The interpretation of hair analysis for drugs and drug metabolites

Introduction
Head hair analysis for drugs and drug metabolites has been used widely with the aim of detecting exposure in the weeks or months prior to sample collection. However, inappropriate interpretation of results has likely led to serious miscarriages of justice, especially in child custody cases.

Objective
The aim of this review is to assess critically what can, and perhaps more importantly, what cannot be claimed as regards the interpretation of hair test results in a given set of circumstances in order to inform future testing.

Methods
We searched the PubMed database for papers published 2010-2016 using the terms "hair" and "drug" and "decontamination", the terms "hair" and "drug" and "contamination", the terms "hair" and "drug-facilitated crime", the terms "hair" and "ethyl glucuronide", and the
terms "hair", "drug testing" and "analysis". Study of the reference lists of the 46 relevant papers identified 25 further relevant citations, giving a total of 71 citations.

Hair samples

Drugs, drug metabolites and/or decomposition products may arise not only from deliberate drug administration, but also via deposition from a contaminated atmosphere if drug(s) have been smoked or otherwise vaporized in a confined area, transfer from contaminated surfaces via food/fingers, etc., and transfer from sweat and other secretions after a single large exposure, which could include anesthetics. Excretion in sweat of endogenous analytes such as gamma-hydroxybutyric acid is a potential confounder if its use is to be investigated. Cosmetic procedures such as bleaching or heat treatment of hair may remove analytes prior to sample collection. Hair color and texture, the area of the head the sample is taken from, the growth rate of individual hairs, and how the sample has been stored, may also affect the interpretation of results.

Toxicological analysis

Immunological results alone do not provide reliable evidence on which to base judicial decisions. Gas or liquid chromatography with mass spectrometric detection (GC- or LC-MS), if used with due caution, can give accurate analyte identification and high sensitivity, but many problems remain. Firstly, it is not possible to prepare assay calibrators or quality control material except by soaking "blank" hair in solutions of appropriate analytes, drying, and then subjecting the dried material to an analysis. The fact that solvents can be used to add analytes to hair points to the fact that analytes can arrive not only on, but also in hair from exogenous sources. A range of solvent-washing procedures have been advocated to "decontaminate" hair by removing adsorbed analytes, but these carry the risk of transporting adsorbed analytes into the medulla of the hair thereby confounding the whole procedure. This is especially true if segmental analysis is being undertaken in order to provide a "time course" of drug exposure.

Proposed clinical applications of hair analysis

There have been a number of reports where drugs seemingly administered during the perpetration of a crime have been detected in head hair. However, detailed evaluation of these reports is difficult without full understanding of the possible effects of any "decontamination" procedures used and of other variables such as hair color or cosmetic hair treatment. Similarly, in child custody cases and where the aim is to demonstrate abstinence from drug or alcohol use, the issues of possible exogenous sources of analyte, and of the large variations in analyte concentrations reported in known users, continue to confound the interpretation of results in individual cases.

Conclusions

Interpretation of results of head hair analysis must take into account all the available circumstantial and other evidence especially as regards the methodology employed and the possibility of surface contamination of the hair prior to collection.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1379603

Acute lamotrigine overdose: a systematic review of published adult and pediatric cases

Context

Lamotrigine is a broad-spectrum anticonvulsant commonly used to treat seizure and bipolar mood disorders. Evidence from case series and retrospective studies indicate that
lamotrigine overdose is usually benign. However, there are reported cases of cardiac arrest and mortality following lamotrigine overdose. We undertook a systematic review of the literature on lamotrigine overdoses to better understand the clinical severity, the relevance of serum concentrations, and therapeutic interventions for overdose.

Objectives

To characterize manifestations of acute lamotrigine overdose, determine if serum concentrations predict poisoning severity, and evaluate the effectiveness of overdose management interventions.

Methods

We performed a literature search across eight databases, including Medline, EMBASE, and the Cochrane Library, from database inception to April 2014. Major bibliographic databases were updated on 31 May 2017. Articles were eligible if they described acute or acute on chronic lamotrigine overdose. At least one serum lamotrigine concentration had to be reported for inclusion. Reports on chronic poisoning, studies describing adverse effects of therapeutic use, and animal studies were excluded.

Results

We retrieved 6238 records; 48 (51 cases) met the inclusion criteria. Cases primarily involved adults (70.6%). Potentially life-threatening symptoms of overdose included seizures (55%), Glasgow Coma Scale ≤8 (20%), hypotension (12%), and wide complex tachycardia (WCT) and cardiac arrest (6%). Among the 25 cases exposed to lamotrigine alone (13 adult; 12 pediatric), 2 adult fatalities occurred (4 g and 7.5 g ingested) and 8 pediatric cases experienced seizures (all children ≤3.5-years-old, 75% without an underlying seizure disorder, ≥525 mg ingested). The lowest seizure-associated serum concentration was 3.8 mg/L and 25.6 mg/L for pediatric and adult patients, respectively, suggesting children may be more susceptible to CNS toxicity. Cardiovascular toxicities occurred primarily in adult patients (threshold >25 mg/L). Overdose interventions included benzodiazepines (53%), propofol or barbiturates (14%), NaHCO₃ (20%), lipid therapy (12%), and extracorporeal elimination (10%). NaHCO₃ yielded no response in four of nine cases with conduction delays; however, two of the four cases subsequently responded with lipid therapy.

Conclusions

Most cases reporting lamotrigine exposures observed mild or no toxicity; however, large exposures were associated with severe CNS depression, seizures, cardiac conduction delays, wide complex tachycardia, and death. In adults with a serum concentration >25 mg/L, severe toxicity may occur. In patients ≤3.5 years of age, ingestions of ≥525 mg may produce severe CNS depression and seizures.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1370096

Comparison of low dose and standard dose abdominal CT scan in body stuffers

Purpose

Detection of body stuffers is challenging in emergency departments. Because of the small size of baggies, plain radiograph is of little value in most suspects. On the other hand, abdomen CT scan is burdened by high cost and radiation dose. This study was performed to compare the image quality, radiation dose and accuracy of low-dose CT scan in comparison with standard dose.
Material and methods
In this prospective study, suspected body stuffers who were referred to the radiology department underwent two different protocols of abdominal non-contrast CT scan simultaneously: low-dose (with equivalent dose to conventional abdominal x-ray) and standard dose. Standard dose CT scan was considered as the reference. Low-dose CT scans were evaluated for detection of baggies by two radiologists blinded to the result of standard dose CT. Image quality, noise, dose-length product (DLP) and effective dose (ED) compared between two groups.

Results
The study consisted of 40 patients (33.38 ± 7.4 years). Standard dose CT evaluation was positive in 22 patients (55%). In comparison with standard dose CT scan, low-dose group had a sensitivity of 86%, specificity of 100%, PPV and NPV of 100% and 86%. The accuracy of low-dose CT scan for detection of baggies larger than 1 cm was 100%. However, from the 3 cases that could not be detected with low dose protocol, one had CT features suspected for baggies rupture which was intubated and later deceased. Noise average of low-dose protocol, was approximately 7 times greater than standard dose group, while DLP and ED were 9.7 times less.

Conclusion
Low dose CT scan appears to be an appropriate screening method for body stuffers, especially when the baggies are larger than one centimeter. However, in the presence of severe clinical symptoms, a standard dose CT scan will be more helpful due to better image quality especially in suspected ruptured baggies.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1377220

Suicidal bupropion ingestions in adolescents: increased morbidity compared with other antidepressants

Objective
Bupropion is often categorized as a newer generation antidepressant and assessed with serotonin reuptake inhibitors as a lower risk than older tricyclic antidepressants (TCAs). The objective of this study was to compare outcomes in adolescent suicide from ingestions between bupropion and TCA medications.

Study design
An analysis of the National Poison Data System for exposures coded "suspected suicide" in adolescents (age: 13–19) was undertaken for the years 2013–2016 and included TCAs or bupropion. We compared clinical effects, therapies and medical outcomes.

Results
Over the four-year period there were 2253 bupropion and 1496 TCA adolescent suspected suicide calls. There was a significant linear increase in bupropion ingestions over the four years. Across all years, there were on average 189.2 (95% CI: 58.1–320.4; p = .01) more ingestions of bupropion than TCA. When comparing bupropion to a TCA, ingestions of bupropion were significantly more likely to be accompanied by seizure (30.7% vs 3.9%; p < .01), to be admitted (74.8% vs 61.6%; p < .01) and medical outcomes to be coded as a major outcome (19.3% vs 10.0%; p < .01). The number of cases with death or major clinical outcome for both increased over the four-year period. Ingestions of bupropion were less likely to have hypotension (2.7% vs 8.0%; p < .01) and less likely to be intubated (5.6% vs 16.4%; p < .01) as compared to ingestions of TCA.
Conclusions
Adolescents who overdose on a single medication in a suicide attempt with bupropion have a statistically significant higher incidence of major outcomes and seizures. The risks of bupropion as a potential means of suicidal gesture by overdose must be considered, and weighed against its benefits and side effect profile when choosing an appropriate agent for the treatment of depression in adolescents.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1377839

DMTS is an effective treatment in both inhalation and injection models for cyanide poisoning using unanesthetized mice

Context
Cyanide (CN) is a metabolic poison, halting ATP synthesis by inhibiting complex IV of the electron transport chain. If exposed at high enough concentrations, humans and most animals can die within minutes. Because time is a crucial factor in survival of CN poisoning, a rapidly bioavailable, nontoxic, easy to administer CN medical countermeasure could improve morbidity/mortality in a mass CN exposure scenario. The most likely route of exposure to CN is via inhalation.

Objective
This study examined the efficacy of a new formulation for dimethyl trisulfide (DMTS), a countermeasure which has shown promise as a treatment for CN poisoning, using both inhalation and injection models of CN exposure.

Methods
We developed a model of acute CN inhalation intoxication, using the highly toxic agent system from CH Technologies for nose-only exposure. Both continuous and discontinuous HCN exposure paradigms were implemented. For comparison, we also utilized a potassium cyanide (KCN) injection model. In all experiments, DMTS was administered as a cyanide countermeasure via intramuscular injection in unanesthetized mice.

Results
We found DMTS administration to be highly protective against both subcutaneous KCN and HCN inhalation toxicity. In the KCN injection model, DMTS afforded protection against 3.73 times the LD50 dose of KCN. In our HCN inhalation exposure model, mice challenged with LC50 HCN doses for the duration of either 10- or 40-minute exposure paradigms demonstrated improved survival in the presence of DMTS treatment (87.5% and 90.0% survival, respectively). Animals in the DMTS treatment groups of both lethal exposure models similarly exhibited improvement in observed toxic signs.

Conclusion
We show that a newly developed formulation of DMTS is efficacious within two lethal CN exposure mouse models (inhalation and injection) and is highly effective by intramuscular injection. Within these HCN studies, we demonstrate efficacy of DMTS in both continuous and discontinuous inhalation exposure models.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1376749
Synthetic cannabinoid "Black Mamba" infidelity in patients presenting for emergency stabilization in Colorado: a P SCAN Cohort

Background
Use of new psychoactive substances (NPS) has increased over the last decade. During this period, variability of both clinical presentations and chemical compositions of these compounds has increased. Synthetic cannabinoids (SCs) are the most commonly used NPS and there are more than 100 documented unique molecules in this class. "Black Mamba", often associated to ADB-FUBINACA, is the most commonly used SC in Colorado. It has been linked to kidney injury, myocardial toxicity, seizures, and death.

Objectives
We aim to identify the chemical constituents and quantification of eight cases of reported "Black Mamba" use in order to further understand the clinical variability in patients presenting for emergency stabilization.

Methods
We report data from eight cases of reported "Black Mamba" use prospectively captured through the Colorado site of the Psychoactive Surveilance Consortium and Analysis Network (P SCAN). P SCAN is a geographically representative group of academic hospitals that capture clinical presentation, outcome, and biologic samples from patients that present for emergency stabilization following NPS use. Serum and urine samples were analyzed and quantified by liquid chromatography-quadrupole time-of-flight mass spectrometry after a qualitative screen for over 600 unique NPS compounds.

Results
In the reported eight cases, the median age was 28 years old. There were four male and four females. Four patients had agitation/delirium and four patients had chest pain. Normal saline, benzodiazepines and ondansetron were the common treatment provided in the emergency department (ED). Two patients were discharged from the ED and six patients being admitted for emergency observation with a median length of stay (LOS) of six hours. No deaths were reported. Confirmatory testing revealed that only five patients (62.5%) had SCs found in blood or urine samples. Cocaine, NRG-3, 3-methoxyphencyclidine hydrochloride (MeO-PCP), and methamfetamine were identified in other presentations.

Conclusions
The wide range of clinical presentations from "Black Mamba" use may be explained by the wide variability of chemical constituents found by laboratory analysis.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1357826

Intoxications in the STRIDa project involving a panorama of psychostimulant pyrovalerone derivatives, MDPV copycats

Context
An increasing number of new psychoactive substances (NPS) of different chemical classes have become available through marketing and sale over the Internet. This report from the Swedish STRIDa project presents the prevalence, laboratory results, and clinical features in intoxications involving 11 stimulant pyrovalerone NPS derivatives over a 5-year period.
Study design
Case series of consecutive patients with admitted or suspected intake of NPS presenting to Swedish hospitals for emergency treatment from January 2011 to March 2016.

Patients and method
Blood and urine samples were collected from intoxicated patients presenting to hospitals all over Sweden. Analyses of NPS and other drugs of abuse were performed by immunochemical and liquid chromatography-mass spectrometry multi-component methods. Clinical data were collected during consultation with the Swedish Poisons Information Centre (PIC), and retrieved from medical records. The study involved analytically confirmed cases with 11 pyrovalerone drugs.

Results
During the study period, 114 intoxications were detected that involved any of 11 new pyrovalerone drugs. In addition to these new pyrovalerone derivatives, 3,4-methylenedioxy pyrovalerone (MDPV) was detected in 17 of the cases and alpha-pyrrolidinovalerophenone (α-PVP) in 45 cases. Identification was made according to forensic standards and comprised the following substances: 4F-α-PVP, α-PHP, PV8, 4Me-PPP, α-PBP, 4F-PV8, α-PPP, MDPHP, α-PVT, 4Cl-α-PVP, and 4F-α-PHP. The three most frequently detected drugs were α-PBP, MDPHP, and 4F-α-PVP. The age range of patients was 16–66 (median 30) years and 84% were males. The substance concentrations in urine and serum were highly variable, ranging from 1 ng/mL to 300 µg/mL. Poly-drug use was common with only 8 of 114 cases (7%) involving one pyrovalerone drug. The additional substances comprised other NPS and classical psychoactive drugs. The patients showed a variety of clinical signs; agitation, delirium, hallucinations, excessive motor activity, seizures, tachycardia, hypertension, and/or hyperthermia.

Conclusions
In analytically confirmed NPS-related intoxications, 11 new pyrovalerone derivatives in addition to MDPV and α-PVP were found. The clinical features were consistent with a sympathomimetic toxidrome, but the urine and serum concentrations were highly variable. The results demonstrated that many novel pyrovalerone stimulants were introduced on the recreational NPS drugs market. Analytical investigations were necessary to obtain this information.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1370097

Clinical predictors of tissue necrosis following rattlesnake envenomation

Background
Rattlesnake envenomation (RSE) causes edema, hemotoxicity and tissue necrosis. Necrosis may result in permanent disability.

Objective
To study patient-related factors associated with tissue necrosis after Crotalus envenomation.

Methods
Prospective cohort study of patients admitted to the Medical Toxicology service with diagnosis of RSE between April 2011 and November 2014. Inclusion criteria were age ≥18 years and upper extremity (UE) envenomation site. Primary outcome was tissue necrosis, including dermonecrosis, manifesting as bullae. Secondary outcome was amputation.
Results

77 subjects, age 18 to 88 years, met inclusion criteria. Rattlesnake species was unknown in most cases. All received Fab antivenom. 62 (82%) had a digital envenomation. 31 (40.3%) had necrosis. Necrotic area ranged from 0.1 cm\(^2\) to 14 cm\(^2\). Procedural interventions, (superficial debridement, dermotomy, surgical exploration, and operative debridement of devitalized tissue) occurred in 25 (32.5%). Five (6.5%) underwent dermotomy and 6 (7.8%) operative debridement. No amputations were performed. Patients with cyanosis on presentation had increased risk of developing necrosis (11/12; RR 2.98 95% CI 1.99–4.46). Ecchymosis on presentation was also associated with increased risk of necrosis (24/32; RR 4.04 95% CI 2.08–7.86). Patients with social or regular ethanol use were more likely to develop necrosis than those without (28/53; RR 4.23 95% CI 1.42–12.6). Regular cocaine use was associated with increased risk of operative debridement (4/6; RR 9.13 95% CI 2.33–35.8). A nonsignificant risk of operative debridement occurred with tobacco use (RR 1.14 95% CI 0.99–1.31 \(p = 0.09\)). Time to antivenom did not correlate with risk of necrosis.

Conclusion

UE RSE patients who presented with cyanosis, ecchymosis or history of ethanol use were at increased risk of developing necrosis. Cocaine use was associated with increased risk of operative debridement.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1371311

Carbon monoxide poisoning from waterpipe smoking: a retrospective cohort study

Objective

Waterpipe smoking may increasingly account for unintentional carbon monoxide poisoning, a serious health hazard with high morbidity and mortality. We aimed at identifying waterpipe smoking as a cause for carbon monoxide poisoning in a large critical care database of a specialty care referral center.

Methods

This retrospective cohort study included patients with a history of exposure to waterpipe smoking and carbon monoxide blood gas levels >10% or presence of clinical symptoms compatible with CO poisoning admitted between January 2013 and December 2016. Patients' initial symptoms and carbon monoxide blood levels were retrieved from records and neurologic status was assessed before and after hyperbaric oxygen treatment.

Results

Sixty-one subjects with carbon monoxide poisoning were included [41 males, 20 females; mean age 23 (SD ± 6) years; range 13–45] with an initial mean carboxyhemoglobin of 26.93% (SD ± 9.72). Most common symptoms included syncope, dizziness, headache, and nausea; 75% had temporary syncope. Symptoms were not closely associated with blood COHb levels.

Conclusion

CO poisoning after waterpipe smoking may present in young adults with a wide variability of symptoms from none to unconsciousness. Therefore diagnosis should be suspected even in the absence of symptoms.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1375115
Metal-on-metal hip joint prostheses: a retrospective case series investigating the association of systemic toxicity with serum cobalt and chromium concentrations
Abstract and full text available from: http://dx.doi.org/10.1007/s13181-017-0629-1

Overdoses with aripiprazole: signs, symptoms and outcomes in 239 exposures reported to the Danish Poison Information Center
Abstract and full text available from: http://dx.doi.org/10.1111/bcpt.12902

Extracorporeal life support and digoxin-specific Fab fragments for successful management of Taxus baccata intoxication with low output and ventricular arrhythmia
Abstract and full text available from: http://dx.doi.org/10.1016/j.ajem.2017.09.031

Post-mortem findings in 22 fatal Taxus baccata intoxications and a possible solution to its detection
Abstract and full text available from: http://dx.doi.org/10.1016/j.jflm.2017.08.016

Reversal of dabigatran-associated bleeding using idarucizumab: review of the current evidence
Abstract and full text available from: http://dx.doi.org/10.1007/s11239-017-1555-4

Detection of tetrodotoxin shellfish poisoning (TSP) toxins and causative factors in bivalve molluscs from the UK
Epidemiologic features and outcomes of caustic ingestions; a 10-year cross-sectional study

TOXICOLOGY
Analytical toxicology
Boumba VA, Di Rago M, Peka M, Drummer OH, Gerostamoulos D.
The analysis of 132 novel psychoactive substances in human hair using a single step extraction by tandem LC/MS.

Caspar AT, Kollas AB, Maurer HH, Meyer MR.
Development of a quantitative approach in blood plasma for low-dosed hallucinogens and opioids using LC-high resolution mass spectrometry.
Talanta 2018; 176: 635-45.

Cuypers E, Flanagan RJ.
The interpretation of hair analysis for drugs and drug metabolites.
Clin Toxicol 2017; online early; doi: 10.1080/15563650.2017.1379603:
Henkel K, Altenburger MJ, Auwärter V, Neukamm MA.
Full validation of a method for the determination of drugs of abuse in non-mineralized dental biofilm using liquid chromatography-tandem mass spectrometry and application to postmortem samples.
Talanta 2018; 176: 360-6.

Lehmann S, Kiellå B, Beike J, Thevis M, Mercer-Chalmers-Bender K.
Determination of 74 new psychoactive substances in serum using automated in-line solid-phase extraction-liquid chromatography-tandem mass spectrometry.

Li S, Chen D.
Rapid determination of aconitum alkaloids from human urine by UHPLC-HRMS.

Maas A, Maier C, Iwersen-Bergmann S, Madea B, Hess C.
Simultaneous extraction of propofol and propofol glucuronide from hair followed by validated LC-MS/MS analyses.

Magalhães P, Alves G, Llerena A, Falcão A.
Therapeutic drug monitoring of fluoxetine, norfluoxetine and paroxetine: a new tool based on microextraction by packed sorbent coupled to liquid chromatography.

Murphy CM, Devlin JJ, Beuhler MC, Chieftetz P, Maynard S, Schwartz MD, Kacinko S.
Detection of ingested nitromethane and reliable creatinine assessment using multiple common analytical methods.
Clin Toxicol 2017; online early; doi: 10.1080/15563650.2017.1360497:
Sundström M, Pelander A, Ojanperä I.
Comparison of post-targeted and pre-targeted urine drug screening by UHPLC-HR-QTOFMS.

Teunissen SF, Fedick PW, Berensson BJA, Nielen MWF, Eberlin M, Cooks RG, van Asten AC.
Novel selectivity-based forensic toxicological validation of a paper spray mass spectrometry method for the quantitative determination of eight amphetamines in whole blood.
J Am Soc Mass Spectrom 2017; online early; doi: 10.1007/s13361-017-1790-0:
Wozniak MK, Wiergowski M, Aszyk J, Kubica P, Namiesnik J, Biziuk M.
Application of gas chromatography-tandem mass spectrometry for the determination of amphetamine-type stimulants in blood and urine.

Biomarkers
Multi-platform approach for the discovery of novel drug-induced kidney injury biomarkers.
Chem Res Toxicol 2017; online early; doi: 10.1021/acs.chemrestox.7b00159:
El Rahman HAA, Salama M, Gad El-Hak SA, El-Harouny MA, ElKefrawy P, Abou-Donia MB.
A panel of autoantibodies against neural proteins as peripheral biomarker for pesticide-induced neurotoxicity.
Neurotox Res 2017; online early; doi: 10.1007/s12640-017-9793-y:
The impact of repeated organophosphorus pesticide exposure on biomarkers and neurobehavioral outcomes among adolescent pesticide applicators.
J Toxicol Environ Health A 2017; online early; doi: 10.1080/15287394.2017.1362612:

Body packers
Comparison of low dose and standard dose abdominal CT scan in body stuffers.
Clin Toxicol 2017; online early; doi: 10.1080/15563650.2017.1377220:
Heymann-Maier L, Trueb L, Schmidt S, Carron P-N, Hugli O, Heymann E, Yersin B.
Emergency department management of body packers and body stuffers.
Swiss Med Wkly 2017; 147: w14499.

Visentin S, Bevilacqua G, Giraudo C, Dengo C, Nalessa A, Montisci M.
Death by heroin intoxication in a body eater with an innovative packaging technique: case report and review of the literature.

Cardiotoxicity
Abroug F, Ouanes I, Maatouk M, Golli M, Ouanes-Besbes L.
Inverted Takotsubo syndrome in Androctonus australis scorpion envenomation.
Clin Toxicol 2017; online early; doi: 10.1080/15563650.2017.1377221:
Anandhi D, Raju KP, Basha MH, Pandit VR.
Acute myocardial infarction in yellow oleander poisoning.
J Postgrad Med 2017; online early; doi: 10.4103/jpgm.JPGM_141_17:
Acute cardiotoxicity induced by doxorubicin in right ventricle is associated with increase of oxidative stress and apoptosis in rats.
Histol Histopathol 2017; online early; doi: 10.14670/HH-11-932:

Dermal toxicity

Developmental toxicology

Driving under the influence of alcohol and other drugs

Valen A, Bogstrand ST, Vindenes V, Gjerde H.

Epidemiology

Alipour Faz A, Arsan F, Peyvandi H, Oreo M, Shafagh O, Peyvandi M, Yousefi M.
Epidemiologic features and outcomes of caustic ingestions; a 10-year cross-sectional study.
Emerg (Tehran) 2017; 5: e56.

Epidemiology and clinics of mushroom poisoning in Northern Italy: a 21-year retrospective analysis.

Christensen AP, Boegevig S, Christensen MB, Petersen KM, Dalhoff KP, Petersen TS.
Overdoses with anirritipazole: signs, symptoms and outcomes in 239 exposures reported to the Danish Poison Information Center.

Daniulaityte R, Juhascik MP, Strayer KE, Szimore IE, Harshbarger KE, Antonides HM, Carlson RR.

Eigner G, Henriksen B, Huynh P, Murphy D, Brubaker C, Sanders J, McMahan D.
Who is overdosing? An updated picture of overdose deaths from 2008 to 2015.
Health Serv Res Manag Epidemiol 2017; 4: 233339281772424.

Eyasu M, Dida T, Worku Y, Worku S, Shafie M.

Gribble MO, Deshpande A, Stephan WB, Hunter CM, Weisman RS.

Heavey SC, Delmerico AM, Burstein G, Moore C, Wiecek WF, Collins RL, Chang Y, Homish GG.
Descriptive epidemiology for community-wide naloxone administration by police officers and firefighters responding to opioid overdose.

Koskela L, RaatниемlI N, Bakke HK, Ala-Kokko T, Lisanantti J.
Fatal poisonings in Northern Finland: causes, incidence, and rural-urban differences.

Genotoxicity

Hepatotoxicity

Metabolism

Nephrotoxicity

Sovann K.

Inhalation toxicity

Medication errors

Kinetics

Inhalation toxicity

Kinetics

Medication errors

Metabolism

Nephrotoxicity
Acute kidney injury due to fish gallbladder ingestion: a case report from Cambodia.

Sun X, Li J, Zhu W, Li D, Chen H, Li H, Chen W, Hua Q.
Response to the Letter to the Editor "N-acetylcysteine and contrast-induced nephropathy".

Acute renal failure due to organophosphate poisoning: a case report.
Cureus 2017; 9: e1523.

Neurotoxicity
Andrade VM, Aschner M, Marrellia Dos Santos AP.
Neurotoxicity of metal mixtures.

Blaker AL, Yamamoto BK.
Methamphetamine-induced brain injury and alcohol drinking.
J Neuroimmune Pharmacol 2017; online early: doi: 10.1007/s11481-017-9764-3:

Bulcke F, Dringen R, Scheiber IF.
Neurotoxicity of copper.

Cação G, Freitas J, Neves S, Camacho O, Damásio J.
Chorea in acute carbon monoxide intoxication.
Neurol Sci 2017; online early: doi: 10.1007/s10072-017-3124-1:

Chiu YM, Claus Henn B, Hsu HL, Pendo MA, Coull BA, Austin C, Cagnnà G, Fedirghi C, Placidi D, Smith DR, Wright RO, Lucchini RG, Arora M.
Sex differences in sensitivity to prenatal and early childhood manganese exposure on neuromotor function in adolescents.

El Rahman HAA, Salama M, Gad El-Hak SA, El-Harouy MA, ElKafrawy P, Abou-Donia MB.
A panel of autoantibodies against neural proteins as peripheral biomarker for pesticide-induced neurotoxicity.
Neurotox Res 2017; online early: doi: 10.1007/s12640-017-9793-y:

Farina M, Aschner M.
Methylmercury-induced neurotoxicity: focus on pro-oxidative events and related consequences.

Golime R, Palit M, Acharya J, Dubey DK.
Neuroprotective effects of galantamine on nerve agent-induced neuroglial and biochemical changes.
Neurotox Res 2017; online early: doi: 10.1007/s12640-017-9815-9:

Comparing the dopaminergic neurotoxic effects of benzylpyperazine and benzoylpyperazine.

Kumar A, Bhavsar C, Aggarwal P, Jamshed N.
Toxic brain injury with nitrobenzene poisoning.

Neurotoxicity of vanadium.

Osorio-Rico L, Santamaria A, Galván-Arzate S.
Thallium toxicity: general issues, neurological symptoms, and neurotoxic mechanisms.

Padula AM, Leister E.
Severe neurotoxicity requiring mechanical ventilation in a dog envenomed by a red-bellied black snake (Pseudechis porphyriacus) and successful treatment with an experimental bivalent whole equine IgG antivenom.
Toxicon 2017; 138: 159-64.

Park JT, Choi KH.
Polyneuropathy following acute fenitrothion poisoning.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1378354:

Ruszkiewicz JA, Pinkas A, Ferrer B, Peres TV, Tsatsakis A, Aschner M.
Neurotoxic effect of active ingredients in sunscreen products, a contemporary review.

Wang M, Yang Y, Hou Y, Ma W, Jia R, Chen J.
Effects of bromadiolone poisoning on the central nervous system.

Occupational toxicology
Chiu SK, Burton NC, Dunn KH, de Perio MA.
Respiratory and ocular symptoms among employees of an indoor waterpark resort — Ohio, 2016.

The impact of repeated organophosphorus pesticide exposure on biomarkers and neurobehavioral outcomes among adolescent pesticide applicators.

Linde SJL, Franken A, Du Plessis JL.
Occupational respiratory exposure to platinum group metals: a review and recommendations.
Chem Res Toxicol 2017; online early: doi: 10.1021/acs.chemrestox.7b00184:

Neurochemical and neurophysiological findings in workers with chronic 2,3,7,8-TCDD intoxication 50 years after exposure.
Basic Clin Pharmacol Toxicol 2017; online early: doi: 10.1111/bcpt.12899:

Identification of differential plasma miRNA profiles in Chinese workers with occupational lead exposure.
Biosci Rep 2017; online early: doi: 10.1042/BSR20171111:
Ocular toxicity
Ahn SJ, Ryu SJ, Joung JY, Lee BR.
Choroidal thinning associated with hydroxychloroquine retinopathy.
Am J Ophthalmol 2017; online early:
doi: 10.1016/j.ajo.2017.08.022:
Tse DY, Kim SJ, Chung J, He F, Wensel TG, Wu SM.
The ocular toxicity and pharmacokinetics of simvastatin following intravitreal injection in mice.

Paediatric toxicity
Alyahya B, Friesen M, Nauche B, Laiberté M.
Acute lamotrigine overdose: a systematic review of published adult and pediatric cases.
Clin Toxicol 2017; online early:
doi: 10.1080/15563650.2017.1370096:
Safety of systemic agents for the treatment of pediatric psoriasis.
JAMA Dermatol 2017; online early:
doi: 10.1001/jamadermatol.2017.3029:
Chiu YM, Claus Henn B, Hsu HL, Pendo MP, Coull BA, Austin C, Cagnag G, Fedrighi C, Placidi D, Smith DR, Wright RG, Lucchini RG, Arora M.
Sex differences in sensitivity to prenatal and early childhood manganese exposure on neuromotor function in adolescents.
Dayasiri MBKC, Jayamannage SF, Jayasinghe CY.
Risk factors for acute unintentional poisoning among children aged 1–5 years in the rural community of Sri Lanka.
Ellison MJ, Ricca RL, Gallagher TG.
Button battery ingestion in children.
Curr Opin Otolaryngol Head Neck Surg 2017; online early:
doi: 10.1097/MOO.0000000000000410:
Felter SP, Carr AN, Zhu T, Kirsch T, Niu G.
Safety evaluation for ingredients used in baby care products: consideration of diaper rash.
Garcia P, Haile J.
Gholami N, Alwasabi F, Farnaghi F.
Drug-induced apnea in children admitted to Loughman Hakim Hospital, Tehran, Iran.
Grossman MR, Berkowitz AK, Osborn RR.
Buprenorphine for the neonatal abstinence syndrome.
Isaacs D.
Deliberate salt poisoning.
Karmegaraj B, Menon D, Prabhu MA, Vaidyanathan B.
Flecainide toxicity in a preterm neonate with permanent junctional reciprocating tachycardia.
LaKind JS, Anthony LG, Goodman M.
Review of reviews on exposures to synthetic organic chemicals and children's neurodevelopment: methodological and interpretation challenges.
J Toxicol Environ Health B Crit Rev 2017; online early:
doi: 10.1080/10937404.2017.1370847:
Martin OV, Evans RM, Faust M, Kortenkamp A.
A human mixture risk assessment for neurodevelopmental toxicity associated with polybrominated diphenyl ethers used as flame retardants.
Environ Health Perspect 2017; 125: 087016.
Palamar JJ, Barratt MJ, Coney L, Martins SS.
Synthetic cannabinoid use among high school seniors.
Pediatrics 2017; 140: e20171330.
Panahandeh G, Khoshdel A, Heidarian E, Amiri M, Rahiminam H.
Blood lead levels in children of southwest Iran, aged 2–6 years and associated factors.
Exposure to lead and mercury through breastfeeding during the first month of life: a CHECK cohort study.
Pianca TG, Sordi AO, Hartmann TC, Diemen L.
Identification and initial management of intoxication by alcohol and other drugs in the pediatric emergency room.
J Pediatr (Rio J) 2017; online early:
doi: 10.1016/j.jped.2017.06.015:
Rakowsky S, Spiller HA, Casavant MJ, Chounthirath T, Hodges NL, Kim EH, Smith GA.
Clin Pediatr 2017; online early:
doi: 10.1177/0009922817698124:
Richards JR, Smith NE, Moulin AK.
Unintentional cannabis ingestion in children: a systematic review.
J Pediatr 2017; online early:
doi: 10.1016/j.jpeds.2017.07.005:
Schmidt RJ, Kogan V, Shelton JF, Delwiche L, Hansen RL, Ozonoff S, Ma CC, McCannlies EC, Bennett DH, Hertz-Picciotto I, Tancerdi DJ, Volk HE.
Combined prenatal pesticide exposure and folic acid intake in relation to autism spectrum disorder.
Environ Health Perspect 2017; 125: 097007.
Schnackenberg LK, Sun J, Bhattacharyya S, Gill P, James LP, Beger RD.
Metabolomics analysis of urine samples from children after acetaminophen overdose.
Metabolites 2017; 7: 46.
Szadkowski M, Drapkin Z, Heves H, Caravati EM, Plumb J.
A teenager with seizures and cardiac arrest after drug overdose: are we numb to the danger?

Poisons information and poison information centres

Psychiatric aspects

Reprotoxicity

Risk assessment

Suicide

MANAGEMENT

General

Pianca TG, Sordi AO, Hartmann TC, Diemen L. Identification and initial management of intoxication by alcohol and other drugs in the pediatric emergency room. J Pediatr (Rio J) 2017; online early: doi: 10.1016/j.jped.2017.06.015:
Rafati-Rahimzadeh M, Rafati Rahimzadeh M, Kazemi S, Moghadamnia AA.

Antidotes

Acetylcysteine

Antivenom

Padula AM, Leister E. Severe neurotoxicity requiring mechanical ventilation in a dog envenomed by a red-bellied black snake (Pseudechis porphyriacus) and successful treatment with an experimental bivalent whole equine IgG antivenom. Toxicon 2017; 138: 159-64.

Fab fragments

Hydroxocobalamin

Idarucizumab

Lipid emulsion therapy

Naloxone

Meade AM, Bird SM, Strang J, Pepple T, Nichols LL, Mascarenhas M, Choo L, Parmar MKB.
Methods for delivering the UK's multi-centre prison-based naloxone-on-release pilot randomised trial (N-ALIVE): Europe's largest prison-based randomised controlled trial.

Sodium bicarbonate

The role of sodium bicarbonate in the management of some toxic ingestions.

Sodium thiosulfate

Oral glycine and sodium thiosulfate for lethal cyanide ingestion.

Baclofen

Franchitto N, de Haro L, Pelissier F.
Focusing solely on the effect of the medication without taking a holistic view of the patient does not seem very constructive.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1373781:

Beta-blockers

Richards JR.
Beta-blockers and evidence-based guidelines for the pharmacological management of acute methamphetamine-related disorders and toxicity.
Pharmacopsychiatry 2017; online early: doi: 10.1055-s-0043-118413:

Butyrylcholinesterase

Terekhov SS, Palikov VA, Palikova YA, Dyachenko IA, Shamborant OG, Smirnov IV, Masson P, Gabibov AG.
Application of tetrameric recombinant human butyrylcholinesterase as a biopharmaceutical for amelioration of symptoms of acute organophosphate poisoning.

DMTS

DeLeon SM, Downey JD, Hildenberger DM, Rhoomes MO, Booker L, Rockwood GA, Basi KA.
DMTS is an effective treatment in both inhalation and injection models for cyanide poisoning using unanesthetized mice.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1376749:

Extracorporeal treatments

Extracorporeal life support and digoxin-specific Fab fragments for successful management of *Taxus baccata* intoxication with low output and ventricular arrhythmia.

Galantamine

Golime R, Palit M, Acharya J, Dubey DK.
Neuroprotective effects of galantamine on nerve agent-induced neuropathal and biochemical changes.
Neurotox Res 2017; online early: doi: 10.1007/s12640-017-9815-9:

Glycine

Fogger SA, Lehmann K.
Recovery beyond buprenorphine: nurse-led group therapy.

Herbal medicines

Al-Asmari A, Manthiri RA, Abd N, Al-Duaiji FA, Khan HA.
Saudi medicinal plants for the treatment of scorpion sting envenomation.

Opioid maintenance therapy

Grossman MR, Berkwitt AK, Osborn RR.
Buprenorphine for the neonatal abstinence syndrome.

Methadone

Livingston JD, Adams E, Jordan M, MacMillan Z, Hering R.
Primary care physicians' views about prescribing methadone to treat opioid use disorder.
Subst Use Misuse 2017; online early: doi: 10.1080/10826084.2017.1325376:

Taurine

Akande MG, Ahmed US.
Taurine abated subacute dichlorvos toxicity.

DRUGS

General

Safety of systemic agents for the treatment of pediatric psoriasis.

Buprenorphine

Donroe JH, Holt SR, O'Connor PG, Sukumar N, Tetrault JM.
Interpreting quantitative urine buprenorphine and norbuprenorphine levels in office-based clinical practice.
Drug Alcohol Depend 2017; 180: 46-51.

Fogger SA, Lehmann K.
Recovery beyond buprenorphine: nurse-led group therapy.

Grossman MR, Berkwitt AK, Osborn RR.
Buprenorphine for the neonatal abstinence syndrome.

Whalen B, MacMillan K, Edwards W.
Buprenorphine for the neonatal abstinence syndrome.

Taurine

Akande MG, Ahmed US.
Taurine abated subacute dichlorvos toxicity.

Acetaminophen (see paracetamol)

Amfetamines and MDMA (ecstasy)

Green PA, Batterby C, Heath RM, McCrossan L. A fatal case of amphetamine induced ischaemic colitis.

Amygdalin

Anaesthetics

Benzocaine

Propofol

Antiarrhythmic drugs

Flecainide

Anticoagulants

Apixaban

Dabigatran

Anticonvulsants

Eslicarbazepine

Lamotrigine

Pregabalin

Valproate

Antidepressants

Bupropion
Sheridan DC, Lin A, Zane Horowitz B.
Suicidal bupropion ingestions in adolescents: increased morbidity compared with other antidepressants. Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1377839:

Trazodone
Saeed M, Tripathi D, Chaudhari S.
Marked symptomatic sinus bradycardia with new onset first-degree atrioventricular block after concomitant methadone and trazodone use. Am J Ther 2017; online early: doi: 10.1097/MJT.0000000000000657:

Antihistamines

Diphenhydramine
Sohn JT.

Yu J-H.

Antimarial drugs

Wiacek MP, Bobrowska-Snarska D, Lubinski W, Brzosko M, Modrzejewska M.

Hydroxychloroquine
Ahn SJ, Ryu SJ, Joung JY, Lee BR.

Antineoplastic drugs

Bevacizumab
Li M, Kroetz DL.

Bleomycin

Doxorubicin
Acute cardiotoxicity induced by doxorubicin in right ventricle is associated with increase of oxidative stress and apoptosis in rats. Histol Histopathol 2017; online early: doi: 10.14670/HH-11-932:

Antipsychotics

Zonnenberg C, Bueno-de-Mesquita JM, Ramal D, Blom JD.
Hypothermia due to antipsychotic medication: a systematic review. Front Psychiatry 2017; 8: 165.

Aripiprazole
Christensen AP, Boegevig S, Christensen MB, Petersen KM, Dalhoff KP, Petersen TS.
Overdoses with aripiprazole: signs, symptoms and outcomes in 239 exposures reported to the Danish Poison Information Center. Basic Clin Pharmacol Toxicol 2017; online early: doi: 10.1111/bcpt.12902:

Clozapine
Human neutrophils show decreased survival upon long-term exposure to clozapine. Hum Psychopharmacol 2017; online early: doi: 10.1002/hup.2629:

Antipyretic drugs

Tenofovir
Some F, Koeh C, Chesire E, Kigen G.

Baclofen
Wolf E, Kothari NR, Roberts JK, Sparks MA.

Benzodiazepines

McClure FL, Niles JK, Kaufman HW, Gudin J.

Benzylpiperazine

Bisoprolol
Caffeine
Nature versus intensity of intoxication: co-ingestion of alcohol and energy drinks and the effect on objective and subjective intoxication.

Red Bull® energy drink increases consumption of higher concentrations of alcohol.
Addict Biol 2017; online early: doi: 10.1111/adb.12560:

Cannabidiol
Iffland K, Grotenhermen F.
An update on safety and side effects of cannabidiol: a review of clinical data and relevant animal studies.

Cannabis (marijuana)
Awasthi R, An G, Donovan MD, Boles Ponto LL.
Relating observed psychoactive effects to the plasma concentrations of delta-9-tetrahydrocannabinol (THC) and its active metabolite: an effect-compartment modeling approach.

Heard K, Marlin MB, Nappe T, Hoyte CO.
Common marijuana-related cases encountered in the emergency department.
Am J Health Syst Pharm 2017; online early: doi: 10.2146/ajhp160715:

Natural (9-THC) and synthetic (JWH-018) cannabinoids induce seizures by acting through the cannabinoid CB1 receptor.

Phillips E, Gazmararian J.
Implications of prescription drug monitoring and medical cannabis legislation on opioid overdose mortality.

Richards JR, Smith NE, Moulin AK.
Unintentional cannabis ingestion in children: a systematic review.

Tsutaoka B, Araya-Rodríguez G, Durrani T.
Edible marijuana labeling and packaging.

Colchicine
Pettersen JA, Singh A.
Potentially reversible rapid onset weakness: recognizing colchicine toxicity.

Digoxin
Digoxin-induced anemia among patients with atrial fibrillation and heart failure: clinical data analysis and drug-gene interaction network.
Oncotarget 2017; 8: 57003-11.

Martin C, Park KK, Liu A.
Accidental intrathecal administration of digoxin in an elderly male with end-stage renal disease.
Case Rep Neurol Med 2017; 2017: 9072018.

Epinephrine
Jeremy B, Raphaëlle F, Francois K, Pierre M, Marc G.
Stress cardiomyopathy managed with extracorporeal support after self-injection of epinephrine.

Gamma hydroxybutyrate
Madah-Amiri D, Myrmel L, Brattebo G.
Intoxication with GHB/GBL: characteristics and trends from ambulance-attended overdoses.

Hallucinogenic drugs
Caspar AT, Kollas AB, Maurer HH, Meyer MR.
Development of a quantitative approach in blood plasma for low-dosed hallucinogens and opioids using LC-high resolution mass spectrometry.
Talanta 2018; 176: 635-45.

Herbal medicines, ethnic remedies and dietary supplements
González-Stuart A, Rivera JO.
Yellow oleander seed, or "Codo de Fraile" (Thevetia spp.): a review of its potential toxicity as a purported weight-loss supplement.

Huber R, Schlodder D, Effertz C, Rieger S, Trüger W.
Safety of intravenously applied mistletoe extract - results from a phase I dose escalation study in patients with advanced cancer.

Soleymani S, Bahramsooltani R, Rahimi R, Abdollahi M.
Clinical risks of St John's Wort (Hypericum perforatum) co-administration.
Expert Opin Drug Metab Toxicol 2017; online early: doi: 10.1080/17425255.2017.1378342:

Kratz JM, Grienke U, Scheel O, Mann SA, Rollinger JM.
Natural products modulating the hERG channel: heartaches and hope.

Heroin (diacetylmorphine)
Benns M, Miller K, Harbrecht B, Bozeman M, Nash N.
Heroin-related compartment syndrome: an increasing problem for acute care surgeons.
Am Surg 2017; 83: 962-5.

O'Donnell JK, Gladden RM, Seth P.

Visentin S, Bevilacqua G, Giraudo C, Dengo C, Nalessio A, Montisci M.
Death by heroin intoxication in a body pusher with an innovative packaging technique: case report and review of the literature.

Hydroxocobalamin
Jiwani AZ, Bebarta VS, Cancio LC.
Acquired methemoglobinemia after hydroxocobalamin administration in a patient with burns and inhalation injury.
Clin Toxicol 2017; online early:
doi: 10.1080/15563650.2017.1377838:

Immunosuppressants
Cyclosporine
Kang HG, Park SK, Wang SJ, Oh S-Y, Ryu HU.
Opsoclonus-myoclonus syndrome following long-term use of cyclosporine.
Clin Toxicol 2017; online early:
doi: 10.1080/15563650.2017.1375511:

van Sloten TT, de Klaver PAG, van den Wall Bake AWL.
Co-administration of cyclosporine and ticagrelor may lead to a higher exposure to cyclosporine: a case report of a 49-year old man.
Br J Clin Pharmacol 2017; online early:
doi: 10.1111/bcp.13433:

Infusion fluid therapy
Hahn RG.
Adverse effects of crystalloid and colloid fluids.
Anaesthesiol Intensive Ther 2017; online early:
doi: 10.5603/AIT.a2017.0045:

Ivermectin
Seegobin K, Bueno E, Maharaj S, Ashby T, Brown M, Jones L.
Toxic epidermal necrolysis after ivermectin.
Am J Emerg Med 2017; online early:
doi: 10.1016/j.ajem.2017.09.021:

Kratom
Griffin OH, Webb ME.
The scheduling of Kratom and selective use of data.
J Psychoactive Drugs 2017; online early:
doi: 10.1080/02791072.2017:

Leucovorin
Cermirana Z, Duffy A, Nishioka J, Trovato J, Gilmore S.
A single center retrospective analysis of a protocol for high-dose methotrexate and leucovorin rescue administration.
J Oncol Pharm Pract 2017; online early:
doi: 10.1177/107815217729744:

Lithium
Savage N, Green J, Seshadri M, Thalitaya MD.
Study on lithium monitoring amongst patients in a community mental health and primary care setting in rural England.

Vodovar D, Mégarbane B.
Prognosis and outcome of severe lithium poisoning.

LSD
Schmid Y, Liechti ME.
Long-lasting subjective effects of LSD in normal subjects.
Psychopharmacology 2017; online early:
doi: 10.1007/s00213-017-4733-3:

Methotrexate
Bidaki R, Kian M, Owliaey H, Babaei Zarch M, Feysal M.
Accidental chronic poisoning with methotrexate; report of two cases.

Cermirana Z, Duffy A, Nishioka J, Trovato J, Gilmore S.
A single center retrospective analysis of a protocol for high-dose methotrexate and leucovorin rescue administration.
J Oncol Pharm Pract 2017; online early:
doi: 10.1177/1078155217729744:

Naloxone
Ward A, Del Campo M, Hauser K.
Complications with oxycodon and naloxone.

Nicotine
Polosa R, Russell C, Nitzkin J, Farsalinos KE.
A critique of the US Surgeon General’s conclusions regarding e-cigarette use among youth and young adults in the United States of America.
Harm Reduct J 2017; 14: 61.

Electronic cigarette use behaviors and motivations among smokers and non-smokers.

Novel psychoactive substances
Beck O, Bäckberg M, Signell P, Helander D.
Intoxications in the STRIDA project involving a panorama of psychostimulant pyrovalerone derivatives, MDPV copycats.
Clin Toxicol 2017; online early:
doi: 10.1080/15563650.2017.1370097:

Boumba VA, Di Rago M, Peka M, Drummer OH, Gerostamoulos D.
The analysis of 132 novel psychoactive substances in human hair using a single step extraction by tandem LC/MS.

Feng L-Y, Battulga A, Han E, Chung H, Li J-H.
New psychoactive substances of natural origin: a brief review.

Lehmann S, Kielila T, Beike J, Thevis M, Mercier-Chalmers-Bender K.
Determination of 74 new psychoactive substances in human hair using a single step extraction by tandem LC/MS.

Phenethylamines
Death after 25C-NBOMe and 25H-NBOMe consumption.
Synthetic cannabinoids
Brandehoff N, Adams A, McDaniel K, Banister SD, Gerona R, Monte AA.

Synthetic cathinones

Synthetic opioids

Opioids
Cole JB, Nelson LS. Controversies and carfentanil: we have much to learn about the present state of opioid poisoning. Am J Emerg Med 2017; online early: doi: 10.1016/j.ajem.2017.08.045:

Fentanyl

Methadone

Saeed M, Tripathi D, Chaudhari S. Marked symptomatic sinus bradycardia with new onset first-degree atrioventricular block after concomitant methadone and trazodone use. Am J Ther 2017; online early: doi: 10.1097/MJT.0000000000000657:

Morphine

Opium

Oxycodone

U-47700

Tramadol

Paracetamol (acetaminophen)

Proton pump inhibitors

Psychoactive drugs

Salicylates
Anderson A, McConville A, Fanthorpe L, Davis J.
Salicylate poisoning potential of topical pain relief agents: from age old remedies to engineered smart patches.
Mohamed HRH, Hamad SR.
Nullification of aspirin induced gastrotoxicity and hepatotoxicity by prior administration of wheat germ oil in Mus musculus: histopathological, ultrastructural and molecular studies.

SSRIs and SNRIs
Fluoxetine
Magalhães P, Alves G, Llerena A, Falcão A.
Therapeutic drug monitoring of fluoxetine, norfluoxetine and paroxetine: a new tool based on microextraction by packed sorbent coupled to liquid chromatography.

Paroxetine
Magalhães P, Alves G, Llerena A, Falcão A.
Therapeutic drug monitoring of fluoxetine, norfluoxetine and paroxetine: a new tool based on microextraction by packed sorbent coupled to liquid chromatography.

Venlafaxine
Effects of the proton pump inhibitors omeprazole and pantoprazole on the cytochrome P450-mediated metabolism of venlafaxine.
Clin Pharmacokinet 2017; online early: doi: 10.1007/s40262-017-0591-8:

Statins
A severe myopathy case in aged patient treated with high statin dosage.

Simvastatin
Tse DY, Kim SJ, Chung I, He F, Wensel TG, Wu SM.
The ocular toxicity and pharmacokinetics of simvastatin following intravitreal injection in mice.

Substance abuse
Blackburn NA, Lancaster KE, Ha TV, Latkin CA, Miller WC, Frangakis C, Chu VA, Sripiya T, Quan VM, Minh NL, Vu PT, Go VF.
Characteristics of persons who inject drugs and who witness opioid overdoses in Vietnam: a cross-sectional analysis to inform future overdose prevention programs.
Harm Reduct J 2017; 14: 62.
Breet F, Bantjes J.
Substance use and self-harm: case studies from patients admitted to an urban hospital following medically serious self-harm.

Drahos GL, Williams L.
Addressing the emerging public health crisis of narcotic overdose.
Duailibi MS, Cordeiro Q, Brietzke E, Ribeiro M, LaRowe S, Berk M, Trevizol AP.
N-acetylcysteine in the treatment of craving in substance use disorders: systematic review and meta-analysis.
Am J Addict 2017; online early: doi: 10.1111/ajad.12620:
Duncan T, Duff C, Sebar B, Lee J.
‘Enjoying the kick’: locating pleasure within the drug consumption room.
Heekin RD, Shorter D, Kosten TR.
Current status and future prospects for the development of substance abuse vaccines.
Maas A, Maier C, Iwersen-Bergmann S, Madea B, Hess C.
Simultaneous extraction of propofol and propofol glucuronide from hair followed by validated LC-MS/MS analyses.

Ticagrelor
van Sloten TT, de Klaver PAG, van den Wall Bake AWL.
Co-administration of cyclosporine and ticagrelor may lead to a higher exposure to cyclosporine: a case report of a 49-year old man.

CHEMICAL INCIDENTS AND POLLUTION
Air pollution
The association between cooking oil fume exposure during pregnancy and birth weight: A prospective mother-child cohort study.

Chemical incidents
D’Andrea MA, Reddy GK.
Adverse health complaints of adults exposed to benzene after a flaring disaster at the BP refinery facility in Texas City, Texas.
Disaster Med Public Health Prep 2017; online early: doi: 10.1017/dmp.2017.59:
Neurological and neurophysiological findings in workers with chronic 2,3,7,8-TCDD intoxication 50 years after exposure.
Basic Clin Pharmacol Toxicol 2017; online early: doi: 10.1111/bcpt.12899:

Water pollution
Zheng Y, Fianagan SV.
The case for universal screening of private well water quality in the U.S. and testing requirements to achieve it: evidence from arsenic.
Environ Health Perspect 2017; 125: 085002.
CHEMICALS

General

Alcohol (ethanol)

Aldehydes

Batteries

Benzene

Bisphenol S

Carbon monoxide

Contrast media

Copper sulphate

Corrosives

Cosmetics
Thresholds of Toxicological Concern for cosmetics-related substances: new database, thresholds, and enrichment of chemical space.

Cyanide
Oral glycine and sodium thiosulfate for lethal cyanide ingestion.

Dang T, Nguyen C, Tran PN.
Physician beware: severe cyanide toxicity from amygdalin tablets ingestion.

DeLeon SM, Downey JD, Hildenberger DM, Rhoomes MO, Booker L, Rockwood GA, Basi KA.
DMTS is an effective treatment in both inhalation and injection models for cyanide poisoning using unanesthetized mice.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1376749:

Konstantatos A, Shiv Kumar M, Burrell A, Smith J.
An unusual presentation of chronic cyanide toxicity from self-prescribed apricot kernel extract.
BMJ Case Rep 2017; doi: 10.1136/bcr-2017-220814:

Cyanide poisoning in Thailand before and after establishment of the National Antidote Project.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1370098:

Dioxins
Neurological and neurophysiological findings in workers with chronic 2,3,7,8-TCDD intoxication 50 years after exposure.
Basic Clin Pharmacol Toxicol 2017; online early: doi: 10.1111/bcpt.12899:

Disinfectant byproducts
Chiu SK, Burton NC, Dunn KH, de Perio MA.
Respiratory and ocular symptoms among employees of an indoor waterpark resort — Ohio, 2016.

Disinfectants
Kim W-Y, Hong S-B.
Humidifier disinfectant-associated lung injury: six years after the tragic event.
Tuberc Respir Dis (Seoul) 2017; 80: e2.

E-cigarettes and e-liquids
Farsalinos KE, Voudris V, Spyrou A, Poulas K.
E-cigarettes emit very high formaldehyde levels only in conditions that are aversive to users: a replication study under verified realistic use conditions.

Polosa R, Russell C, Nitzkin J, Farsalinos KE.
A critique of the US Surgeon General’s conclusions regarding e-cigarette use among youth and young adults in the United States of America.
Harm Reduct J 2017; 14: 61.

Electronic cigarette use behaviors and motivations among smokers and non-smokers.

"Juice monsters": sub-ohm vaping and toxic volatile aldehyde emissions.
Chem Res Toxicol 2017; online early: doi: 10.1021/acs.chemrestox.7b00212:

Tulsieram KL, Rinaldi S, Shelley JJ.
Recommendations: will the Tobacco and Vaping Products Act go far enough?

Essential oils
Gupta K, Jha M, Jadon RS, Sood R.
Case of methaemoglobinemia caused by tree oils and kerosene.
BMJ Case Rep 2017; doi: 10.1136/bcr-2017-220802:

Ethylene dibromide
Schaefer HR, Myers JL.
Development of an inhalation unit risk factor for ethylene dibromide.
Inhal Toxicol 2017; online early: doi: 10.1080/08958378.2017.1369603:

Eucalyptus oil
Young S, O’Driscoll R, Antony M, Whyte I.
Massive eucalyptus oil overdose.

Formaldehyde
Farsalinos KE, Voudris V, Spyrou A, Poulas K.
E-cigarettes emit very high formaldehyde levels only in conditions that are aversive to users: a replication study under verified realistic use conditions.

Fragrance chemicals
RIFM fragrance ingredient safety assessment, ethyl 2-tert-butylocyclohexyl carbonate, CAS registry number 67801-64-3.

RIFM fragrance ingredient safety assessment, propyl phenethyl acetate, CAS Registry Number 7493-57-4.

RIFM fragrance ingredient safety assessment, 3-methyl-2-pentylcyclopetan-1-one, CAS Registry Number 13074-63-0. Food Chem Toxicol 2017; online early:
doi: 10.1016/j.fct.2017.08.035:

RIFM fragrance ingredient safety assessment, phenylethyl acetate, diethyl acetate, CAS Registry Number 6314-97-2.

Food Chem Toxicol 2017; online early:
doi: 10.1016/j.fct.2017.08.039:

RIFM fragrance ingredient safety assessment, menthyl isovalerate, CAS Registry Number 16409-46-4.

Food Chem Toxicol 2017; online early:
doi: 10.1016/j.fct.2017.09.035:

RIFM fragrance ingredient safety assessment, benzene-1,2-dimethoxyethyl)toluene, CAS Registry Number 42866-91-1.

Food Chem Toxicol 2017; online early:
doi: 10.1016/j.fct.2017.09.009:

RIFM fragrance ingredient safety assessment, 4-isopropyl-2-methoxy-1-methylbenzene, CAS Registry Number 56836-93-2.

Food Chem Toxicol 2017; online early:
doi: 10.1016/j.fct.2017.09.006:

RIFM fragrance ingredient safety assessment, alcohols, C8-10-iso, C9-rich, CAS Registry Number 68526-84-1.

Food Chem Toxicol 2017; online early:
doi: 10.1016/j.fct.2017.09.028:

RIFM fragrance ingredient safety assessment, ethyl phenylethyl acetate, diethyl acetaldehyde, diphenethyl acetal, CAS Registry Number 122-71-4.

Food Chem Toxicol 2017; online early:
doi: 10.1016/j.fct.2017.08.036:

Kerosene

Gupta K, Jha M, Jadon RS, Sood R. Case of methaemoglobinemia caused by tree oils and kerosene. BMJ Case Rep 2017; doi: 10.1136/bcr-2017-220802:

Nanoparticles

Nitrobenzene

Nitromethane

Paraffins

Polybrominated diphenyl ethers

Polytetrafluoroethylene

Tobacco

Triclosan

Waterproofing aerosols

METALS

General

Aluminium

Arsenic

Cadmium

Chromium

Cobalt

Copper

Lead

Lithium

Manganese
Chiu YM, Claus Henn B, Hsu HL, Pendo MP, Coull BA, Austin C, Cagana G, Fedrighi C, Placidi D, Smith DR, Wright RO, Lucchini RG, Arora M.

Mercury

Platinum

Thallium

Biocides

Schettgen T, Kraus T. Urinary excretion kinetics of the metabolite N-methylmalonamic acid (NMMA) after oral dosage of chloromethylisothiazolinone and methylisothiazolinone in human volunteers. Arch Toxicol 2017; online early: doi: 10.1007/s00204-017-2051-5:

Organochlorine pesticides

General

Organophosphorus insecticides

General

Dichlorvos

Fenitrothion

Monocrotophos

Paraoxon

Rodenticides
Bromadiolone

Tetramethylenedisulfotetramine

Thallium

Chemical warfare
Anthrax

Ricin

Nerve agents

PLANTS
Aconitum spp.

Annona reticulata (Custard Apple)

Cerbera odollam (Suicide tree)
Fok H, Victor P, Bradberry S, Eddeleston M.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1369543:

Cynara cardunculus (Artichoke)
Campos MG, Machado J, Costa ML, Lino S, Correia F, Maltez F.
Case report: Severe hematological, muscle and liver toxicity caused by drugs and artichoke infusion interaction in an elderly polymedicated patient.

Datura stramonium (Jimsonweed)
Tranca SD, Szabo R, Cocis M.
Acute poisoning due to ingestion of Datura stramonium - a case report.

Euphorbia
McVeigh K.
Ubiquitous euphorbia is anything but euphoria for the eye: a reminder to get any area of contact with the toxic sap under the tap.
Eye (Lond) 2017; online early: doi: 10.1038/eye.2017.204:

Hypericum perforatum (St John’s wort)
Soleymani S, Bahramsofani R, Rahimi R, Abdollahi M.
Clinical risks of St John’s Wort (*Hypericum perforatum*) co-administration.
Expert Opin Drug Metab Toxicol 2017; online early: doi: 10.1080/17425255.2017.1378342:

Mitragyna speciosa (Kratom)
Griffin OH, Webb ME.
The scheduling of Kratom and selective use of data.
J Psychoactive Drugs 2017; online early: doi: 10.1080/02791072.2017:

Mushrooms
Cervellini G, Comelli I, Rastelli G, Sanchis-Gomar F, Negri F, De LC, Lippi G.
Epidemiology and clinics of mushroom poisoning in Northern Italy: a 21-year retrospective analysis.
Hum Exp Toxicol 2017; online early: doi: 10.1177/0960327117730882:

Diaz JH.
Colorful mushroom ingestion.

Woloszyn A, Kotłowski R.
A universal method for the identification of genes encoding amatoxins and phallotoxins in poisonous mushrooms.

Taxus baccata (Yew)
Farag M, Badowski D, Koschny R, Skopp G, Bracic A, Szabo GB.
Extracorporeal life support and digoxin-specific Fab fragments for successful management of *Taxus baccata* intoxication with low output and ventricular arrhythmia.

Reijnen G, Bethlehem C, van Remmen JMBL, Smit HJM, Van Luin M, Reijnders UJL.
Post-mortem findings in 22 fatal *Taxus baccata* intoxications and a possible solution to its detection.

Thevetia spp. (Yellow oleander)
Anandhi D, Raju KP, Basha MH, Pandit VR.
Acute myocardial infarction in yellow oleander poisoning.
J Postgrad Med 2017; online early: doi: 10.4103/jpgm.JPGM_141_17:

González-Stuart A, Rivera JO.
Yellow oleander seed, or "Codo de Fraile" (*Thevetia* spp.): a review of its potential toxicity as a purported weight-loss supplement.

ANIMALS

Fish/marine poisoning
Chang C-H, Lu C-W, Chung W-H, Ho H-C.
Acute fish liver intoxication induced blisters formation and generalized skin peeling.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1341634:

Sovann K.
Acute kidney injury due to fish gallbladder ingestion: a case report from Cambodia.

Recreational exposure during algal bloom in Carrasco beach, Uruguay: a liver failure case report.

Tetrodotoxin
Detection of tetrodotoxin shellfish poisoning (TSP) toxins and causative factors in bivalve molluscs from the UK.

Frogs
The biological effects of Kambo: is there a relationship between its administration and sudden death?

Hymenoptera
Cross B, Choudhury TR, Hindle M, Galasko G.
Wasp sting induced STEMI with complete coronary artery occlusion: a case of Kounis syndrome.
BMJ Case Rep 2017; doi: 10.1136/bcr-2017-221256:

Scorpions
Abroug F, Ouanes I, Maatouk M, Golli M, Ouanes-Besbes L.
Inverted Takotsubo syndrome in *Androctonus australis* scorpion envenomation.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1377221:

Al-Asmari A, Manthiri RA, Abdo N, Al-Duaiji FA, Khan HA.
Saudi medicinal plants for the treatment of scorpion sting envenomation.

Hauke TJ, Herzig V.
Dangerous arachnids-fake news or reality?
Toxicon 2017; 138: 173-83.

Hurst NB, Lipe DN, Karpen SR, Patanwala AE, Taylor AM, Boesen KJ, Shirazi FM.
Centruroides sculptatus envenomation in three adult patients requiring treatment with antivenom.
Clin Toxicol 2017; online early; doi: 10.1080/15563650.2017.1371310:

Snake bites

Gutiérrez JM, Calvete JJ, Habib AG, Harrison RA, Williams DJ, Warrell DA.
Snakebite envenoming.

Rahim S.
Haemoperitoneum secondary to snake bite.

Rizer J, King J, Charlton N.
In response to "Are changes necessary in the medical management of a patient with snakebite regarding the incidence of hypersensitivity reaction to antivenom polyvalent immune Fab?".
Clin Toxicol 2017; online early; doi: 10.1080/15563650.2017.1376750:

Crotalinae (Pit vipers)

Cavalcante WLG, Noronha-Matos JB, Timóteo MA, de Mattos Fontes MR, Gallacci M, Correia-de-Sá P.
Neuromuscular paralysis by the basic phospholipase A₂ subunit of crototoxin from *Crotalus durissus terrificus* snake venom needs its acid chaperone to concurrently inhibit acetylcholine release and produce muscle blockage.
Toxicol Appl Pharmacol 2017; 334: 8-17.

Heise CW, Ruha A-M, Padilla-Jones A, Truitt Hayek C, Gerkin RD.
Clinical predictors of tissue necrosis following rattlesnake envenomation.
Clin Toxicol 2017; online early; doi: 10.1080/15563650.2017.1371311:

Rivas E, Neri-Castro E, Benard-Valle M, Hernandez-Davila AI, Zamudio F, Alagon A.
General characterization of the venoms from two species of rattlesnakes and an intergrade population (*C. lepidus x aequilis*) from Aguascalientes and Zacatecas, Mexico.
Toxicol 2017; 138: 191-5.

Elapidae

Padula AM, Leister E.
Severe neurotoxicity requiring mechanical ventilation in a dog envenomed by a red-bellied black snake (*Pseudechis porphyriacus*) and successful treatment with an experimental bivalent whole equine IgG antivenom.
Toxicol 2017; 138: 159-64.

Spiders

Hauke TJ, Herzig V.
Dangerous arachnids-fake news or reality?
Toxicon 2017; 138: 173-83.

Sanaei-Zadeh H.
Spider bite in Iran.

INDEX

Acetaminophen	...	26
Acetylcysteine	..	18
Aconitum spp.	...	34
Air pollution	..	27
Alcohol	..	28
Aldehydes	..	28
Aluminium	..	31
Aluminium phosphate	..	33
Amfetamines	...	20
Amygdalin	..	21
Anaesthetics	..	21
Analytical toxicology	11
Animals, general	...	35
Annona reticulata	34
Anthrax	..	34
Antiarrhythmic drugs	21
Anticoagulants	...	21
Anticonvulsants	..	21
Antidepressants	...	22
Antidiuretics	..	18
Antihistamines	...	22
Antimalarial drugs	..	22
Antineoplastic drugs	..	22
Antipsychotics	..	22
Antipyretic drugs	..	22
Antivenom	..	18
Antiviral drugs	...	22

Apixaban | ... | 21 |
Aripiprazole	..	22
Arsenic	..	31
Artichoke	...	35
Baclofen	..	19
Batteries	..	28
Benzene	..	28
Benzocaine	...	21
Benzodiazepines	..	22
Benzylpiperazine	...	22
Beta-blockers	..	19
Bevacizumab	..	22
Biocides	...	33
Biological warfare	..	34
Biomarkers	..	11
Bisoprolol	...	22
BisphenoS	..	28
Bleomycin	...	22
Body packers	...	11
Bromadiolone	...	34
Buprenorphine	...	19
Bupropion	...	22
Butyrylcholinesterase	19
Cadmium	..	31
Caffeine	...	23
Cannabidiol	...	23
Cannabis	...	23
Current Awareness in Clinical Toxicology is produced monthly for the American Academy of Clinical Toxicology by the Birmingham Unit of the UK National Poisons Information Service, with contributions from the Cardiff, Edinburgh, and Newcastle Units.

The NPIS is commissioned by Public Health England

Scorpions ... 35
Simvastatin ... 27
Snake bites ... 36
Sodium bicarbonate ... 19
Sodium thiosulfate ... 19
Spiders .. 36
SSRIs and SNRIs .. 27
St John’s wort .. 35
Statins .. 27
Substance abuse .. 27
Suicide .. 17
Suicide tree ... 34
Synthetic cannabinoids ... 25
Synthetic cathinones .. 25
Synthetic opioids .. 25
Taurine ... 19
Taxus baccata ... 35
Tenofovir ... 35
Tetramethylenedisulfotetramine 34
Tetrodotoxin ... 35
Thallium ... 33, 34
Thevetia spp. .. 35
Ticagrelor ... 27
Titanium ... 33
Tobacco .. 31
Toxicology, general .. 11
Tramadol .. 26
Trazodone ... 22
Triclosan ... 31
U-47700 ... 26
Valproate ... 21
Vanadium ... 33
Venlafaxine ... 27
Water pollution .. 27
Waterproofing aerosols ... 31
Yellow oleander .. 35
Yew ... 35