Bothra A, Tomala D, Cislo G, Gage BF.
A tool to assess risk of de novo opioid abuse or dependence.
Am J Med 2016; online early:
doi: 10.1016/j.amjmed.2016.02.014:

Illicit drugs or medicines taken by parachuting.

Hill SL, Thomas SHL.
Drugs of abuse.

Lee HMD, Bonnici K, Archer JRH, Dargan PI, Wood DM.
From the internet to the hospital: current experiences of individuals presenting to the emergency department with acute recreational drug toxicity.

Riley ED, Evans JL, Hahn JA, Briceno A, Davidson PJ, Lum PJ, Page K.
A longitudinal study of multiple drug use and overdose among young people who inject drugs.
Am J Public Health 2016; online early:
doi: 10.2105/AJPH.2016.303084:

Zaitsu K, Hayashi Y, Kusano M, Tsuchihashi H, Ishii A.
Application of metabolomics to toxicology of drugs of abuse: a mini review of metabolomics approach to acute and chronic toxicity studies.
Drug Metab Pharmacokinet 2016; 31: 21-6.

Theophylline
Hopkins ME, Mackenzie-Ross RV.
Case report: the risks associated with chronic theophylline therapy and measures designed to improve monitoring and management.

Tranexamic Acid
Ma TKW, Chow K-M, Kwan BCH, Leung C-B, Szeto CC, Li PKT.
Manifestation of tranexamic acid toxicity in chronic kidney disease and kidney transplant patients: a report of four cases and review of literature.
Nephrology (Carlton) 2016; online early:
doi: 10.1111/nep.12762:

Tricyclic Antidepressants
Rombach SM, Wesselinik EJ, de Stoppelaar EI, Rijnsburger ER, Slagt C.
Glucagon in hemodynamic instability after tricyclic antidepressant overdose.

 Amitriptyline
Abeyaratne DDK, Liyanapathirana C, Gamage A, Karunaratnaph P, Bhotuji M, Indrakumar J.
Survival after severe amitriptyline poisoning with prolonged ventricular tachycardia and cardiac arrest.

Schmidt JJ, Bertram A, Kühn-Velten WN, Suhling H, Wiesner O, Schneider A, Kielstein JT.
Treatment of amitriptyline intoxications by extended high cut-off dialysis.

Dosulepin
A change in the trend in dosulepin usage following the introduction of a prescribin.
J Clin Pharm Ther 2016; online early:
doi: 10.1111/jcpt.12376:

Tryptamines
Severe serotoninergic syndrome after ingestion of α-methyltryptamine.

Vitamins
Calciferol
Pérez-Barrrios C, Hernández-Álvarez E, Blanco-Navarro I, Pérez-Sacristán B, Granado-Lorencio F.
Prevalence of hypercalcemia related to hypervitaminosis D in clinical practice.
Clin Nutr 2016; online early:
doi: 10.1016/j.clnu.2016.02.017:
CHEMICAL INCIDENTS AND POLLUTION

Air pollution
The Lancet.
Air pollution: consequences and actions for the UK, and beyond.

Association of geography and ambient air pollution with urine metal concentrations in six US cities: the multi-ethnic study of atherosclerosis.

Exhaust fumes
Halonen JI, Blangiardo M, Toledano MB, Fecht D, Gulliver J, Anderson HR, Beavers SD, Dajnak D, Kelly FJ, Tonne C.
Long-term exposure to traffic pollution and hospital admissions in London.

Pollution and hazardous waste
Lee HA, Park SH, Hong YS, Ha EH, Park H.
The effect of exposure to persistent organic pollutants on metabolic health among KOREAN children during a 1-year follow-up.

Water pollution
Rodrigues EG, Bellinger DC, Valeri L, Hasan MO, Quamruzzaman Q, Golam M, Kile ML, Christiani DC, Wright RO, Mazumdar M.
Neurodevelopmental outcomes among 2- to 3-year-old children in Bangladesh with elevated blood lead and exposure to arsenic and manganese in drinking water.
Environ Health 2016; 15: 44.

CHEMICALS

General
Huang X, Liu Q, Fu J, Nie Z, Gao K, Jiang G.
Screening of toxic chemicals in a single drop of human whole blood using ordered mesoporous carbon as a mass spectrometry probe.
Anal Chem 2016; online early: doi: 10.1021/acs.analchem.6b00444:

Rafiqe J, Akhtar U, Farooq U, Khan M, Bhatti JA.
Emergency care outcomes of acute chemical poisoning cases in Rawalpindi.

Trasande L.
Updating the toxic substances control act to protect human health.
JAMA 2016; online early: doi: 10.1001/jama.2016.037:

Acetone
Bradberry S.
Acetone.
Medicine 2016; 44: 127.

Alcohol (ethanol)
Anon.
Alcohol withdrawal syndrome: preventive measures: a summary of first-choice treatments.
Prescrire Int 2015; 24: 300-1.

Does acute alcohol intoxication cause transaminase elevations in children and adolescents?
Alcohol 2016; 51: 57-62.

Prevalence of alcohol and drug use in injured British Columbia drivers.
BMJ Open 2016; 6: e009278.

Caputo F, Vignoli T, Tarii C, Domenicali M, Zoli G, Bernardi M, Addolorato G.
A brief up-date of the use of sodium oxybate for the treatment of alcohol use disorder.

Colloff MF, Flowe HD.
The effects of acute alcohol intoxication on the cognitive mechanisms underlying false facial recognition.

Long-term outcomes after adolescent in-patient treatment due to alcohol intoxication: a control group study.
Drug Alcohol Depend 2016; online early: doi: 10.1016/j.drugalcdep.2016.02.037:

Kim E, Choe S, Lee J, Jang M, Choi H, Chung H.
Detection of drugs in 275 alcohol-positive blood samples of Korean drivers.

Malejko K, Graf H, Gahr M.
Survival of very high blood alcohol concentration without consequential damage in a patient without a previous substance use disorder.

Quantification of ethanol in plasma by electrochemical detection with an unmodified screen printed carbon electrode.

Vale A.
Alcohols and glycols.

Zamboanga BL, Tomaso CC, Cloutier RM, Blumenthal H, Kenney SR, Borsari B.
Drinking game participation among high school and incoming college students: a narrative review.

Ni C, Takahashi R, Levins P.
Toxic dermatitis caused by ammonium nitrate released by a cold pack.
Asbestos
Akira M, Morinaga K.
The comparison of high-resolution computed tomography findings in asbestosis and idiopathic pulmonary fibrosis.

Bhattacharjee P, Paul S, Bhattacharjee P.
Risk of occupational exposure to asbestos, silicon and arsenic on pulmonary disorders: understanding the genetic-epigenetic interplay and future prospects.
Environ Res 2016; 147: 425-34.

Benzene
Fenga C, Gangemi S, Costa C.
Benzene exposure is associated with epigenetic changes (Review).

Bisphenol A
Arbuckle TE, Davis K, Boylan K, Fisher M, Fu J.
Neurotoxicology 2016; online early: doi: 10.1016/j.neuro.2016.03.014:

Bisphenol A and other phenoils in human placenta from children with cryptorchidism or hypospadias.
Reprod Toxicol 2016; 59: 89-95.

Capsaicin
Roy A.
Bhut jolokia (Capsicum chinense JAQC): a review.

Carbon
Pacurari M, Lowe K, Tchounwou PB, Kafoury R.
A review on the respiratory system toxicity of carbon nanoparticles.

Carbon black
Morfeld P, Mundt KA, Dell LD, Sorahan T, McCunney RJ.
Meta-analysis of cardiac mortality in three cohorts of carbon black production workers.

Carbon monoxide
Cha YS, Kim H, Hwang SO, Kim JY, Yun KK, Choi EH, Kim OH, Kim HI, Cha KC, Lee KH.
Incidence and patterns of cardiomyopathy in carbon monoxide-poisoned patients with myocardial injury.

Fan DF, Hu HJ, Sun XJ, Meng XE, Zhang Y, Pan SY.
Oral administration of lactulose: a novel therapy for acute carbon monoxide poisoning via increasing intestinal hydrogen production.

Hampson NB, Weaver LK.
Carbon monoxide poisoning and risk for venous thromboembolism.
J Epidemiol Community Health 2016; online early: doi: 10.1136/jech-2016-207172:

Hampson NB.
Survival following extreme carboxyhemoglobin elevation.

Harlan N, Weaver LK, Deru K.
Inaccurate pulse CO-oximetry of carboxyhemoglobin due to digital clubbing: case report.

Carboxyhemoglobin levels predict the long-term development of acute myocardial infarction in carbon monoxide poisoning.

Meutuoglu M, Metin S, Ibrahim A, Uzun G, Yildiz S.
The use of hyperbaric oxygen therapy for carbon monoxide poisoning in Europe.

Sandilands EA, Bateman DN.
Carbon monoxide.

Schneir A, Rentmeester L.
Carbon monoxide poisoning and pulmonary injury from the mixture of formic and sulfuric acids.

Sward DG, Sethuraman KN, Wong JS, Rosenthal RE.
Carbon monoxide and ST-elevation myocardial infarction: case reports.

Yoshiki T, Nishida M, Yagishita K, Nariai T, Ishii K, Nishikawa T.
Altered sleep spindle in delayed encephalopathy after acute carbon monoxide poisoning.
J Clin Sleep Med 2016; online early: PMID:26951423:

Carbon tetrachloride
Hepatoprotective effects of polymethoxylflavones against acute and chronic carbon tetrachloride intoxication.

Cement
Richard EE, Augusta Chinyere NA, Jeremiahah OS, Opara UC, Henrieta EM, Ifunanya ED.
Cement dust exposure and perturbations in some elements and lung and liver functions of cement factory workers.

Chlorine
Crow BS, Quiñones-González J, Pantazides BG, Perez JW, Winkeljohn WR, Garton JW, Thomas JD, Blake TA, Johnson RC.
Simultaneous measurement of 3-chlorotyrosine and 3,5-dichlorotyrosine in whole blood, serum and plasma by isotope dilution HPLC-MS-MS.

Hoyle GW, Chen J, Schlueter CF, Mo Y, Humphrey DM, Jr., Rawson G, Niño JA, Carson KH.
Development and assessment of countermeasure formulations for treatment of lung injury induced by chlorine inhalation.

Stedtler U, Hermanns-Clausen M.
Respiratory injury due to chlorine developed from consumer products. Still an issue in Germany.
Naunyn Schmiedebergs Arch Pharmacol 2016; 389: S101.

Coal dust
Go LHT, Krefft SD, Cohen RA, Rose CS.
Lung disease and coal mining: what pulmonologists need to know.

Corrosives
Dargan PI.
Corrosives.

Cosmetics
Al-Saleh I.
Potential health consequences of applying mercury-containing skin-lightening creams during pregnancy and lactation periods.
Int J Hyg Environ Health 2016; online early: doi: 10.1016/j.ijheh.2016.03.002:

Cow dung powder
Senthilkumaran S, Menezes RG, Benita F, Thirumalaikolundusubramanian P.
Synthetic cow dung powder poisoning: therapeutic aspects.

Cryogenic agents
Öksüz S, Eren F, Aysal BK.
Cryogen spray equipped alexandrite laser: comfort for patients - Chemical hazard for professionals.

Curcumin
Overdose taking curcumin initiating the unbalanced state of bodies.
J Agric Food Chem 2016; online early: doi: 10.1021/acs.jafc.6b00053:

Cyanide
Akhgari M, Baghdadi F, Kadkhodaei A.
Cyanide poisoning related deaths, a four-year experience and review of the literature.

Rockwood GA, Thompson DE, Petrikovics I.
Dimethyl trisulfide: a novel cyanide countermeasure.
Toxicol Ind Health 2016; online early: doi: 10.1177/0748233715622713:

Vale A.
Cyanide.

Diethylene glycol
Conrad T, Landry GM, Aw TY, Nichols R, McMartin KE.
Diglycolic acid, the toxic metabolite of diethylene glycol, chelates calcium and produces renal mitochondrial dysfunction in vitro.

Dioxin
Tran NN, Pham TT, Ozawa K, Nishijo M, Nguyen ATN, Tran TQ, Van L, Tran AH, Phan VHA, Nakai A, Nishino Y, Nishijo H.
Impacts of perinatal dioxin exposure on motor coordination and higher cognitive development in Vietnamese preschool children: a five-year follow-up.

E-cigarettes and e-liquids
Sommerfeld K, Lukasik-Glebocka M, Kulza M, Druzdz A, Panienski P, Florek E, Zielinska-Psuja B.
Intravenous and oral suicidal e-liquid poisonings with confirmed nicotine and cotinine concentrations.
Forensic Sci Int 2016; online early: doi: 10.1016/j.forsciint.2016.03.005:

Spindel ER, McEvoy CT.
The role of nicotine in the effects of maternal smoking during pregnancy on lung development and childhood respiratory disease. Implications for dangers of e-cigarettes.

Weishaar H, Trevisan F, Hilton S.
"Maybe they should regulate them quite strictly until they know the true dangers": a focus group study exploring UK adolescents’ views on e-cigarette regulation.
Addiction 2016; online early: doi: 10.1111/add.13377:

Essential oils
Aerts O, van Dyck F, van Tichelen W, Lambert J.
The many faces of coconut oil derivatives: occupational hand dermatitis caused by a liquid soap containing cocamidopropylamine oxide.

Pesonen M, Suomela S, Kuuliala O, Aalto-Korte K.
Occupational contact allergy to sodium cocoamphopropionate in a hand cleanser.
Contact Derm 2016; 74: 246-8.

Ethylene glycol
Vale A.
Alcohols and glycols.

Flame retardants
Schang G, Robaire B, Hales BF.
Organophosphate flame retardants act as endocrine-disrupting chemicals in MA-10 mouse tumor Leydig cells.

Fluoride
Das K, Mondal NK.
Dental fluorosis and urinary fluoride concentration as a reflection of fluoride exposure and its impact on IQ level and BMI of children of Laxmisagar, Simlapal Block of Bankura District, W.B., India.

Gases
Meulenbelt J.
Irritant gases.

Helium

Household products

Hydrazine

Hydrogen sulphide

Methanol

Methyl tertiary butyl ether

Nanoparticles

Oxygen

Paraphenylenediamine

Perfluorinated compounds

Petrol (gasoline)

Phosphine

Phthalate esters

Plasticizers
Urinary toxicokinetics of di-(isononyl)-cyclohexane-1,2-dicarboxylate (DINCH®) in humans following single oral administration.

Polybrominated diphenyl ethers
Childhood exposure to polybrominated diphenyl ethers and neurodevelopment at six years of age.
Neurotoxicology 2016; online early: doi: 10.1016/j.neuro.2016.03.002:

Polychlorinated biphenyls
Maternal dietary exposure to dioxins and polychlorinated biphenyls (PCBs) is associated with language delay in 3-year-old Norwegian children.

Immunotoxicity monitoring in a population exposed to polychlorinated biphenyls.

Polyalcoholic aromatic hydrocarbons
Maternal occupational exposure to polycyclic aromatic hydrocarbons and craniosynostosis among offspring in the national birth defects prevention study.

Propylene glycol
LaVoisier J, Bouille-Geronimi C, Mégarbene B.
Fatality associated with propylene glycol poisoning in a cirrhotic patient.

Quaternary ammonium
Boumrah Y, Gicquel T, Hugbart C, Baert A, Morel I, Bouvet R.
Suicide by self-injection of chlormequat trademark CSSUN®.
Forensic Sci Int 2016; online early: doi: 10.1016/j.forsciint.2016.03.007:

Radiation
Vercruysse DCM, Deprez S, Sunaert S, van Calsteren K, Amant F.
Effects of prenatal exposure to cancer treatment on neurocognitive development, a review.

Silica
Nanosilica and polyacrylate/nanosilica: a comparative study of acute toxicity.

Sodium hydroxide
Emoto Y, Yoshizawa K, Shikata N, Tsubura A, Nagasaki Y.
Autopsy results of a case of ingestion of sodium hydroxide solution.

Solvents
Bouchatta O, Ouhaz Z, Ba-Mhamed S, Kerekus N, Bennis M.
Acute and chronic glue sniffing effects and consequences of withdrawal on aggressive behavior.
Life Sci 2016; online early: doi: 10.1016/j.lfs.2016.03.013:

Solvents
Londoño-Velasco E, Martínez-Perafán F, Carvajal-Varona S, García-Vallejo F, Hoyos-Giraldo LS.
Assessment of DNA damage in car spray painters exposed to organic solvents by the high-throughput comet assay.

Toluene
Tanaka T, Sato H, Kasai K.
Detection of toluene in a body buried for years with a fatal cardiac contusion.

Wood dusts
Murphy D, Sinha A, Hutchinson D.
Wood dust: a trigger for rheumatoid arthritis?

Wood smoke
Burchiel SW, Lauer FT, MacKenzie D, McClain S, Kuehl PJ, McDonald JD, Harrod KS.
Changes in HPBMC markers of immune function following controlled short-term inhalation exposures of humans to hardwood smoke.

METALS
General
Alkan N, Alkan A, Gedik K, Fisher A.
Assessment of metal concentrations in commercially important fish species in Black Sea.
Toxicol Ind Health 2016; 32: 447-56.

Bradberry SM.
Metals (cobalt, copper, lead, mercury).

López-Barrera EA, Barragán-Gonzalez RG.
Metals and metalloid in eight fish species consumed by citizens of Bogota D.C., Colombia, and potential risk to humans. J Toxicol Environ Health A 2016; online early: doi: 10.1080/15287394.2016.1149130:

Rodrigues EG, Bellinger DC, Valeri L, Hasan MOSI, Quarmuzzaman Q, Golam M, Kile ML, Christiani DC, Wright RO, Mazumdar M. Neurodevelopmental outcomes among 2- to 3-year-old children in Bangladesh with elevated blood lead and exposure to arsenic and manganese in drinking water. Environ Health 2016; 15: 44.

Shammas MA, Rajput SA, Ahmad D, Ahmed M, Mustafa Z, Ahmad G. Inclusion of "toxicological review expiry dates" in art material labels may further reduce the risk of chronic toxicity, including that of cancer. Front Oncol 2016; 6: 1-2.

Aluminium

Arsenic

Cadmium

Cobalt

Iron

Lead

Ortiz MTY, Téllez-Rojo MM, Wright RJ, Coull BA, Wright RD. Longitudinal associations of age and prenatal lead exposure on cortisol secretion of 12-24 month-old infants from Mexico City.

Lithium

Mercury

Silicon

Thallium

Titanium

PESTICIDES

General

Fipronil
Raju KS, Taneja I, Rashid M, Sonkar AK, Wahajuddin M, Singh SP.
DBS-platform for biomonitoring and toxicokinetics of toxicants: proof of concept using LC-MS/MS analysis of fipronil and its metabolites in blood.

Fungicides
Tebuconazole
Jornsodtir SO, Reffstrup TK, Petersen A, Nielsen E.
Physiologically based toxicokinetic models of tebuconazole and application in human risk assessment.

Herbicides
Glyphosate
Defarge N, Takács E, Lozano VL, Mesnage R, de Vendômois JS, Séralini G-E, Székács A.
Co-formulants in glyphosate-based herbicides disrupt aromatase activity in human cells below toxic levels.

Differences in the carcinogenic evaluation of glyphosate between the International Agency for Research on Cancer (IARC) and the European Food Safety Authority (EFSA).
J Epidemiol Community Health 2016; online early: doi: 10.1136/jech-2015-207005:

Organochlorine pesticides
Exposure to organophosphorus and organochlorine pesticides, perfluorooalkyl substances, and polychlorinated biphenyls in pregnancy and the association with impaired glucose tolerance and gestational diabetes mellitus: the MIREC Study.

DDT
Harada T, Takeda M, Kojima S, Tomiyama N.
Toxicity and carcinogenicity of dichlorodiphenyltrichloroethane (DDT).

Organophosphorus insecticides
General
Mahajan RK, Rajan SJ, Peter JV, Suryawanshi MK.
Multiple small intestine perforations after organophosphorous poisoning: a case report.

Makhaeva GF, Rudakova EV, Sigolaeva LV, Kurochkin IN, Richardson RJ.
Neuropathy target esterase in mouse whole blood as a biomarker of exposure to neuropathic organophosphorous compounds.
J Appl Toxicol 2016; online early: doi: 10.1002/jat.3305:

Raanan R, Balmes JR, Harley KG, Gunier RB, Magzamen S, Bradman A, Eskenazi B.
Decreased lung function in 7-year-old children with early-life organophosphate exposure.

Exposure to organophosphorus and organochlorine pesticides, perfluorooalkyl substances, and polychlorinated biphenyls in pregnancy and the association with impaired glucose tolerance and gestational diabetes mellitus: the MIREC Study.

Wu X, Xie W, Cheng Y, Guan Q.
Severity and prognosis of acute organophosphorus pesticide poisoning are indicated by C-reactive protein and copeptin levels and APACHE II score.

Paraquat and diquat
Duan Y, Wang Z.
To explore the characteristics of fatality in children poisoned by paraquat - With analysis of 146 cases.
Int J Artif Organs 2016; online early: doi: 10.5301/ijao.5000471:

Pyrethroid insecticides
Deltamethrin
Plasma protein binding limits the blood brain barrier permeation of the pyrethroid insecticide, deltamethrin.
Toxicol Lett 2016; online early: doi: 10.1016/j.toxlet.2016.03.006:

Evaluation of the effects of deltamethrin on the fetal rat testis.
J Appl Toxicol 2016; online early: doi: 10.1002/jat.3310:

Lambda-cyhalothrin
Pawar NN, Badgajar PC, Sharma LP, Telang AG, Singh KP.
Oxidative impairment and histopathological alterations in kidney and brain of mice following subacute lambda-cyhalothrin exposure.
Toxicol Ind Health 2016; online early: doi: 10.1177/0748233715627736:

Rodenticides
Bradberry S, Vale A.
Warfarin and anticoagulant rodenticides.
Medicine 2016; 44: 201.

Alpha-chloralose
Leporati M, Salomone A, Golè G, Vincenti M.
Determination of anticoagulant rodenticides and α-chloralose in human hair. Application to a real case.
J Anal Toxicol 2016; online early: doi: 10.1093/jat/bkw019:

Superwarfarin
Su M, Hoffman RS.
Letter in response to “Superwarfarin ingestion treated successfully with prothrombin complex concentrate”.
CHEMICAL WARFARE, BIOLOGICAL WARFARE AND RIOT CONTROL AGENTS

Biological warfare

Ricin
Bradberry S.
Ricin and abrin.

Isolation of anti-ricin protective antibodies exhibiting high affinity from immunized non-human primates.
Toxins (Basel) 2016; 8: 64.

Chemical warfare

General
Vale A, Marrs TC, Rice P.
Chemical terrorism and nerve agents.

Lewisite
Clinical progression of ooculai injury following arsenical vesicant lewisite exposure.
Cutan Ocul Toxicol 2016; online early: doi: 10.3109/15569527.2015.1127255:

Mustard gas
Das LM, Binko AM, Traylor ZP, Duesler LR, Dynda SM, Debanne S, Lu QK.
Early indicators of survival following exposure to mustard gas: protective role of 25(OH)D.

Hermon-Kenny LA, Behringer DL, Crenshaw MD.
Comparison of latex body paint with wetted gauze wipes for sampling the chemical warfare agents VX and sulfur mustard from common indoor surfaces.

Razavi SM, Salamati P, Rostami R.
Post-traumatic stress disorder in patients with burn injuries due to sulfur mustard exposure.

Rice P.
Sulphur mustard.

Nerve agents
Kirkpatrick MG, diTargiani RC, Sweeney RE, Otto TC.
Use of V agents and V-analogue compounds to probe the active site of atypical butyrylcholinesterase from *Oryzias latipes*.

Electrophysiological drug-screening of bispyridinium-nonoxime-compounds on human nicotinic α7 acetylcholine receptors - an alternative approach for the treatment of nerve agent poisoning.

Naunyn Schmiedebergs Arch Pharmacol 2016; 389: S42.

Vale A, Marrs TC, Rice P.
Chemical terrorism and nerve agents.

Sarin
Swami D, Karade HN, Acharya J, Kumar P.
In vivo protection studies of bis-quaternary 2-(hydroxyimino)-N-(pyridin-3-y)-acetamide derivatives against sarin poisoning in mice.
Hum Exp Toxicol 2016; online early: doi: 10.1177/0960327116637109:

VX
An easy method for the determination of active concentrations of cholinesterase reactivators in blood samples: application to the efficacy assessment of non quaternary reactivators compared to HI-6 and pralidoxime in VX-poisoned mice.
Chem Biol Interact 2016; online early: doi: 10.1016/j.cbi.2016.03.009:

Hernon-Kenny LA, Behringer DL, Crenshaw MD.
Comparison of latex body paint with wetted gauze wipes for sampling the chemical warfare agents VX and sulfur mustard from common indoor surfaces.

PLANTS

General
Bradberry S, Vale A.
Plants.

Diaz JH.
Poisoning by herbs and plants: rapid toxidromic classification and diagnosis.

Lim CS, Chhabra N, Leikin S, Fischbein C, Mueller GM, Nelson ME.
Atlas of select poisonous plants and mushrooms.

Adverse effects of plant food supplements and plants consumed as food: results from the poisons centres-based PlantLIBRA study.
Phytother Res 2016; online early: doi: 10.1002/ptr.5604:

Abrus Precatorius (Jequirity bean)
Bradberry S.
Ricin and abrin.

Patil MM, Patil SV, Akki A, Lakhkar B, Badiger S.
An arrow poison (abrus precatorius) causing fatal poisoning in a child.

Aloe vera
Guo X, Mei N.

Hypericum spp. (St. John's wort)

Mushrooms
Chan CK, Lam HC, Chiu SW, Tse ML, Lau FL. Mushroom poisoning in Hong Kong: a ten-year review. Hong Kong Med J 2016; online early: doi: 10.12899/hkmj154706:

ANIMALS
General

Anisomorpha buprestoides (Twostriped walkingstick)

Fish/marine poisoning

Jellyfish

Pterois russelli (Lionfish)

Hymenoptera

Microorganisms
Algae

Cyanobacteria

Scorpions

Snake bites

Vongphoumy J, Chanthilat P, Vilayvong P, Blessmann J.

Crotalinae (Pit vipers)

Elapidae

Lamprophidae

Viperinae (True vipers)

Claudet I, Groutteau E, Cordier L, Franchitto N, Bréhin C.

Answers to comments about 'Hyperglycemia is a risk factor for high-grade envenomations after European viper bites (*Vipera* spp.) in children'. Clin Toxicol 2016; online early: doi: 10.3109/15563650.2016.1166231:

Mamede CCN, de Sousa BB, Pereira DFC, Matias MS, Queiroz MR, Morais NCG, Vieira SAPB, Stanzioia L, de Oliveira F. Comparative analysis of local effects caused by *Bothrops alternatus* and *Bothrops moojeni* snake venoms: enzymatic contributions and inflammatory modulations. Toxicol 2016; online early: doi: 10.1016/j.toxicon.2016.03.006:

INDEX

<table>
<thead>
<tr>
<th>Compound</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrus Precatorius</td>
<td>38</td>
</tr>
<tr>
<td>Acetaminophen</td>
<td>28</td>
</tr>
<tr>
<td>Acetone</td>
<td>30</td>
</tr>
<tr>
<td>Acetylcysteine</td>
<td>18</td>
</tr>
<tr>
<td>Air pollution</td>
<td>30</td>
</tr>
<tr>
<td>Alcohol</td>
<td>30</td>
</tr>
<tr>
<td>Algae</td>
<td>39</td>
</tr>
<tr>
<td>Alkyl Nitrites</td>
<td>21</td>
</tr>
<tr>
<td>Aloe vera</td>
<td>38</td>
</tr>
<tr>
<td>Alpha-chloralose</td>
<td>37</td>
</tr>
<tr>
<td>Aluminium</td>
<td>35</td>
</tr>
<tr>
<td>Amfetamines</td>
<td>21</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>22</td>
</tr>
<tr>
<td>Amitriptyline</td>
<td>29</td>
</tr>
<tr>
<td>Anoxicillin</td>
<td>22</td>
</tr>
<tr>
<td>Anaesthetics</td>
<td>22</td>
</tr>
<tr>
<td>Analytical toxicology</td>
<td>8</td>
</tr>
<tr>
<td>Animals, general</td>
<td>39</td>
</tr>
<tr>
<td>Anisomorpha buprestoides</td>
<td>39</td>
</tr>
<tr>
<td>Antiarrhythmic drugs</td>
<td>22</td>
</tr>
<tr>
<td>Antibiotics</td>
<td>22</td>
</tr>
<tr>
<td>Antibodies</td>
<td>20</td>
</tr>
<tr>
<td>Anticoagulants</td>
<td>22</td>
</tr>
<tr>
<td>Anticonvulsants</td>
<td>22</td>
</tr>
<tr>
<td>Antidepressants</td>
<td>23</td>
</tr>
<tr>
<td>Antidotes</td>
<td>18</td>
</tr>
<tr>
<td>Antihistamines</td>
<td>23</td>
</tr>
<tr>
<td>Antimalarial Drugs</td>
<td>23</td>
</tr>
<tr>
<td>Antineoplastic Drugs</td>
<td>23</td>
</tr>
<tr>
<td>Antipsychotics</td>
<td>23</td>
</tr>
<tr>
<td>Antitussiculcurs Drugs</td>
<td>22</td>
</tr>
<tr>
<td>Antivenom</td>
<td>19</td>
</tr>
<tr>
<td>Antiviral Drugs</td>
<td>23</td>
</tr>
<tr>
<td>Arsenic</td>
<td>35</td>
</tr>
<tr>
<td>Asbestos</td>
<td>31</td>
</tr>
<tr>
<td>Azacitidine</td>
<td>23</td>
</tr>
<tr>
<td>Azathioprine</td>
<td>26</td>
</tr>
<tr>
<td>Benzene</td>
<td>31</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>23</td>
</tr>
<tr>
<td>Beta2 Agonists</td>
<td>24</td>
</tr>
<tr>
<td>Beta-blockers</td>
<td>20</td>
</tr>
<tr>
<td>Beta-Blockers</td>
<td>24</td>
</tr>
<tr>
<td>Biological warfare</td>
<td>38</td>
</tr>
<tr>
<td>Biomarkers</td>
<td>8</td>
</tr>
<tr>
<td>Bisphenol A</td>
<td>31</td>
</tr>
<tr>
<td>Bispyridinium-non-oxide-compounds</td>
<td>19</td>
</tr>
<tr>
<td>Bleomycin</td>
<td>23</td>
</tr>
<tr>
<td>Body packers</td>
<td>9</td>
</tr>
<tr>
<td>Buprenorphine</td>
<td>20</td>
</tr>
<tr>
<td>Cadmium</td>
<td>35</td>
</tr>
<tr>
<td>Caffeine</td>
<td>24</td>
</tr>
<tr>
<td>Calcinol</td>
<td>29</td>
</tr>
<tr>
<td>Calcium Channel Blockers</td>
<td>24</td>
</tr>
<tr>
<td>Cannabis</td>
<td>24</td>
</tr>
<tr>
<td>Capsaicin</td>
<td>31</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>22</td>
</tr>
<tr>
<td>Carbon</td>
<td>31</td>
</tr>
<tr>
<td>Carbon black</td>
<td>31</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>31</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>31</td>
</tr>
<tr>
<td>Carcinogenicity</td>
<td>9</td>
</tr>
<tr>
<td>Cardiototoxicity</td>
<td>9</td>
</tr>
<tr>
<td>Cement</td>
<td>31</td>
</tr>
<tr>
<td>Chemical warfare, general</td>
<td>38</td>
</tr>
<tr>
<td>Chemicals, general</td>
<td>30</td>
</tr>
<tr>
<td>Chlorine</td>
<td>31</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>24</td>
</tr>
<tr>
<td>Cholinesterase Inhibitors</td>
<td>24</td>
</tr>
<tr>
<td>Ciclosporin</td>
<td>26</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>23</td>
</tr>
</tbody>
</table>
Propylene glycol ... 34
Prothrombin complex concentrate 20
Proton Pump Inhibitors .. 28
Psychiatric aspects .. 17
Pyrethroid insecticides, general ... 37
Quaternary ammonium .. 34
Radiation ... 34
Reprotoxicity .. 17
Ricin .. 38
Risk assessment ... 17
Risperidone ... 23
Rodenticides .. 37
Salicylates ... 29
Sarin ... 8
Scorpions ... 39
Silica ... 34
Silicon ... 36
Simeprevir .. 23
Snake bites .. 39
Sodium hydroxide ... 34
Sodium oxybate ... 20
Sodium polystyrene sulfonate ... 20
Solvents ... 34
St. John's wort ... 39
Substance abuse ... 29
Suicide ... 18
Superwarfarin ... 37
Synthetic Cannabinoids .. 25
Synthetic Cathinones .. 25
Tebuconazole .. 37
Thallium .. 36
Theophylline ... 29
Titanium .. 36
Toluene ... 34
Toxicology, general .. 8
Tranexamic Acid .. 29
Tricyclic Antidepressants .. 29
True vipers ... 40
Tryptamines ... 29
Twostriped walkingstick ... 39
Vincristine ... 23
Viperinae .. 40
Vitamins ... 29
VX ... 38
Warfarin .. 22
Water pollution ... 30
Wood dusts ... 34
Wood smoke ... 34

Current Awareness in Clinical Toxicology is produced monthly for the American Academy of Clinical Toxicology by the Birmingham Unit of the UK National Poisons Information Service, with contributions from the Cardiff, Edinburgh, and Newcastle Units.

The NPIS is commissioned by Public Health England