Accuracy of the paracetamol-aminotransferase product to predict hepatotoxicity in paracetamol overdose treated with a 2-bag acetylcysteine regimen

Introduction
Paracetamol concentration is a highly accurate risk predictor for hepatotoxicity following overdose with known time of ingestion. However, the paracetamol-aminotransferase multiplication product can be used as a risk predictor independent of timing or ingestion type. Validated in patients treated with the traditional, “three-bag” intravenous acetylcysteine regimen, we evaluated the accuracy of the multiplication product in paracetamol overdose treated with a two-bag acetylcysteine regimen.

Methods
We examined consecutive patients treated with the two-bag regimen from five emergency departments over a two-year period. We assessed the predictive accuracy of initial multiplication product for the primary outcome of hepatotoxicity (peak alanine aminotransferase ≥1000IU/L), as well as for acute liver injury (ALI), defined peak alanine aminotransferase ≥2× baseline and above 50IU/L.
Results
Of 447 paracetamol overdoses treated with the two-bag acetylcysteine regimen, 32 (7%) developed hepatotoxicity and 73 (16%) ALI. The pre-specified cut-off points of 1500 mg/L × IU/L (sensitivity 100% [95% CI 82%, 100%], specificity 62% [56%, 67%]) and 10,000 mg/L × IU/L (sensitivity 70% [47%, 87%], specificity of 97% [95%, 99%]) were highly accurate for predicting hepatotoxicity. There were few cases of hepatotoxicity irrespective of the product when acetylcysteine was administered within eight hours of overdose, when the product was largely determined by a high paracetamol concentration but normal aminotransferase.

Conclusions
The multiplication product accurately predicts hepatotoxicity when using a two-bag acetylcysteine regimen, especially in patients treated more than eight hours post-overdose. Further studies are needed to assess the product as a method to adjust for exposure severity when testing efficacy of modified acetylcysteine regimens.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1355058

Analysis of an 8-hour acetylcysteine infusion protocol for repeated supratherapeutic ingestion (RSTI) of paracetamol

Objectives
In Australia, the treatment guideline for patients with repeated supratherapeutic ingestion (RSTI) of paracetamol recommends an abbreviated acetylcysteine regimen if the paracetamol concentration is low (<10 mg/L) and alanine aminotransferase (ALT) is normal or static after 8 hours of infusion. There are currently no studies of this recommendation.

Method
A retrospective review of paracetamol overdose presentations from October 2009 to August 2016 in two hospital toxicology networks was performed. All cases of RSTI treated with acetylcysteine were extracted.

Results
Of the 2249 paracetamol overdose presentations, 91 cases of RSTI were treated with acetylcysteine. Median time to initial blood tests was 6 hours post-last paracetamol dose (IQR 4–6). Sixty-three (69%) presentations had an initial detectable paracetamol concentration, median 30 mg/L (IQR 18–60). Median ALT on presentation was 48 IU/L (IQR 18–109). After 8 hours of acetylcysteine infusion, median ALT was 34 IU/L (IQR 16–71) in those receiving abbreviated treatment and 74 IU/L (IQR 40–231) in those continuing acetylcysteine. Thirty-nine presentations (43%) had an abbreviated regimen. Nine (10%) patients had an initial ALT ≥50 IU/L and subsequently developed hepatotoxicity (ALT >1000 IU/L). No patients with an initial ALT <50 IU/L developed hepatotoxicity. Median duration of acetylcysteine infusion for those receiving a non-abbreviated regimen was 20 hours (IQR 20–25) vs. 10.4 hours (IQR 4.8–12.0) who received an abbreviated regimen. There were no re-presentations with hepatotoxicity.

Conclusions
An 8-hour acetylcysteine infusion regimen for treatment of paracetamol RSTI may be safe and is likely to reduce length of stay for patients at low risk of hepatotoxicity. Larger prospective studies are needed to examine the efficacy of this abbreviated acetylcysteine protocol.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1359620
Increased acetaminophen related calls to Finnish PIC better reflect acetaminophen sales than serious poisonings

Objective
Acetaminophen (APAP) or paracetamol is a commonly encountered medicine in poisonings. We studied the changes in APAP related calls to the Finnish poison information centre (FPIC), and serious intoxications, involving hepatotoxicity or death in 2001–2014. These data were compared with paracetamol sales in Finland.

Methods
This is a retrospective analysis of the FPIC database calls, national cause of death registry, registries of liver transplantations and molecular adsorbent recycling system (MARS)-treated patients from Helsinki University Hospital together with the National Institute of Health and Welfare registry of patients hospitalized. Data on APAP sales were obtained from the Finnish Medicines Agency.

Results
Between 2001 and 2014, the number of calls/year related to human APAP exposures to the FPIC increased from 227 to 1058. No change in the age distribution of enquiries was seen. Most calls involved minors: 58% (range 52–64%) for children under 6 years old, and 9% (range 6–14%) for children of 6–15 years. In Finland, APAP related fatalities have gradually increased from an average of 7/year (range 4–10) in 2000–2005 to an average of 11/year (range 6–17) in 2010–2013, whereas the number of liver transplantations remained low, average 0.6/year (range 0–2). For patients in need of MARS-treatment, a slight decrease was seen. Total APAP sales increased from 5.6 (47% prescription, 53% OTC) to 29.7 (81% prescription, 19% OTC). DDD/1000 inhabitants/day from 2001 to 2014 is recorded. Best linear relationship (R² = 0.97; p < .001) was observed between total FPIC calls and total sales of APAP in 2001-2014. Fatalities show a weaker relationship with sales (R² = 0.317; p = .045).

Conclusions
During the study period, we see an increase in FPIC exposure calls accompanied by an increase in APAP sales. Changes in the chosen indicators for serious poisonings show only a weak association. Despite an evident trend between sales and fatalities, the correlation with fatality remains weak due to the small number of fatalities.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1359619

Retrospective review of SGLT2 inhibitor exposures reported to 13 poison centers

Background
SGLT2 inhibitors are a new class of oral antidiabetics prescribed in the United States since 2013. They act by inhibiting reabsorption of glucose in the proximal convoluted tubule of the kidney, allowing excess glucose to be excreted. Little has been reported regarding effects of non-therapeutic exposure to this class of medication.

Methods
Retrospective records from 13 poison centers were examined for human exposures to SGLT2 inhibitors between 1st January 2013 and 31st December 2016. Exclusion criteria
included multi-substance exposures and exposures without any follow-up call. Data examined included patient age, chronicity of exposure, clinical effects, management site, treatments administered, duration of follow-up, and outcome.

Results

Eighty-eight cases met inclusion criteria. Patient age ranged from 1 to 75 years; 49 were evaluated in a health care facility with 18 admissions. No symptoms developed in 80 (91%) patients, 6 (7%) developed minor symptoms, and 2 (2%) developed moderate symptoms. Hypoglycemia was not observed. Mean time to final follow-up was 9.3 h, ranging from 1 to 42 h; median was 6 h. Of the two patients who developed moderate symptoms, one was a 65 year old male who developed metabolic acidosis and hypokalemia while taking canagliflozin therapeutically; the other a 43-year-old female who developed tachycardia and mild hypertension following the intentional ingestion of 6000 mg of canagliflozin.

Discussions

The number of patients evaluated in a health care facility is most likely reflective of a cautious approach to dealing with a new class of drug. Exposures were generally well-tolerated and managed with minimal intervention.

Conclusions

In this retrospective series, acute ingestions of SGLT2 inhibitors were well-tolerated with no hypoglycemia and only minor effects. For young children with unintentional ingestions, a reasonable approach to home management would include at least one follow-up for signs and symptoms of possible toxicity including mental status changes, polyuria, or tachypnea.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1357824

Recreational drug use at a major music festival: trend analysis of anonymised pooled urine

Objective

The spread of new psychoactive substances (NPS) has expanded rapidly in the last decade. The complexity of the pharmacological effects of NPS challenges the traditional treatment guidelines, and information of the emergence of new arrivals is valuable. Our knowledge on the actual range of recreational drugs used and NPS available in Denmark is limited as identification is possible only when consumers become patients in the healthcare system or through drug seizures. We aimed to detect classical recreational drugs and NPS in the urine of music festival attendees and evaluate if the use of NPS could have been predicted by comparing study data with drug seizure data from the previous year published by European and Danish health authorities.

Methods

In a cross-sectional study, 44 urine samples were collected from three urinals at Roskilde Festival 2016—the largest Danish music festival. Two urinals were placed at music stages with late-night concerts, and one urinal was placed at a camp site. Samples were prepared using enzymatic hydrolysis followed by cationic and anionic solid phase extraction, and analysed using ultra performance liquid chromatography-high-resolution time-of-flight mass spectrometry (UPLC-HR-TOF-MS). Data were processed using an in-house library of 467 target substances, including legal and illegal drugs and metabolites. Urine drug-screening immunoassays were also evaluated and results were compared to UPLC-HR-TOF-MS results.
Results
In total, 77 drugs, including metabolites, were qualitatively identified in the 44 urine samples. The recreational drugs identified were amphetamine \((n = 30)\), cocaine \((n = 44)\), MDA \((n = 40)\), MDMA \((n = 44)\), THC-COOH \((n = 19)\) and ketamine \((n = 17)\). No NPS were identified. Sample testing using the urine drug-screening immunoassays showed presence of cocaine \((n = 27)\), methamphetamine/MDMA \((n = 4)\), THC \((n = 7)\), "Spice" \((n = 7)\) and methylphenidate \((n = 1)\). These discrepancies might be caused by differences in cut-off values between the analytical methods, limited specificity or cross-reactivity of the urine drug-screening immunoassays compared to UPLC-HR-TOFMS results.

Conclusion
Widespread uses of classical recreational drugs were identified in pooled urine samples. The prevalence of NPS was not as comprehensive as expected based on the European and Danish health authorities reports on illegal drugs. Urine drug-screening immunoassays results are advised to be confirmed by chromatographic bioanalysis.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1360496

Can elevated lactate and LDH produce a false positive enzymatic ethanol result in live patients presenting to the emergency department?

Background
There have been allegations in the courtroom that elevated serum lactic acid in trauma victims can yield a falsely elevated serum ethanol assay. Most hospitals utilize an indirect method of ethanol measurement where a serum sample is added to a mix of alcohol dehydrogenase and oxidized nicotinamide adenine dinucleotide (NAD\(^+\)). This allows any ethanol in the patient's serum to be metabolized to acetaldehyde, and in the process results in the reduction of NAD\(^+\) to NADH. NADH is then measured using spectrophotometry. The courtroom allegation stems from the concept that oxidation of lactate to pyruvate by lactate dehydrogenase (LDH) results in the same molar-for-molar reduction of NAD\(^+\) to NADH, and could therefore theoretically cause patients with elevated lactate and LDH to have a falsely elevated ethanol concentration.

Methods
Patients with elevated lactic acid and LDH concentrations who presented to a university hospital from 20 April 2015 to 13 December 2015 were identified to provide possible test specimens. If a sufficient amount of serum was available, the sample was used to re-run the lactate and LDH concentration simultaneously with an enzymatic ethanol assay. Any samples that had elevated lactic acid and LDH concentrations on this retesting, and also yielded a positive ethanol concentration, were sent for confirmatory gas chromatography testing of ethanol concentrations. A control group of 20 samples with normal lactate and LDH were included.

Results
A total of 37 samples were included in the final analysis. Only 4 patients had an elevated enzymatic ethanol concentration, and all 4 also had a measurable GC ethanol concentration. The lactate in this dataset ranged from 2.4 to 24.2 mmol/L, with a mean of 6.53 mmol/L (normal value 0.5–2.2). The LDH ranged from 242 to 8838 U/L with a mean of 1695 U/L (normal value 122–225 U/L). Twenty control samples were run on patients with normal lactate and LDH, none of which yielded a positive enzymatic ethanol result.
Conclusions
This data does not support the contention that an elevated LDH and lactate can yield a false positive serum ethanol result as run by enzymatic ethanol assay in live patients presenting to the emergency department.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1357825

Naja atra snakebite in Taiwan

Background
Naja atra snakebite is uncommon in Taiwan and causes distinct effects on its victims. Although the Taiwan government produces its own specific antivenom, little information on the management of N. atra snakebite is available.

Materials and methods
We retrospectively evaluated 183 patients admitted to two medical centers. Of these, 45 were identified as definite cases of N. atra snakebite, 86 as suspected cases, and 52 as clinical cases. Demographic data, symptomatology, and management were compared between these case groups.

Results
Symptomatology and management were similar in the three groups. Among the 183 patients, 10 (5.5%) were asymptomatic and nine (4.9%) had transient and partial ptosis or body weakness. The principal effects were local tissue swelling and pain in 173 patients (94.5%), followed by clinically suspected wound infection in 148 (80.9%), skin necrosis in 120 (65.6%), necrotizing soft tissue infection in 77 (42.1%), fever in 59 (32.2%), and gastrointestinal effects in 53 (29%). The median total dose of specific antivenom needed to treat N. atra envenoming was 10 vials. In the envenomed patients, debridement was required in 74 patients (42.8%), fasciotomy/fasciectomy in 46 (26.6%), and finger or toe amputation in seven (4%). The first operation was performed at a median of 3.5 days after the bite.

Discussion and conclusions
Based on these typical manifestations, clinical diagnosis of N. atra snakebites may be feasible and practical. In contrast to other snakes of Elapidae family, N. atra bite did not cause serious neurological effects. Early surgical consultation should be obtained because half of the patients underwent surgery due to infectious complications. Acute compartment syndrome was the surgical indication in rare cases; however, overestimation of the incidence may have occurred. This syndrome should be confirmed by serial intracompartmental pressure monitoring instead of only physical examination, and a sufficient dose of antivenom should be given prior to surgical decompression.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1366502

The Australian Snakebite Project, 2005–2015 (ASP-20)

Full text available from: http://dx.doi.org/10.5694/mja17.00094
Co-ingested alcohol and the timing of deliberate self-poisonings
Full text available from: http://dx.doi.org/10.1177/0004867417722639

Lateralized basal ganglia vulnerability to pesticide exposure in asymptomatic agricultural workers
Full text available from: http://dx.doi.org/10.1093/toxsci/kfx126

In-hospital outcomes and delayed neurologic sequelae of seizure-related endosulfan poisoning
Full text available from: http://dx.doi.org/10.1016/j.seizure.2017.07.009

Effects of glyphosate exposure on sperm concentration in rodents: a systematic review and meta-analysis
Full text available from: http://dx.doi.org/10.1016/j.etap.2017.07.015

The long-lasting rodenticide brodifacoum induces neuropathology in adult male rats
Full text available from: http://dx.doi.org/10.1093/toxsci/kfx134

Effects of sulfur mustard on mesenchymal stem cells
Full text available from: http://dx.doi.org/10.1016/j.toxlet.2017.08.008

Optimization of the ocular treatment following organophosphate nerve agent insult
Full text available from: http://dx.doi.org/10.1093/toxsci/kfx119
Estimating methylmercury intake for the general population of South Korea using physiologically based pharmacokinetic modeling
Full text available from: https://doi.org/10.1093/toxsci/kfx111

Prevalence and characteristics of inhalational and dermal palytoxin exposures reported to the National Poison Data System in the U.S.
Full text available from: http://dx.doi.org/10.1016/j.etap.2017.08.010

Comparison of normobaric vs. hyperbaric oxygen in the relief of carbon monoxide headache pain
Full text available from: https://www.ncbi.nlm.nih.gov/pubmed/28783889?dopt=Citation

Use of a 23-hour emergency department observation unit for the management of patients with toxic exposures
Full text available from: http://dx.doi.org/10.1136/emermed-2016-206531

High rate of arterial complications in patients supported with extracorporeal life support for drug intoxication-induced refractory cardiogenic shock or cardiac arrest
Full text available from: http://dx.doi.org/10.21037/jtd.2017.06.81
TOXICOLOGY

General
Rankin A.
On anecdote and antidotes: poison trials in sixteenth-century Europe.

Analytical toxicology
Cannaert A, Franz F, Auwärter V, Stove CP.
Activity-based detection of consumption of synthetic cannabinoids in authentic urine samples using a stable cannabinoid reporter system.
Anal Chem 2017; online early: doi: 10.1021/acs.analchem.7b02552:

Caspar AT, Westphal F, Meyer MR, Maurer HH.
LC-high resolution-MS/MS for identification of 69 metabolites of the new psychoactive substance 1-(4-ethylphenyl)-M(2-methoxyphenyl)methyl) propane-2-amine (4-EA-NBOMe) in rat urine and human liver S9 incubates and comparison of its screening power wit.
Anal Bioanal Chem 2017; online early: doi: 10.1007/s00216-017-0526-0:

Development and validation of a GC-MS method for the determination of hydroxyzine and its active metabolite, cetirizine, in whole blood.

Liu C, Li T, Han Y, Hua Z, Jia W, Qian Z.
The identification and analytical characterization of 2,2'-difluoro-2'-arylethyl-aryl ether.
Drug Test Anal 2017; online early: doi: 10.1002/dta.2264:

Michely JA, Maurer HH.
A multi-analyte approach to help in assessing the severity of acute poisonings - development and validation of a fast LC-MS-MS quantification approach for 45 drugs and relevant metabolites with one-point calibration.
Drug Test Anal 2017; online early: doi: 10.1002/dta.2257:

Morrison LM, Unger KA, Watterson JH.
Analysis of dextromethorphan and dextrorphan in skeletal remains following differential microclimate exposure: comparison of acute vs. repeated drug exposure.

Can elevated lactate and LDH produce a false positive enzymatic ethanol result in live patients presenting to the emergency department?
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1357825:

Nisbet LA, Venson R, Wylie FM, Scott KS.
Application of a urine and hair validated LC-MS-MS method to determine the effect of hair color on the incorporation of authentic forensic blood samples.

Noble C, Dalsgaard PW, Johansen SS, Linnet K.
Application of a screening method for fentanyl and its analogues using UHPLC-QTOF-MS with data-independent acquisition (DIA) in MSE mode and retrospective analysis of authentic forensic blood samples.
Drug Test Anal 2017; online early: doi: 10.1002/dta.2263:

Saenz SR, Lewis RJ, Angier MK, Wagner JR.
Postmortem fluid and tissue concentrations of THC, 11-OH-THC and THC-COOH.
J Anal Toxicol 2017; 41: 508-16.

Seither J, Reidy L.
Confirmation of carfentanil, U-77700 and other synthetic opioids in a human performance case by LC-MS-MS.

Sempio C, Scheidweiler KB, Barnes AJ, Huestis MA.
Optimization of recombinant beta-glucuronidase hydrolysis and quantification of eight urinary cannabinoids and metabolites by liquid chromatography tandem mass spectrometry.
Drug Test Anal 2017; online early: doi: 10.1002/dta.2230:

Shanks KG, Behonick GS.
Detection of carfentanil by LC-MS-MS and reports of associated fatalities in the USA.
J Anal Toxicol 2017; 41: 466-72.

Sofalvi S, Schueler HE, Lavins ES, Kaspar CK, Brooker IT, Mazzola CD, Dolinak D, Gilson TP, Perch S.
An LC-MS-MS method for the analysis of carfentanil, 3-methylfentanyl, 2-furanyl fentanyl, acetyl fentanyl, fentanyl and norfentanyl in postmortem and impaired-driving cases.

Towards quantification of toxicity of lithium ion battery electrolytes - development and validation of a liquid-liquid extraction GC-MS method for the determination of organic carbonates in cell culture materials.
Anal Bioanal Chem 2017; online early: doi: 10.1007/s00216-017-0549-6:

Wietecha-Posluszny R, Lendor S, Garnysz M, Zawadzki M, Koscielniak P.
Human bone marrow as a tissue in post-mortem identification and determination of psychoactive substances-screening methodology.

Carcinogenicity
Holt E, Audy O, Booji P, Melymuk L, Prokes R, Klanoa J.
Organochlorine pesticides in the indoor air of a theatre and museum in the Czech Republic: inhalation exposure and cancer risk.

Cardiotoxicity
Changal KH, Latief M, Parry M, Abbas F.
Aluminium phosphide poisoning with severe cardiac dysfunction and the role of digoxin.
BMJ Case Rep 2017; doi: 10.1136/bcr-2017-220125:

Ferreira de Mattos G, Costa C, Savi F, Alonso M, Nicolson GL.
Lead poisoning: acute exposure of the heart to lead ions promotes changes in cardiac function and Cav1.2 ion channels.
Biophys Rev 2017; online early: doi: 10.1007/s12551-017-0303-5:

Gedela M, Weltman NY, Chavakula NS, Carpenter PL, Sturm T.
Atrial fibrillation induced by carbon monoxide poisoning and successful treatment with hyperbaric oxygen.

Dermal toxicity

Developmental toxicity

Driving under the influence of alcohol and other drugs

Epidemiology

Chary M, Genes N, Giraud-Carrier C, Hanson C, Nelson LS, Manini AF.
Epidemiology from tweets: estimating misuse of prescription opioids in the USA from social media.
J Med Toxicol 2017; online early: doi: 10.1007/s13181-017-0625-5:

Churnucu K, Mitchell R.
BMC Public Health 2017; 18: 83:

Johnston CI, Ryan NM, Page CB, Buckley NA, Brown SGA, O’Leary MA, Isbister GK.
Med J Aust 2017; 207: 119-25:

Poisoning deaths in Poland: Types and frequencies reported in Lodz, Krakow, Sosnowiec, Gdansk, Wroclaw and Poznan during 2009–2013.

Mong R, Arciaga GJ, Tan HH.
Use of a 23-hour emergency department observation unit for the management of patients with toxic exposures.
Emerg Med J 2017; online early: doi: 10.1136/emermed-2016-206531:

Osborne PG, Ko Y-C, Wu M-T, Lee C-H.
Intoxication and substance use disorder to Osborne PG, Ko Y-C, Wu M-T, Lee C-H.
Emerg Med J 2017; online early: doi: 10.1136/emermed-2016-206531:

Osborne PG, Ko Y-C, Wu M-T, Lee C-H.
Intoxication and substance use disorder to Areca catechu nut containing betel quid: a review of epidemiological evidence, pharmacological basis and social factors influencing quitting strategies.
Drug Alcohol Depend 2017; 179: 187-97:

Pavarin RM, Fioritti A.
J Psychoactive Drugs 2017; online early: doi: 10.1080/02791072.2017.1365976:

Roxburgh A, Hall WD, Dobbins T, Gisev N, Burns L, Pearson S, Degenhardt L.
Trends in heroin and pharmaceutical opioid overdose deaths in Australia.
Drug Alcohol Depend 2017; 179: 291-8:

Forensic toxicology
Aknouche F, Guibert E, Tessier A, Eibel A, Kintz P.
Suicide by ingestion of caffeine.
Egypt J Forensic Sci 2017; 7: 6:

Busardó FP, Pichini S, Zaami S, Pacifici R, Kintz P.
Hair testing of GHB: an everlasting issue in forensic toxicology.

Gioia S, Lancia M, Bacci M, Suadoni F.
Two fatal intoxications due to tramadol alone: autopsy case reports and review of the literature.
Am J Forensic Med Pathol 2017; online early: doi: 10.1097/PAF.0000000000000338:

Gosselin M, Daéz Y, Mireault P, Craches M.
Toxic myocarditis caused by acetaminophen in a multidrug overdose.
Liver Int 2017; online early: doi: 10.1177/1091581817721675:

Griffiths A, Leonars R, Hadley L, Stephenson M, Teale R.
Smoke on the water-oral fluid analysis at sea.
Forensic Sci Int 2017; 278: 361-6:

Noble C, Dalsgaard PW, Johansen SS, Linnet K.
Application of a screening method for fentanyl and its analogues using UHPLC-QTOF-MS with data-independent acquisition (DIA) in MSE mode and retrospective analysis of authentic forensic blood samples.
Drug Test Anal 2017; online early: doi: 10.1002/dta.2263:

Rahman NA, Das S, Chaudhari VA, Nandagopal S, Bedhe B.
Blending of rodenticide and battery acid - a rare and fatal suicide mix.
Egypt J Forensic Sci 2017; 7: 8:

Roncati L, Marnetti A, Roncati M, Vergari B, Maiorana A, Barbolini G.
Lethal cardiotoxicity from quaternary ammonium compounds contained in an unguarded household detergent at a psychiatric facility.

Senthilkumaran S, Balamurugan N, Jena NN, Menezes RG, Thirumalaikolundusubramanian P.
Acute alopecia: evidence to thallium poisoning.
Int J Trichology 2017; 9: 30-2:

Ventura F, Barranco R, Landolfa MC, Gallo M, Castiglione AG, Orcioni GF, De Stefano F.
Fatal poisoning by butane sniffing: a forensic analysis and immunohistochemical detection of myocardial hypoxic damage.
J Forensic Leg Med 2017; 51: 57-62:

Yu Y, Wang P, Bian L, Hong S.
Rare death via histamine poisoning following crab consumption: a case report.

Zlig B, Thelander G, Giebe B, Druid H.
Postmortem blood sampling—Comparison of drug concentrations at different sample sites.
Forensic Sci Int 2017; 278: 296-303:

Hepatotoxicity
Shi Q, Yang X, Greenhaw JH, Salminen AT, Russotti GM, Salminen WF.
Int J Toxicol 2017; online early: doi: 10.1177/1091581817721675:

Tujios SR, Lee WM.
Acute liver failure induced by idiosyncratic reaction to drugs: challenges in diagnosis and therapy.
Liver Int 2017; online early: doi: 10.1111/liv.13535:

Inhalation toxicity
Murphy LT, Charlton NP.
Prevalence and characteristics of inhalational and dermal palytoxin exposures reported to the National Poison Data System in the U.S.
Environ Toxicol Pharmacol 2017; 55: 107-9:

Kinetics

Medication errors

Metabolism

Nephrotoxicity

Neurotoxicity

Prasad B, McIsaac M, Toppings J. Valacyclovir-associated neurotoxicity treated with intensification of peritoneal dialysis.
Exposure to manure gas in an open air environment

Notes from the field: death of a farm worker after

Toxicol Sci 2017; 159: 170-8.

Lateralized basal ganglia vulnerability to pesticide exposure

Undersea Hyperb Med 2017; 44: 121-31.

Effects of hyperbaric oxygen on hippocampal neuronal apoptosis in rats with acute carbon monoxide poisoning.

Occupational toxicology

J Neurosurg Pediatr 2017; online early: doi: 10.3171/2017.5.PEDS16695:

Villelli N, Hauser N, Gianaris T, Froberg BA, Fulkerson DH.

BMJ Case Rep 2017; doi: 10.1136/bcr-2017-220678:

Severe bilateral cerebellar edema from ingestion of ketamine: case report.

J Neurosurg Pediatr 2017; online early: doi: 10.3171/2017.5.PEDS16695:

Xue L, Wang WL, Li Y, Gong X, Bao JX, Zhang HJ, Xie XP, Chang YM, Li JS.

Optimization of the ocular treatment following organophosphate nerve agent insult.

Toxicol Sci 2017; 159: 50-63.

J Med Case Rep 2017; 11: 211.

Paediatric toxicology

Anon.

Pediatrics 2017; 140: e20171490.

Berg K, Kuhn S, Van Dyke M.

Spatial surveillance of childhood lead exposure in a targeted screening state: an application of generalized additive models in Denver, Colorado.

Curr Neuropsychopharmacol 2017; online early: doi: 10.2174/1570159X15666170825101308:

Pediatrics 2017; online early: doi: 10.1542/peds.2017-0017:

Dias R, Dave N, Tuliu MS, Deshmukh CT.

Local anaesthetic systemic toxicity following oral ingestion in a child: revisiting dibucaine.

Front Neurol 2017; 8: 362.

BMJ Case Rep 2017; doi: 10.1136/bcr-2017-220044:

Granzella N, Chen BC, Baird GS, Valento M, Flibanserin toxicity in a toddler following ingestion.

BMJ Case Rep 2017; online early: doi: 10.1080/1570159X15666170825101308:

Dias R, Dave N, Tuliu MS, Deshmukh CT.

Local anaesthetic systemic toxicity following oral ingestion in a child: revisiting dibucaine.

Gopal-Kothandapani JS, Wright KP, Sithambaram S, Natarajan A.

Dilemma of diagnosing sulphonylurea overdose in children: deliberations and considerations before reaching a diagnosis.

BMJ Case Rep 2017; doi: 10.1136/bcr-2017-220044:

Granzella N, Chen BC, Baird GS, Valento M.

Flibanserin toxicity in a toddler following ingestion.

BMJ Case Rep 2017; online early: doi: 10.1080/1570159X15666170825101308:

Dias R, Dave N, Tuliu MS, Deshmukh CT.

Local anaesthetic systemic toxicity following oral ingestion in a child: revisiting dibucaine.

Gopal-Kothandapani JS, Wright KP, Sithambaram S, Natarajan A.

Dilemma of diagnosing sulphonylurea overdose in children: deliberations and considerations before reaching a diagnosis.

BMJ Case Rep 2017; doi: 10.1136/bcr-2017-220044:

Granzella N, Chen BC, Baird GS, Valento M.

Flibanserin toxicity in a toddler following ingestion.

BMJ Case Rep 2017; online early: doi: 10.1080/1570159X15666170825101308:

Dias R, Dave N, Tuliu MS, Deshmukh CT.

Local anaesthetic systemic toxicity following oral ingestion in a child: revisiting dibucaine.

Gopal-Kothandapani JS, Wright KP, Sithambaram S, Natarajan A.

Dilemma of diagnosing sulphonylurea overdose in children: deliberations and considerations before reaching a diagnosis.

BMJ Case Rep 2017; doi: 10.1136/bcr-2017-220044:

Granzella N, Chen BC, Baird GS, Valento M.

Flibanserin toxicity in a toddler following ingestion.

BMJ Case Rep 2017; online early: doi: 10.1080/1570159X15666170825101308:

Dias R, Dave N, Tuliu MS, Deshmukh CT.

Local anaesthetic systemic toxicity following oral ingestion in a child: revisiting dibucaine.

Lanphear B. Still treating lead poisoning after all these years. Pediatrics 2017; 140: e20171400.

Psychiatric aspects

Reprotoxicity

Suicide

MANAGEMENT
General

Hess DR. Inhaled carbon monoxide: from toxin to therapy. Respir Care 2017; online early: doi: 10.4187/respcare.05781:

Antidotes
Rankin A.
On anecdote and antidotes: poison trials in sixteenth-century Europe.

Acetylcysteine
O’Grady L, Mullins ME, Schwarz ES.
A comment on ‘An assessment of the variation in the concentrations of acetylcysteine in infusions for the treatment of paracetamol overdose’.

Wong A, Gunja N, McNulty R, Graudins A.
Analysis of an 8-hour acetylcysteine infusion protocol for repeated supratherapeutic ingestion (RSTI) of paracetamol.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1359620:

Yayla Ç, Gayretli Yayla K, Ünal S, Açar B, Akboga MK, Demirtas K.
N-acetylcysteine and contrast-induced nephropathy.
Angiology 2017; online early: doi: 10.1177/0003319717726473:

Antivenom
Mailhol C, Delcourt N, Apoil P-A, Didier A, Franchitto N.
Are changes necessary in the medical management of a patient with snakebite regarding the incidence of hypersensitivity reaction to antivenom polyvalent immune fab?
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1367400:

Polzik P, Hansen MB, Olsen NV, Grøndal O, Hyldegaard O.
Hyperbaric oxygen therapy may overcome nitric oxide blockage during cyanide intoxication.
Undersea Hyperb Med 2017; 44: 221-34.

Lipid emulsion therapy
Effect of lipid emulsion infusion on paliperidone pharmacokinetics in the acute overdose rat model: a potential emergency treatment for paliperidone intoxication.

Naloxone
Jones JD, Manubay JM, Mogali S, Metz VE, Madera G, Martinez S, Muntaz M, Comer SD.
Abuse liability of intravenous buprenorphine vs. buprenorphine/naloxone: Importance of absolute naloxone amount.

Hydroxocobalamin
Legrand M, Mallet V.
Intravenous hydroxocobalamin and crystal nephropathy.
Nat Rev Nephrol 2017; online early: doi: 10.1038/nrneph.2017.110:

Severe pulmonary edema following hyperbaric oxygen therapy for acute carbon monoxide poisoning: a case report and clinical experience.

Gedela M, Weltman NY, Chavvakula NS, Carpenter PL, Sturm T.
Atrial fibrillation induced by carbon monoxide poisoning and successful treatment with hyperbaric oxygen.

Hampson NB, Ocak T.
Comparison of normobaric vs. hyperbaric oxygen in the relief of carbon monoxide headache pain.

Weaver LK, Deru K.
Carboxyhemoglobin half-life during hyperbaric oxygen in a patient with lung dysfunction: a case report.

Xue L, Wang WL, Li Y, Gong X, Bao JX, Zhang HJ, Xie XP, Chang YM, Li JS.
Effects of hyperbaric oxygen on hippocampal neuronal apoptosis in rats with acute carbon monoxide poisoning.

Deferasirox
Bollig C, Schell LK, Rucker G, Allert R, Motschall E, Niemeyer CM, Bassler D, Meerpohl JJ.
Deferasirox for managing iron overload in people with thalassaemia.

Prolonged release oxycodone and naloxone treatment counteracts opioid-induced constipation in patients with severe pain compared to previous analgesic treatment.

Naloxone use among overdose prevention trainees in New York City: a longitudinal cohort study.

Wilson RM, Elmaraghi S, Rinker BD.

Hydroxocobalamin
Legrand M, Mallet V.
Intravenous hydroxocobalamin and crystal nephropathy.
Nat Rev Nephrol 2017; online early: doi: 10.1038/nrneph.2017.110:

Hyperbaric oxygen therapy
Fan D, Lv Y, Hu H, Pan S.
Ischemic hand complications from intra-arterial injection of sublingual buprenorphine/naloxone among patients with opioid dependency.

Diazepam

Extracorporeal treatments

Extracorporeal membrane oxygenation

Haemodialysis

Gastrointestinal decontamination

Opioid maintenance therapy

Buprenorphine

Methadone

Oxycodone

DRUGS

General
Binswanger IA. Commentary on Hsu et al. (2017): A systems approach to improving health services for overdose in the hospital and across the continuum of care—an unmet need.

3-meo-PCP

ACE inhibitors

Acetaminophen (see paracetamol)

Amphetamines and MDMA (ecstasy)

Aminoglycoside antibiotics

Anaesthetics

Analgesics

Price HR, Collier AC.

Antiarhythmic drugs

Amiodarone
Baumann H, Fichtenkamm P, Schneider T, Biscoping J, Henrich M.

Flecainide
Watts TE, McElderry HT, Kay GN.

Anticholinergic drugs
Zhang XC, Farrell N, Haronian T, Hack J.

Anticoagulants
Chadha DS, Bharadwaj P.

Enoxaparin
Can we reliably predict the level of anticoagulation after enoxaparin injection in elderly patients with renal failure? Aging Clin Exp Res 2017; online early: doi: 10.1007/s40520-017-0822-8:

Anticonvulsants
Rao S, Harper-Shankie M, Agarwal R.
Vertical gaze palsy due to medication error. Epilepsy Behav Case Rep 2017; 8: 33-4.

Carbamazepine
Klein P, Tolbert D.

Lamotrigine

Phenytoin
Moon H-J, Jeon B.

Antidiabetic drugs
Schaeferrer SE, DesLauriers C, Spiller HA, Aleguas A, Baeza S, Ryan ML.

Sulphonylurea
Gopal-Kothandapani JS, Wright KP, Sithambaram S, Natarajan A.
Dilemma of diagnosing sulphonylurea overdose in children: deliberations and considerations before reaching a diagnosis. BMJ Case Rep 2017; doi: 10.1136/bcr-2017-220044:

Antihistamines
Hydroxyzine

Antipsychotics
Benperidol
Schmidt A, Fischer P, Wally B, Scharfetter J.
Influence of intravenous administration of the antipsychotic drug benperidol on the QT interval. Neuropsychiatr 2017; online early: doi: 10.1007/s40211-017-0230-5:

Antituberculous drugs

Antiviral drugs
No clinically relevant drug-drug interactions between methadone or buprenorphine/naloxone and anti-viral combination glecaprevir and pibrentasvir. Antimicrob Agents Chemother 2017; online early: doi: 10.1128/AAC.00958-17:

Valacyclovir
Prasad B, McIsaac M, Toppings J.
Valacyclovir-associated neurotoxicity treated with intensification of peritoneal dialysis. BMJ Case Rep 2017; doi: 10.1136/bcr-2017-220678:

Baclofen
Braillon A, Naudet F.

Caffeine
Aknouche F, Guilbert E, Tessier A, Eibel A, Kintz P.
Suicide by ingestion of caffeine.

Manchester J, Eshel I, Marion DW. The benefits and risks of energy drinks in young adults and military service members. Mil Med 2017; 182: e1726-e1733.

Calcium channel blockers

Amlodipine

Cannabis (marijuana)

Cocaine

Dextromethorphan

Digoxin

Flibanserin

Gamma hydroxybutyrate

Hallucinogenic drugs

Herbal medicines, ethnic remedies and dietary supplements
Anon.
Nurse calls for tighter control of online diet pills after daughter's tragic death.
Nurs Stand 2017; 31: 11.

Ansari RM, Omar NS.
Weight loss supplements: boon or bane?

Koraishy FM, Moeckel GW, Geller DS.
A case of severe nephrotoxicity associated with long-term dietary supplement use.
Clin Nephrol 2017; online early: doi: 10.5414/CNCS109180:

Singh A, Zhao K.
Herb-drug interactions of commonly used Chinese medicinal herbs.

Heroin (diacetylmorphine)
Bola RA, Kiyatkin EA.
Brain temperature effects of intravenous heroin: state dependency, environmental modulation, and the effects of dose.
Neuropharmacology 2017; online early:

do: 10.1016/j.neuropharm.2017.07.025:

Intravenous heroin use in Haiphong, Vietnam: need for comprehensive care including methamphetamine use-related interventions.
Drug Alcohol Depend 2017; 179: 198-204.

Roxburgh A, Hall WD, Dobbins T, Gisev N, Burns L, Pearson S, Degenhardt L.
Trends in heroin and pharmaceutical opioid overdose deaths in Australia.

Ruhm CJ.
Geographic variation in opioid and heroin involved drug poisoning mortality rates.
Am J Prev Med 2017; online early:
do: 10.1016/j.amepre.2017.06.009:

Survatt HL, Kurtz SP, Buttram M, Levi-Minz MA, Pagano ME, Cicero TJ.
Heroin use onset among nonmedical prescription opioid users in the club scene.

Metabolic syndrome among individuals with heroin use disorders on methadone therapy: prevalence, characteristics, and related factors.
Subst Abus 2017; online early:
do: 10.1080/08897077.2017.1363122:

Immunosuppressants

Azathioprine
Liew D, Keith C, Booth J, Perera D.
Fatal azathioprine toxicity.

Cyclophosphamide
Kurauchi K, Nishikawa T, Miyahara E, Okamoto Y, Kawano Y.
Role of metabolites of cyclophosphamide in cardiotoxicity.

Iron
Aksan A, Isik H, Radeke HH, Dignass A, Stein J.
Letter: inconsistency in reporting of hypophosphataemia after intravenous iron–authors’ reply.

Ketamine
Villelli N, Hauser N, Gianaris T, Froberg BA, Faulkerson DH.
Severe bilateral cerebellar edema from ingestion of ketamine: case report.
J Neurosurg Pediatr 2017; online early:
do: 10.3171/2017.5.PEDS16695:

Levamisole
Levamisole in illicit trafficking cocaine seized: a one year study.
J Psychoactive Drugs 2017; online early:
do: 10.1080/02791072.2017.1361588:

Levotyroxine
Hartman S, Noordam K, Maseland M, van Setten P.
Benign course after acute high dose levotyroxine intoxication in a 3-year-old boy.

Lithium
Albright A, Way RT.
Lithium toxicity and prolonged delirium.
Aust N Z J Psychiatry 2017; 51: 945.

Serum lithium levels and suicide attempts: a case-controlled comparison in lithium therapy-naive individuals.
Psychopharmacology 2017; online early:
do: 10.1007/s00213-017-4729-z:

Komaru Y, Inokuchi R, Ueda Y, Nangaku M, Doi K.
Use of the anion gap and intermittent hemodialysis following continuous hemodiafiltration in extremely high dose acute-on-chronic lithium poisoning: a case report.
Hemodial Int 2017; online early:
do: 10.1111/ldi.12583:

Masiran R, Abdul Aziz MF.
Hypertensive bipolar: chronic lithium toxicity in patients taking ACE inhibitor.
BMJ Case Rep 2017; doi: 10.1136/bcr-2017-220631:

Lithium use, but not valproate use, is associated with a higher risk of chronic kidney disease in older adults with mental illness.
J Clin Psychiatry 2017; online early:
do: 10.4088/JCP.16m11125:

Loperamide
Borron SW, Watts SH, Tull J, Baeza S, Diebold S, Barrow A.
Intentional misuse and abuse of loperamide: a new look at a drug with "low abuse potential".

Loperamide-induced Torsades de Pointes: a case series.
J Emerg Med 2017; online early:
Methylphenidate
Luethi D, Kaeser PJ, Brandt SD, Krähenbühl S, Hoener MC, Liechti ME.
Pharmacological profile of methylphenidate-based designer drugs.

Nicotine
Nicotine pharmacokinetic profiles of the Tobacco Heating System 2.2, cigarettes and nicotine gum in Japanese smokers.

Novel psychoactive substances
Caspar AT, Westphal F, Meyer MR, Maurer HH.
LC-high resolution-MS/MS for identification of 69 metabolites of the new psychoactive substance 1-(4-ethylphenyl)-2-[2-(methoxyphenyl)[methyl] propane-2-amine (4-EA-NBOMe) in rat urine and human liver 59 incubates and comparison of its screening power wit.
Anal Bioanal Chem 2017; online early: doi: 10.1002/sbb.201705260-6:

Luethi D, Kaeser PJ, Brandt SD, Krähenbühl S, Hoener MC, Liechti ME.
Pharmacological profile of methylphenidate-based designer drugs.

Luethi D, Kolaczynska KE, Docci L, Krähenbühl S, Hoener MC, Liechti ME.
Pharmacological profile of mephedrone analogs and related new psychoactive substances.

Mitchell-Mata C, Thomas B, Peterson B, Couper F.
Two fatal intoxications involving 3-methoxyphenyclidine.

Pourmand A, Mazer-Amirshahi M, Chistov S, Li A, Park M.
Designer drugs: review and implications for emergency management.

Richter LH, Maurer HH, Meyer MR.

Rivera JV, Vance EG, Rushton WF, Arnold JK.
Novel psychoactive substances and trends of abuse.
Crit Care Nurs Q 2017; 40: 374-82.

Phenethylamines
Nisbet LA, Venson R, Wylie FM, Scott KS.
Application of a urine and hair validated LC-MS-MS method to determine the effect of hair color on the incorporation of 25B-NBOMe, 25C-NBOMe and 25I-NBOMe into hair in the rat.

Synthetic cannabinoids
Alon MH, Saint-Fleur MO.
Synthetic cannabinoid induced acute respiratory depression: Case series and literature review.

Cannaert A, Franz F, Auwärter V, Stove CP.
Activity-based detection of consumption of synthetic cannabinoids in authentic urine samples using a stable cannabinoid reporter system.

Kevin RC, Lefever TW, Snyder RW, Patel PR, Gamage TF, Fennell TR, Wiley JL, McGregor IS, Thomas BF.
Kinetic and metabolic profiles of synthetic cannabinoids NNEI and MN-18.

Pryce G, Baker D.
Antidote to cannabinoid intoxication: Inverse cannabinoid receptor one (CB1) agonism by N-(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) reverses the hypothermic effects of cannabinoid receptor one agonism by 1-Naphthalenyl [4-(pentyloxy)-1-naphthalenyl] methane (CB13) in mice.

Examination of synthetic cannabinoid and cathinone use among a drug-using offender sample, 2013-2015.

Synthetic cannabinoid use in a psychiatric patient population: a pilot study.

Synthetic opioids
Pharmacological characterization of novel synthetic opioids (NSO) found in the recreational drug marketplace.

Liu C, Li T, Han Y, Hua Z, Jia W, Qian Z.
The identification and analytical characterization of 2,2'-difluorofentanyl.

Seither J, Reidy L.
Confirmation of carfentanil, U-47700 and other synthetic opioids in a human performance case by LC-MS-MS.

...

Opioids

Codeine

Fentanyl

Opium

Oxycodone
Gonek M, Akbarali HJ, Henderson G, Dewey WL. Reversal of oxycodone and hydrocodone tolerance by diazepam. Brain Res 2017; online early:

do: 10.1016/j.brainres.2017.08.017:

Tramadol

Paliperidone

Paracetamol (acetaminophen)

Psychoactive drugs
Busardò FP, Pichini S, Pellegrini M, Montana A, Faro AFL, Zaa mi S, Graziano S.
Correlation between blood and oral fluid psychoactive drug concentrations and cognitive impairment in driving under the influence of drugs. Curr Neuropharmacol 2017; online early: doi: 10.2174/1570159X15666170828162057:

Quinine Hall HN, Tatham AJ. Recovery from blindness following accidental quinine overdose. Pract Neurol 2017; online early: doi: 10.1136/practneurol-2017-001610:

Shanks KG, Behonick GS. Detection of carfentanil by LC-MS-MS and reports of associated fatalities in the USA. J Anal Toxicol 2017; 41: 466-72.

Ventura F, Barranco R, Landolfa MC, Gallo M, Castiglione AG, Orclioni GF, De Stefano F.
Fatal poisoning by butane sniffing: a forensic analysis and immunohistochemical detection of myocardial hypoxic damage.

Trazodone
Avila JD.
Fatal cerebral edema, seizures, and hyponatremia after trazodone overdose.
Clin Neuroradiol 2017; online early: doi: 10.1097/WNF.0000000000000235:

Tricyclic antidepressants
Amitriptyline
Tang KY.
Amitriptyline poisoning at 34 weeks of pregnancy.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1366503:

Veterinary products
Carfentanil
Recreational use of carfentanil – a case report with laboratory confirmation.

Shanks KG, Behonick GS.
Detection of carfentanil by LC-MS-MS and reports of associated fatalities in the USA.
J Anal Toxicol 2017; 41: 466-72.

Sofalvi S, Schueler HE, Lavins ES, Kaspar CK, Brooker IT, Mazzola CD, Dolinak D, Gilson TP, Perch S.
An LC-MS-MS method for the analysis of carfentanil, 3-methylfentanyl, 2-furanyl fentanyl, acetyl fentanyl, fentanyl and norfentanyl in postmortem and impaired-driving cases.

Vitamin A
Nohynek GJ.
Commentary on the safety of topical vitamin A in cosmetics.
Regul Toxicol Pharmacol 2017; online early: doi: 10.1016/j.yrtph.2017.08.002:

CHEMICAL INCIDENTS AND POLLUTION

Air pollution
Holt E, Audy O, Boeij P, Melymuk L, Prokes R, Klanova J.
Organochlorine pesticides in the indoor air of a theatre and museum in the Czech Republic: inhalation exposure and cancer risk.

Chemical incidents
Melnikova N, Wu J, Yang A, Orr M.
Acute chemical incidents with injured first responders, 2002-2012.
Disaster Med Public Health Prep 2017; online early: doi: 10.1017/dmp.2017.50:

Water pollution
de Leeuw S.
Poisoned perfection: welling concerns about arsenic, drinking water, and public health in rural Newfoundland.

Fisher AT, López-Carrillo L, Gamboa-Loira B, Cebrián ME.
Standards for arsenic in drinking water: implications for policy in Mexico.
J Public Health Policy 2017; online early: doi: 10.1057/s41271-017-0087-7:

Troiano G, Mercurio I, Melai P, Nante N, Lancia M, Bacci M.
Suicide behaviour and arsenic levels in drinking water: a possible association? A review of the literature about the effects of arsenic contamination in drinking water on suicides.

CHEMICALS

General
Alzahrani SH, Ibrahim NK, Elnour MA, Alqahtani AH.
Five-year epidemiological trends for chemical poisoning in Jeddah, Saudi Arabia.

Hallit S, Salameh P.
Exposure to toxics during pregnancy and childhood and asthma in children: a pilot study.

Alcohol (ethanol)
Carito V, Ceccanti M, Ferraguti G, Coccurello R, Clafer S, Tirassa P, Fiore M.
NGF and BDNF alterations by prenatal alcohol exposure.
Curr Neuropharmacol 2017; online early: doi: 10.2174/1570159X15666170825101308:

Chitty KM, Kirby K, Osborne NJ, Isbister GK, Buckley NA.
Co-ingested alcohol and the timing of deliberate self-poisonings.

Kapur BM, Baber M.
FASD: folic acid and formic acid - an unholy alliance in the alcohol abusing mother.

Klein LR, Cole JB, Driver BE, Battista C, Jelinek R, Martel ML.
Unsuspected critical illness among emergency department patients presenting for acute alcohol intoxication.

Can elevated lactate and LDH produce a false positive enzymatic ethanol result in live patients presenting to the emergency department?
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1357825:

Acute alcohol intoxication exacerbates rhabdomyolysis-induced acute renal failure in rats.

Auramine-o
Dhadke S, Dhadke V, Giram A.
Auramine-o (synthetic yellow cow dung powder) poisoning: rare but fatal.
Batteries

Towards quantification of toxicity of lithium ion battery electrolytes - development and validation of a liquid-liquid extraction GC-MS method for the determination of organic carbonates in cell culture materials.
Anal Bioanal Chem 2017; online early: doi: 10.1007/s00216-017-0549-6:

Benzophenone-3

Exposure to benzophenone-3 and reproductive toxicity: a systematic review of human and animal studies.

Butane

Ventura F, Barranco R, Landolfa MC, Gallo M, Castiglione AG, Orcioni GF, De Stefano F.
Fatal poisoning by butane sniffing: a forensic analysis and immunohistochemical detection of myocardial hypoxic damage.

Carbon monoxide

Bhagwat S, Bruxner G.
'Not quite out of the woods': potential for misdiagnosis of delayed neurologic syndrome of carbon monoxide poisoning as relapse of mental illness.
Australas Psychiatry 2017; online early: doi: 10.1177/1039856217726695:

Creswell PD, Vogt CM, Wozniak RJ, Camponeschi J, Werner MA, Meiman JG.
Improving outreach and surveillance efforts following a large-scale carbon monoxide poisoning in Wisconsin.

Fan D, Lv Y, Hu H, Pan S.
Severe pulmonary edema following hyperbaric oxygen therapy for acute carbon monoxide poisoning: a case report and clinical experience.

Gedela M, Weltman NY, Chavvakula NS, Carpenter PL, Sturm T.
Atrial fibrillation induced by carbon monoxide poisoning and successful treatment with hyperbaric oxygen.

Hampson NB, Ocak T.
Comparison of normobaric vs. hyperbaric oxygen in the relief of carbon monoxide headache pain.

Hampson NB, Holm JR, Courtney TG.
Garage carbon monoxide levels from sources commonly used in intentional poisoning.
Undersea Hyperb Med 2017; 44: 11-5.

Hampson NB, Moon RE, Weaver LK.
Another perspective on ACEP policy on critical issues in carbon monoxide poisoning: Invited commentary.

Hess DR.
Inhaled carbon monoxide: from toxin to therapy.
Respir Care 2017; online early: doi: 10.4187/respcare.05781:

Sohn OH, Huh JW, Seo DW, Oh BJ, Lim KS, Kim WY.
Aspiration pneumonia in patients with carbon monoxide poisoning who had loss of consciousness: prevalence, outcomes, and risk factors.
Am J Med 2017; online early: doi: 10.1016/j.ajmed.2017.06.038:

Weaver LK, Deru K.
Carboxyhemoglobin half-life during hyperbaric oxygen in a patient with lung dysfunction: a case report.

Xue L, Wang WL, Li Y, Gong X, Bao JX, Zhang HJ, Xie XP, Chang YM, Li JS.
Effects of hyperbaric oxygen on hippocampal neuronal apoptosis in rats with acute carbon monoxide poisoning.

Contrast media

Yayla Ç, Gayretli Yayla K, Ünal S, Açar B, Akboga MK, Demirtas K.
N-acetylcysteine and contrast-induced nephropathy.
Angiology 2017; online early: doi: 10.1177/00033197177267695:

Corrosives

Chibishev A, Bozinovska C, Gulabovski R.
Clinical evaluation and management of acute corrosive poisoning in adult patients - A ten year experience.

Rahman NA, Das S, Chaudhari VA, Nandagopal S, Badhe B.
Blending of rodenticide and battery acid - a rare and fatal suicide mix.

Cosmetics

Nohynek GJ.
Commentary on the safety of topical vitamin A in cosmetics.
Regul Toxicol Pharmacol 2017; online early: doi: 10.1016/j.yrtph.2017.08.002:

Review of data on the dermal penetration of mineral oils and waxes used in cosmetic applications.

Rieder BO.
Consumer exposure to certain ingredients of cosmetic products: the case for tea tree oil.

Shah MP, Shendell DG, Strickland PO, Bogden JD, Kemp FW, Halperin W.

Cyanide

Polzik P, Hansen MB, Olsen NV, Grøndal O, Hyldegaard O.
Hyperbaric oxygen therapy may overcome nitric oxide blockage during cyanide intoxication.
Undersea Hyperb Med 2017; 44: 221-34.

E-cigarettes and e-liquids

Logue JM, Sleiman M, Montesinos VN, Russell ML, Litter M, Benowitz NL, Gundel LA, Destaillats H.
Emissions from electronic cigarettes: assessing vapers' intake of toxic compounds, secondhand exposures, and the associated health impacts.

Essential oils

Ethylene glycol

Flame retardants

Formic acid

Fragrance chemicals

Hydrocarbons

Hydrogen sulphide

Methanol

Petrol (gasoline) and petroleum oils

Polyoxylethylene nonylphenol

Propylene glycol

Quaternary ammonium compounds

Sucralose

Tobacco

METALS

General

Arsenic

Iron

Lead

Cheung BMY, Cheung TT. No lead is better than a little lead. Postgrad Med J 2017; 93: 512.

Lanphear B. Still treating lead poisoning after all these years. Pediatrics 2017; 140: e20171400.

Lithium

Masiran R, Abdul Aziz MF.
Hypertensive bipolar: chronic lithium toxicity in patients taking ACE inhibitor. BMJ Case Rep 2017; doi: 10.1136/bcr-2017-220631:

Manganese

Mercury

Nickel

Thallium

Pesticides and cancer

Aluminium phosphide

Changal KH, Latief M, Parry M, Abbas F. Aluminium phosphide poisoning with severe cardiac dysfunction and the role of digoxin. BMJ Case Rep 2017; doi: 10.1136/bcr-2017-220125:

Fipronil

Glyphosate

Linuron

Organochlorine pesticides

General

Tsygankov VY, Kristoforova NK, Lukyanova ON, Boyarova MB, Kikus FF, Yargina MV. Selected organochlorines in human blood and urine in the south of the Russian Far East. Bull Environ Contam Toxicol 2017; online early: doi: 10.1007/s00128-017-2152-0:

Endosulfan

Moon JM, Chun BJ, Lee SD.

Organophosphorus insecticides

General
Açikalin A, Disel NR, Matyar S, Sebe A, Kekeç Z, Gökel Y, Karakoç E.

Perwitasari DA, Prasasti D, Supadmi W, Jaikishin SAD, Wiraagni IA.

Senthilkumaran S, Karthikeyan N, Menezes RG, Thirumalaikolundusubramanian P.

Rotenone
Martinez EM, Young AL, Patankar YR, Berwin BL, Wang L, von Herrmann KM, Weier JM, Havrda MC.
Nlrp3 is required for inflammatory changes and nigral cell loss resulting from chronic intragastric rotenone exposure in mice. Toxicol Sci 2017; 159: 64-75.

Thallium
Senthilkumaran S, Balamurugan N, Jena NN, Menezes RG, Thirumalaikolundusubramanian P.

CHEMICAL WARFARE, BIOLOGICAL WARFARE AND RIOT CONTROL AGENTS

Chemical warfare

Mustard gas
Schmidt A, Steinritz D, Rothmiller S, Thiermann H, Scherer AM.
Effects of sulfur mustard on mesenchymal stem cells. Toxicol Lett 2017; online early: doi: 10.1016/j.toxlet.2017.08.008:

Nerve agents
Candiotti K.
A primer on nerve agents: what the emergency responder, anesthesiologist, and intensivist needs to know. Can J Anaesth 2017; online early: doi: 10.1007/s12630-017-0920-2:

Egoz I, Nili U, Grauer E, Gore A.

Soman
Dalton C, Hall C, Lydon H, Jenner J, Chipman JK, Graham JS, Chilcott RP.

PLANTS

Areca catechu (Betel nut)
Osborne PG, Ko Y-C, Wu M-T, Lee C-H.

Glycyrrhiza glabra (Liquorice)
Naziari S, Rameshrad M, Hosseinzadeh H.

Litchi chinensis (Lychee)
Desingu PA.

Mushrooms
Sun J, Li H-J, Zhang H-S, Zhang Y, Xie J-W, Ma P-B, Guo C, Sun CY.

ANIMALS

Fish/marine poisoning

Ciguatera

Palytoxin
Murphy LT, Charlton NP.
Scombroid
Yu Y, Wang P, Bian L, Hong S.
Rare death via histamine poisoning following crab consumption: a case report.

Scorpions
Value of troponin levels in the diagnosis of cardiac dysfunction in moderate scorpion envenomation.
Hum Exp Toxicol 2017; online early: doi: 10.1177/0960327117722822:

Snake bites
Johnston CI, Ryan NM, Page CB, Buckley NA, Brown SGA, O’Leary MA, Isbister GK.

Mailhol C, Delcourt N, Apoil P-A, Didier A, Franchitto N.
Are changes necessary in the medical management of a patient with snakebite regarding the incidence of hypersensitivity reaction to antivenom polyvalent immune fab?
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1364700:

Shahmy S, Kularatne SAM, Rathnayake SS, Dawson AH.
A prospective cohort study of the effectiveness of the primary hospital management of all snakebites in Kurunegala district of Sri Lanka.

Crotalinae
Saviola AJ, Gandara AJ, Bryson RW, Jr., Mackessy SP.
Venom phenotypes of the Rock Rattlesnake (Crotalus lepidus) and the Ridged-Nosed Rattlesnake (Crotalus willardi) from Mexico and the United States.
Toxicon 2017; online early: doi: 10.1016/j.toxicon.2017.08.016:

Silva de Oliveira S, Freitas-de-Sousa LA, Alves EC, de Lima Ferreira LC, da Silva IM, de Lacerda MVG, Fan HW, Moura-Silva AM, Monteiro WM.
Fatal stroke after Bothrops snakebite in the Amazonas state, Brazil: a case report.
Toxicon 2017; 138: 102-6.

Elapidae
Naja atra snakebite in Taiwan.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1366502:

Viperinae
Differential procoagulant effects of saw-scaled viper (Serpentes: Viperidae: Echis) snake venoms on human plasma and the narrow taxonomic ranges of antivenom efficacies.
Toxicol Lett 2017; 280: 159-70.

INDEX

3-meo-PCP ... 17
ACE inhibitors .. 17
Acetaminophen .. 23
Acetlycysteine ... 15
Air pollution ... 25
Alcohol .. 25
Aluminium phosphide ... 29
Amfetamines ... 17
Aminoglycoside antibiotics .. 17
Amiodarone ... 18
Amphotypline ... 25
Amlodipine ... 19
Anaesthetics ... 17
Analgesics ... 17
Analytical toxicity .. 9
Animals, general .. 30
Antibacterial drugs .. 18
Anticholinergic drugs .. 18
Anticoagulants .. 18
Anticonvulsants ... 18
Antidiabetic drugs .. 18
Antidotes ... 15
Antihistamines ... 18
Antipsychotics ... 18
Antitubercular drugs .. 18
Antivenom ... 15
Antiviral drugs .. 18
Areca catechu ... 30
Arsenic ... 28
Auramine-o ... 25

Azathioprine ... 20
Baclofen ... 18
Batteries ... 26
Benperidol ... 18
Benzenophene-3l .. 26
Betel nut .. 30
Biological warfare ... 30
Brodifacoum .. 30
Buprenorphine ... 16
Butane ... 26
Caffeine ... 18
Calcium channel blockers .. 19
Cannabis ... 19
Carbamazepine .. 18
Carbon monoxide ... 26
Carfentanyl ... 25
Chemical incidents .. 25
Chemical warfare, general .. 25
Chemicals, general ... 25
Ciguatera ... 30
Cocaine ... 19
Codine ... 23
Contrast media ... 26
Corrosives ... 26
Cosmetics ... 26
Crotalinae ... 31
Cyanide ... 26
Cyclophosphamide .. 20

Biological warfare .. 30
Contrast media ... 26
Chemical incidents .. 25
Chemical warfare, general .. 25
Chemicals, general ... 25
Ciguatera ... 30
Cocaine ... 19
Codine ... 23
Contrast media ... 26
Corrosives ... 26
Cosmetics ... 26
Crotalinae ... 31
Cyanide ... 26
Cyclophosphamide .. 20
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deferasirox</td>
<td>15</td>
</tr>
<tr>
<td>Dermal toxicity</td>
<td>10</td>
</tr>
<tr>
<td>Developmental toxicity</td>
<td>10</td>
</tr>
<tr>
<td>Dextromethorphan</td>
<td>19</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>20</td>
</tr>
<tr>
<td>Diazepam</td>
<td>16</td>
</tr>
<tr>
<td>Dietary supplements</td>
<td>19</td>
</tr>
<tr>
<td>Digoxin</td>
<td>20</td>
</tr>
<tr>
<td>Driving under the influence</td>
<td>10</td>
</tr>
<tr>
<td>Drugs, general</td>
<td>19</td>
</tr>
<tr>
<td>E-cigarettes and e-liquids</td>
<td>26</td>
</tr>
<tr>
<td>Ecstasy</td>
<td>17</td>
</tr>
<tr>
<td>Elapidae</td>
<td>31</td>
</tr>
<tr>
<td>Endosulfan</td>
<td>29</td>
</tr>
<tr>
<td>Enoxaparin</td>
<td>18</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>10</td>
</tr>
<tr>
<td>Escitalopram</td>
<td>24</td>
</tr>
<tr>
<td>Essential oils</td>
<td>27</td>
</tr>
<tr>
<td>Ethanol</td>
<td>25</td>
</tr>
<tr>
<td>Ethnic remedies</td>
<td>19</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>27</td>
</tr>
<tr>
<td>Extracorporeal membrane oxygenation</td>
<td>16</td>
</tr>
<tr>
<td>Extracorporeal treatments</td>
<td>16</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>23</td>
</tr>
<tr>
<td>Fipronil</td>
<td>29</td>
</tr>
<tr>
<td>Fish/marine poisoning</td>
<td>30</td>
</tr>
<tr>
<td>Flame retardants</td>
<td>18</td>
</tr>
<tr>
<td>Flecainide</td>
<td>19</td>
</tr>
<tr>
<td>Forensic toxicology</td>
<td>11</td>
</tr>
<tr>
<td>Formic acid</td>
<td>27</td>
</tr>
<tr>
<td>Fragrance chemicals</td>
<td>27</td>
</tr>
<tr>
<td>Gamma hydroxybutyrate</td>
<td>19</td>
</tr>
<tr>
<td>Gasoline</td>
<td>27</td>
</tr>
<tr>
<td>Gastrointestinal decontamination</td>
<td>16</td>
</tr>
<tr>
<td>Glycerinhia glabra</td>
<td>30</td>
</tr>
<tr>
<td>Glycophosphate</td>
<td>29</td>
</tr>
<tr>
<td>Haemodialysis</td>
<td>16</td>
</tr>
<tr>
<td>Hallucinogenic drugs</td>
<td>19</td>
</tr>
<tr>
<td>Hepatotoxicity</td>
<td>11</td>
</tr>
<tr>
<td>Herbal medicines</td>
<td>19</td>
</tr>
<tr>
<td>Heroin</td>
<td>20</td>
</tr>
<tr>
<td>Hydrocarbons</td>
<td>27</td>
</tr>
<tr>
<td>Hydrogen sulphide</td>
<td>27</td>
</tr>
<tr>
<td>Hydroxocobalamin</td>
<td>15</td>
</tr>
<tr>
<td>Hydroxylamine</td>
<td>18</td>
</tr>
<tr>
<td>Hyperbaric oxygen therapy</td>
<td>15</td>
</tr>
<tr>
<td>Immunosuppressants</td>
<td>20</td>
</tr>
<tr>
<td>Inhalation toxicity</td>
<td>11</td>
</tr>
<tr>
<td>Iron</td>
<td>20, 28</td>
</tr>
<tr>
<td>Ketamine</td>
<td>20</td>
</tr>
<tr>
<td>Kinetics</td>
<td>12</td>
</tr>
<tr>
<td>Lamotrigine</td>
<td>18</td>
</tr>
<tr>
<td>Lead</td>
<td>28</td>
</tr>
<tr>
<td>Levamisole</td>
<td>20</td>
</tr>
<tr>
<td>Levethyraxone</td>
<td>20</td>
</tr>
<tr>
<td>Linuron</td>
<td>29</td>
</tr>
<tr>
<td>Lipid emulsion therapy</td>
<td>15</td>
</tr>
<tr>
<td>Liquorice</td>
<td>30</td>
</tr>
<tr>
<td>Litchi chinesis</td>
<td>30</td>
</tr>
<tr>
<td>Lithium</td>
<td>20, 28</td>
</tr>
<tr>
<td>Loperamide</td>
<td>20</td>
</tr>
<tr>
<td>Lychee</td>
<td>30</td>
</tr>
<tr>
<td>Management, general</td>
<td>14</td>
</tr>
<tr>
<td>Manganese</td>
<td>29</td>
</tr>
<tr>
<td>Marijuana</td>
<td>19</td>
</tr>
<tr>
<td>MDMA</td>
<td>17</td>
</tr>
<tr>
<td>Medication errors</td>
<td>12</td>
</tr>
<tr>
<td>Mercury</td>
<td>29</td>
</tr>
<tr>
<td>Metabolism</td>
<td>12</td>
</tr>
<tr>
<td>Metals, general</td>
<td>28</td>
</tr>
<tr>
<td>Methadone</td>
<td>16</td>
</tr>
<tr>
<td>Methanol</td>
<td>27</td>
</tr>
<tr>
<td>Methylenediphosphate</td>
<td>21</td>
</tr>
<tr>
<td>Mushrooms</td>
<td>30</td>
</tr>
<tr>
<td>Mustard gas</td>
<td>30</td>
</tr>
<tr>
<td>Naloxone</td>
<td>15</td>
</tr>
<tr>
<td>Nephrotoxicity</td>
<td>12</td>
</tr>
<tr>
<td>Nerve agents</td>
<td>30</td>
</tr>
<tr>
<td>Neurotoxicity</td>
<td>12</td>
</tr>
<tr>
<td>Nickel</td>
<td>29</td>
</tr>
<tr>
<td>Nicotine</td>
<td>21</td>
</tr>
<tr>
<td>Novel psychoactive substances</td>
<td>21</td>
</tr>
<tr>
<td>Occupational toxicology</td>
<td>13</td>
</tr>
<tr>
<td>Ocular toxicity</td>
<td>13</td>
</tr>
<tr>
<td>Opioid maintenance therapy</td>
<td>16</td>
</tr>
<tr>
<td>Opioids</td>
<td>22</td>
</tr>
<tr>
<td>Opium</td>
<td>23</td>
</tr>
<tr>
<td>Organochlorine pesticides, general</td>
<td>29</td>
</tr>
<tr>
<td>Organophosphorus insecticides, general</td>
<td>30</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>16, 23</td>
</tr>
<tr>
<td>Paediatric toxicology</td>
<td>13</td>
</tr>
<tr>
<td>Paliperidone</td>
<td>23</td>
</tr>
<tr>
<td>Paltoxicity</td>
<td>14</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>23</td>
</tr>
<tr>
<td>Pesticides and cancer</td>
<td>29</td>
</tr>
<tr>
<td>Pesticides, general</td>
<td>29</td>
</tr>
<tr>
<td>Petrol</td>
<td>27</td>
</tr>
<tr>
<td>Phenethylamines</td>
<td>21</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>18</td>
</tr>
<tr>
<td>Plants, general</td>
<td>19</td>
</tr>
<tr>
<td>Polyoxyethylenon non/phenol</td>
<td>27</td>
</tr>
<tr>
<td>Propylene glycol</td>
<td>27</td>
</tr>
<tr>
<td>Psychiatric aspects</td>
<td>14</td>
</tr>
<tr>
<td>Psychocaoxic drugs</td>
<td>23</td>
</tr>
<tr>
<td>Quaternary ammonium compounds</td>
<td>27</td>
</tr>
<tr>
<td>Quinoline</td>
<td>24</td>
</tr>
<tr>
<td>Reprotoxicity</td>
<td>14</td>
</tr>
<tr>
<td>Rizatriptan</td>
<td>24</td>
</tr>
<tr>
<td>Rodenticides</td>
<td>30</td>
</tr>
<tr>
<td>Scambroid</td>
<td>31</td>
</tr>
<tr>
<td>Scorpions</td>
<td>31</td>
</tr>
<tr>
<td>Snake bites</td>
<td>31</td>
</tr>
<tr>
<td>Soman</td>
<td>30</td>
</tr>
<tr>
<td>SSRIs and SNRIs</td>
<td>24</td>
</tr>
<tr>
<td>Substance abuse</td>
<td>24</td>
</tr>
<tr>
<td>Sucralose</td>
<td>27</td>
</tr>
<tr>
<td>Suicide</td>
<td>14</td>
</tr>
<tr>
<td>Sulphonylurea</td>
<td>18</td>
</tr>
<tr>
<td>Synthetic cannabinoids</td>
<td>21</td>
</tr>
<tr>
<td>Synthetic opioids</td>
<td>21</td>
</tr>
<tr>
<td>Thallium</td>
<td>29, 30</td>
</tr>
<tr>
<td>Tobacco</td>
<td>27</td>
</tr>
<tr>
<td>Toxicology, general</td>
<td>9</td>
</tr>
<tr>
<td>Tramadol</td>
<td>23</td>
</tr>
<tr>
<td>Trazodone</td>
<td>25</td>
</tr>
<tr>
<td>Tricyclic antidepressants</td>
<td>20</td>
</tr>
<tr>
<td>Valacyclol</td>
<td>18</td>
</tr>
<tr>
<td>Venlafaxine</td>
<td>24</td>
</tr>
<tr>
<td>Veterinary products</td>
<td>25</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>25</td>
</tr>
<tr>
<td>Water pollution</td>
<td>25</td>
</tr>
</tbody>
</table>