Is oxygen required before atropine administration in organophosphorus or carbamate pesticide poisoning? – A cohort study

Background

Early and adequate atropine administration in organophosphorus (OP) or carbamate insecticide poisoning improves outcome. However, some authors advise that oxygen must be given before atropine due to the risk of inducing ventricular dysrhythmias in hypoxic patients. Because oxygen is frequently unavailable in district hospitals of rural Asia, where the majority of patients with insecticide poisoning present, this guidance has significant implications for patient care. The published evidence for this advice is weak. We therefore performed a patient cohort analysis to look for early cardiac deaths in patients poisoned by anticholinesterase pesticides.

Methods

We analysed a prospective Sri Lankan cohort of OP or carbamate-poisoned patients treated with early atropine without the benefit of oxygen for evidence of early deaths. The incidence of fatal primary cardiac arrests within 3 h of admission was used as a sensitive (but non-specific) marker of possible ventricular dysrhythmias.

Results

The cohort consisted of 1957 patients. The incidence of a primary cardiac death within 3 h of atropine administration was 4 (0.2%) of 1957 patients. The majority of deaths occurred at a later time point from respiratory complications of poisoning.

Conclusion

We found no evidence of a high number of early deaths in an observational study of 1957 patients routinely given atropine before oxygen that might support guidance that
oxygen must be given before atropine. The published literature indicates that early and rapid administration of atropine during resuscitation is life-saving. Therefore, whether oxygen is available or not, early atropinisation of OP- and carbamate-poisoned patients should be performed.

Full text available from: http://dx.doi.org/10.3109/15563650.2014.915411

National toxicovigilance for pesticide exposures resulting in health care contact – An example from the UK’s National Poisons Information Service

Background

Although there are extensive systems in place for pharmacovigilance, similar systems for detecting adverse health effects relating to pesticide exposure are rare. In 2004, the National Poisons Information Service (NPIS) pesticide surveillance study was implemented to identify cases requiring health care contact in the UK. This report describes the epidemiology of pesticide exposures reported to poison centres in the UK over a 9-year period.

Methods

Data on exposures were gathered through monitoring access to the NPIS's online clinical toxicology database TOXBASE® and through monitoring calls to the four NPIS units (Edinburgh, Cardiff, Newcastle and Birmingham). Severity was judged by both caller and NPIS staff.

Results

During the 9 years, 34,092 enquiries concerning pesticides were recorded; 7,804 cases of pesticide exposure were derived from these enquiries. Exposures were predominantly unintentional and acute (6,789; 87.0%); 217 (2.8%) and 755 (9.7%) were chronic unintentional and acute deliberate self-harm exposures, respectively. The majority of cases occurred in children, especially the 0-4 year age group. The minimum incidence of pesticide exposure requiring health care contact was 2.0 cases/100,000 population per year. Reported numbers were 6- to 25-fold greater than those picked up through other UK pesticide toxicovigilance schemes. There were 81 cases of severe toxicity and 38 cases of fatal exposure. Deliberate self-harm accounted for 62.3% of severe cases and 79% of deaths. Aluminium phosphide, paraquat, diquat and glyphosate were responsible for most severe and fatal cases.

Conclusions

The data gathered from this pesticide surveillance study indicate that poison centre resources can usefully monitor pesticide exposures resulting in health care contact in the UK. The NPIS may usefully be one component of the UK's response to European legislation requiring surveillance of complications resulting from pesticide use.

Full text available from: http://dx.doi.org/10.3109/15563650.2014.908203
Organophosphate-pyrethroid combination pesticides may be associated with increased toxicity in human poisoning compared to either pesticide alone

Background

Organophosphate (OP) poisoning results in significant toxicity while pyrethroid poisoning is associated with extremely low fatality. OPs can inhibit the detoxification of pyrethroid and increase the toxicity of the combination. We assessed whether mixed OP-pyrethroid poisoning impacted outcome in human poisoning.

Methods

Patients were identified from a prospectively collected institutional poisoning database that incorporates demographic and outcome data of patients presenting with poisoning.

Results

Of the 1177 poisoned patients admitted over 2 years, 32 presented with OP-pyrethroid (50% chlorpyrifos-5% cypermethrin mixture) poisoning (Group 1), 26 consumed 20% chlorpyrifos (Group 2), and 32 took 15% cypermethrin (Group 3). Seizures occurred in 15.6% (n = 5) with chlorpyrifos-cypermethrin poisoning, 18.8% (n = 6) with cypermethrin poisoning, and 3.9% (n = 1) with chlorpyrifos poisoning. Ventilatory requirements were 53.5% (17/32), 42.3% (11/26), and 15.7% (5/32) in Groups 1–3, respectively. Ventilator-free days (Mean ± SD) was significantly lower (p < 0.006) in Group 1 (20.9 ± 9.3 days) than those in Group 2 (26.1 ± 4.4 days) or 3 (27.8 ± 0.6). The median (inter-quartile range) hospital stay was 5.5 (4–19.5), 5 (5–6), and 1 (0.65–1.5) days, respectively, in the three groups. Four patients died in Group 1 (13%). None died in the other groups.

Conclusion

Although confounded by the varying quantity of chlorpyrifos and cypermethrin in the different formulations, patients with mixed poisoning appear to have shorter ventilator-free days than patients poisoned by either of the pesticides alone. Further studies are required comparing patients poisoned by formulations with similar quantities of OP and pyrethroid or with analysis of blood pesticide concentration on admission.

Full text available from: http://dx.doi.org/10.3109/15563650.2014.909933

Isopropanol poisoning

Introduction

Isopropanol is a clear, colorless liquid with a fruity odor and a mild bitter taste. Most commonly found domestically as rubbing alcohol, isopropanol is also found in numerous household and commercial products including cleaners, disinfectants, antifreezes, cosmetics, solvents, inks, and pharmaceuticals.

Aim

The aim of this review is to critically review the epidemiology, toxicokinetics, mechanisms of toxicity, clinical features, diagnosis, and management of isopropanol poisoning.

Methods

OVID MEDLINE and ISI Web of Science were searched to November 2013 using the words "isopropanol", "isopropyl alcohol", "2-propanol", "propan-2-ol", and "rubbing alcohol"
combined with the keywords "poisoning", "poison", "toxicity", "ingestion", "adverse effects", "overdose", or "intoxication". These searches identified 232 citations, which were then screened via their abstract to identify relevant articles referring specifically to the epidemiology, toxicokinetics, mechanisms of toxicity, clinical features, diagnosis, and management of isopropanol poisoning; 102 were relevant. Further information was obtained from book chapters, relevant news reports, and internet resources. These additional searches produced eight non-duplicate relevant citations.

Epidemiology
The majority of isopropanol exposures are unintentional and occur in children less than 6 years of age. Although isopropanol poisoning appears to be a reasonably common occurrence, deaths are rare.

Toxicokinetics
Isopropanol is rapidly absorbed following ingestion with peak plasma concentrations occurring within 30 min. It can also be absorbed following inhalation or dermal exposure. Isopropanol is widely distributed with a volume of distribution of 0.45–0.55 L/kg. Isopropanol is metabolized by alcohol dehydrogenase to acetone, acetaldehyde, and methylglyoxal, propylene glycol, acetate, and formate, with conversion of these metabolites to glucose and other products of intermediary metabolism. The elimination of isopropanol is predominantly renal, though some pulmonary excretion of isopropanol and acetone occurs. In one case 20% of the absorbed dose was eliminated unchanged in urine, with the remainder excreted as acetone and metabolites of acetone. The elimination half-life of isopropanol is between 2.5 and 8.0 h, whereas elimination of acetone is slower with a half-life following isopropanol ingestion of between 7.7 and 27 h.

Mechanisms of toxicity
While the exact mechanism of action of isopropanol has not been fully elucidated, brain stem depression is thought to be the predominant mechanism. While the clinical effects are thought to be mostly due to isopropanol, acetone may also contribute.

Clinical features
The major features of severe poisoning are due to CNS and respiratory depression, shock, and circulatory collapse. The most common metabolic effects are an increased osmol (osmolal) gap, ketonemia, and ketonuria.

Diagnosis
Poisoning can be diagnosed using the measurement of isopropanol serum concentrations, though these may not be readily available. Diagnosis is therefore more typically made on the basis of the patient's history and clinical presentation. An osmol gap, ketonemia, and/or ketonuria without metabolic acidosis, along with a fruity or sweet odor on the breath and CNS depression support the diagnosis.

Management
Supportive care is the mainstay of management with primary emphasis on respiratory and cardiovascular support. Hemodialysis enhances elimination of isopropanol and acetone and should be considered in very severe poisoning.

Conclusions
Severe isopropanol poisoning results in CNS and respiratory depression and circulatory collapse. Treatment primarily consists of symptom-directed supportive care. Although hemodialysis increases the elimination of isopropanol and acetone substantially, it should only be considered in severe life-threatening poisonings. Patients usually make a full recovery provided they receive prompt supportive care.

Full text available from: http://dx.doi.org/10.3109/15563650.2014.914527
Poisonings requiring admission to the pediatric intensive care unit: a 5-year review

Background
Poisonings represent a significant number of preventable admissions to the pediatric intensive care unit (PICU), but data about poisonings requiring PICU-level care are limited.

Objectives
To identify the demographics of patients admitted with poisonings and characterize their clinical courses related to their poisoning.

Methods
All poisonings over a 5-year period (2008–2012) at an academic medical center in New England were retrospectively reviewed using electronic medical records in an observational case series. Poisonings were identified using key search terms within an admissions database.

Results
There were 273 admissions for poisonings, which represent 8% of total PICU admissions over this time period. The poisonings were unintentional in 148 (54%) cases and intentional in 125 (46%). The vast majority of poisonings occurred in patients either 3 years or below (N = 121, 44%) or 13 years or above (N = 124, 45%). Most (96%) admissions were for less than 48 h and 41% were for less than 24 h. Mean PICU length of stay was 1.2 + 0.7 days. A total of 468 substances were ingested in 54 different drug classes, with analgesics and antidepressants being the most common. Eighty-five (31%) poisonings were polypharmaceutical. The most commonly used therapies were naloxone, activated charcoal, and benzodiazepines. Twenty-seven patients (10%) received mechanical ventilation. There was one fatality, an adolescent with a polypharmacy overdose in a suicide attempt.

Conclusion
Pediatric poisonings are a significant percentage of admissions to the PICU. The majority of poisonings are non-fatal, require supportive care, close monitoring, and some specific treatment. Drug classes causing poisonings have changed to a higher percentage of opioids in younger patients and atypical antidepressants in adolescents.

Full text available from: http://dx.doi.org/10.3109/15563650.2014.909601

Epidemiological trends in electronic cigarette exposures reported to U.S. Poison Centers

Context
The Centers for Disease Control and Prevention (CDC) has reported an increase in electronic cigarette (e-cigarette) use in both adults and adolescents. Poison Center calls provide data on exposures pertaining to e-cigarette devices and components (including nicotine-refill cartridges), potentially identifying epidemiological trends in reported exposures over time.

Objective
To characterize the trends in e-cigarette exposures reported to United States (U.S.) Poison Centers between 01 June 2010 and 30 September 2013.
Methods
We obtained data from the American Association of Poison Control Centers (AAPCC) for all exposures involving e-cigarettes reported to the National Poison Data System (NPDS) by U.S. Poison Centers and described trends in exposures over time, demographics, geographical characteristics, clinical effects and outcomes, management site, and exposure route.

Results
A total of 1,700 exposures were reported to Poison Centers during this time. The most frequent age groups were children 5 years or below with 717 (42.2%) exposures and adults ages 20–39 years with 466 (27.4%) exposures. Temporal trends showed an increase of 1.36 exposures per month [95% CI: 1.16–1.56] from June 2010 through December 2012, after which exposures increased by 9.60 per month [95% CI: 8.64–10.55] from January through September 2013. The majority of patients who were followed reported that they had only minor effects.

Conclusions
The majority of exposures to e-cigarette devices and components occurred in children of 5 years or below due to accidental exposure. Based on the available data, the reported exposures have resulted in minimal toxicity. Calls to Poison Centers regarding these products have rapidly increased since 2010, and continued surveillance may show changes in the epidemiological trends surrounding e-cigarette exposures.

Electronic cigarettes: another pediatric toxic hazard in the home?
Lowry JA. Clin Toxicol 2014; online early:
doi: 10.3109/15563650.2014.918998:

Electronic cigarettes (e-cigarettes) have recently gained attention in the media as an alternative to traditional smoking due to its increased use and lack of regulation. Originally marketed as a tobacco reduction or smoking cessation product, recreational use of e-cigarettes in adolescents and adults has doubled from 2010 to 2012. Current use in Great Britain rose from 2.7% of adult smokers studied in 2010 to 6.7% in 2012. Alternatively, adolescent data reveal that 9.3% of ever cigarette users had reported never smoking conventional cigarettes. This trend in increased use has been associated with increased calls to the U.S. Poison Control Centers as evident in the article by Vakkalanka et al. in this issue. In their study, unintentional exposures in children less than 6 years of age accounted for the most calls to poison control centers compared with other age groups. While the majority of patients followed had no more than minor effects reported, moderate, and major effects were found in this study. One fatality was reported, and, unfortunately, the clinical effects were not accounted for this age. Additionally, poison center data are unable to verify dose resulting in an incomplete account for the seriousness of these exposures. Parents and clinicians should be alarmed at these numbers and recognize the potential risk of harm to children and adolescents.

Full text available from: http://dx.doi.org/10.3109/15563650.2014.918998
Evaluation of dexmedetomidine therapy for sedation in patients with toxicological events at an academic medical center

Introduction
Although clinical use of dexmedetomidine (DEX), an alpha2-adrenergic receptor agonist, has increased, its role in patients admitted to intensive care units secondary to toxicological sequelae has not been well established.

Objectives
The primary objective of this study was to describe clinical and adverse effects observed in poisoned patients receiving DEX for sedation.

Methods
This was an observational case series with retrospective chart review of poisoned patients who received DEX for sedation at an academic medical center. The primary endpoint was incidence of adverse effects of DEX therapy including bradycardia, hypotension, seizures, and arrhythmias. For comparison, vital signs were collected hourly for the 5 h preceding the DEX therapy and every hour during DEX therapy until the therapy ended. Additional endpoints included therapy duration; time within target Richmond Agitation Sedation Score (RASS); and concomitant sedation, analgesia, and vasopressor requirements.

Results
Twenty-two patients were included. Median initial and median DEX infusion rates were similar to the commonly used rates for sedation. Median heart rate was lower during the therapy (82 vs. 93 beats/minute, \(p < 0.05 \)). Median systolic blood pressure before and during therapy was similar (111 vs. 109 mmHg, \(p = 0.745 \)). Five patients experienced an adverse effect per study definitions during therapy. No additional adverse effects were noted. Median time within target RASS and duration of therapy was 6.5 and 44.5 h, respectively. Seventeen patients (77%) had concomitant use of other sedation and/or analgesia with four (23%) of these patients requiring additional agents after DEX initiation. Seven patients (32%) had concomitant vasopressor support with four (57%) of these patients requiring vasopressor support after DEX initiation.

Conclusion
Common adverse effects of DEX were noted in this study. The requirement for vasopressor support during therapy warrants further investigation into the safety of DEX in poisoned patients. Larger, comparative studies need to be performed before the use of DEX can be routinely recommended in poisoned patients.

Full text available from: http://dx.doi.org/10.3109/15563650.2014.913175

Pulmonary toxicity following exposure to a tile coating product containing alkylsiloxanes. A clinical and toxicological evaluation

Context
Coating products are widely used for making surfaces water and dirt repellent. However, on several occasions the use of these products has been associated with lung toxicity.
Objective
In the present study, we evaluated the toxic effects of an aerosolized tile-coating product.

Methods
Thirty-nine persons, who reported respiratory and systemic symptoms following exposure to the tile-coating product, were clinically examined. The product was analysed chemically and furthermore, the exposure scenario was reconstructed using a climate chamber and the toxicological properties of the product were studied using *in vivo* and by *in vitro* surfactometry.

Results
The symptoms developed within few hours and included coughing, tachypnoea, chest pain, general malaise and fever. The physical examination revealed perihilar lung infiltrates on chest radiograph and reduced blood oxygen saturation. The acute symptoms resolved gradually within 1–3 days and no delayed symptoms were observed. By means of mass spectrometry and X-ray spectroscopy, it was shown that the product contained non-fluorinated alkylsiloxanes. The exposure conditions in the supermarket were reconstructed under controlled conditions in a climate chamber and particle and gas exposure levels were monitored over time allowing estimation of human exposure levels. Mice exposed to the product developed symptoms of acute pulmonary toxicity in a concentration-and time-dependent manner. The symptoms of acute pulmonary toxicity likely resulted from inhibition of the pulmonary surfactant function as demonstrated by *in vitro* surfactometry. Among these patients only a partial association between the level of exposure and the degree of respiratory symptoms was observed, which could be because of a high inter-individual difference in sensitivity and time-dependent changes in the chemical composition of the aerosol.

Conclusion
Workers need to cautiously apply surface coating products because the contents can be highly toxic through inhalation, and the aerosols can disperse to locations remote from the worksite and affect bystanders.

Full text available from: http://dx.doi.org/10.3109/15563650.2014.915412

DNA damage in internal organs after cutaneous exposure to sulphur mustard
Batal M, Boudry I, Mouret S, Cléry-Barraud C, Wartelle J, Bérard I, Douki T. Toxicol Appl Pharmacol 2014; online early:
doi: 10.1016/j.taap.2014.04.003:
Abstract and full text available from: http://dx.doi.org/10.1016/j.taap.2014.04.003

Intravenous cobinamide versus hydroxocobalamin for acute treatment of severe cyanide poisoning in a Swine (Sus scrofa) model
Bebarta VS, Tanen DA, Boudreau S, Castaneda M, Zarzabal LA, Vargas T, Boss GR. Ann Emerg Med 2014; online early:
doi: 10.1016/j.annemergmed.2014.02.009:
Abstract and full text available from: http://dx.doi.org/10.1016/j.annemergmed.2014.02.009
Glucarpidase intervention for delayed methotrexate clearance
Abstract and full text available from: http://dx.doi.org/10.1177/1060028014526159

A stepwise approach for the management of poisoning with extracorporeal treatments
Abstract and full text available from: http://dx.doi.org/10.1111/sdi.12228

Trends in toxic alcohol exposures in the United States from 2000 to 2013: a focus on the use of antidotes and extracorporeal treatments
Abstract and full text available from: http://dx.doi.org/10.1111/sdi.12237

Prenatal SSRI use and offspring with autism spectrum disorder or developmental delay
Abstract and full text available from: http://dx.doi.org/10.1542/peds.2013-3406

Pepper spray injury severity: ten-year case experience of a Poison Control System
Abstract and full text available from: http://dx.doi.org/10.3109/10903127.2014.891063

Acute toxicity associated with analytically confirmed recreational use of methiopropamine (1-(thiophen-2-yl)-2-methylaminopropane)
Abstract and full text available from: http://dx.doi.org/10.1007/s13181-014-0399-y
Bleeding following rattlesnake envenomation in patients with preenvenomation use of antiplatelet or anticoagulant medications

Abstract and full text available from: http://dx.doi.org/10.1111/acem.12333

Paracetamol toxicity: what would be the implications of a change in Australian treatment guidelines?

Abstract and full text available from: http://dx.doi.org/10.1111/1742-6723.12200
TOXICOLOGY

General

Cohen J.

Toxicology. 'Humanized' mouse detects deadly drug side effects.
Science 2014; 344: 244-5.

Jackson LS.

Toxicology and chemical food safety in the J Food Sci: 1936 – the present.

Knudsen LE, Nielsen JB, Mathiesen L, Tahti H, Heinonen T.

Workshop of Scandinavian Society for Cell Toxicology (SSCT) 25-27 September 2013 in Denmark.

Maddry JK, Sessions D, Heard K, Lappan C, McManus J, Bebarta VS.

Wylie C.

Specialists in poisons information.

Analytical toxicology

Armenian P, Gerona RR.

The electric kool-aid NBOMe test: LC-TOF/MS confirmed 2c-c-NBOMe (25C) intoxication at Burning Man.

Fisichella M, Morini L, Sempio C, Groppi A.

Validation of a multi-analyte LC-MS/MS method for screening and quantification of 87 psychoactive drugs and their metabolites in hair.

Giaginis C, Tsantili-Kakoulidou A, Theocharis S.

Applying quantitative structure-activity relationship (QSAR) methodology for modeling postmortem redistribution of benzodiazepines and tricyclic antidepressants.

Huppertz LM, Kneisel S, Auwarter V, Kempf J.

A comprehensive library-based, automated screening procedure for 46 synthetic cannabinoids in serum employing liquid chromatography-quadrupole ion trap mass spectrometry with high-temperature electrospray ionization.

Kozelj G, Perharic L, Stanovnik L, Prosen H.

Simple validated LC-MS/MS method for the determination of atropine and scopolamine in plasma for clinical and forensic toxicological purposes.

Biomarkers

Maternal arsenic exposure and DNA damage biomarkers, and the associations with birth outcomes in a general population from Taiwan.

Dewalque L, Pirard C, Charlier C.

Measurement of urinary biomarkers of parabens, benzophenone-3, and phthalates in a Belgian population.

Iavicoli I, Leso V, Manno M, Schulte PA.

Biomarkers of nanomaterial exposure and effect: current status.

Koutroulakis D, Sifakis S, Tzatzarakis NM, Alegakis HA, Theodoropoulou E, Kavvalakis M, Kappou D, Tsatsakis MA.

Diacyl phosphates in amniotic fluid as a biomarker of fetal exposure to organophosphates in Crete, Greece; association with fetal growth.

Carcinogenicity

Boffetta P, Donaldson K, Moolgavkar S, Mandel JS.

A systematic review of occupational exposure to synthetic vitreous fibers and mesothelioma.

Boothe VL, Boehmer TK, Wendel AM, Yip FY.

Residential traffic exposure and childhood leukemia: a systematic review and meta-analysis.

The regulation of 4-(methyl]nitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumor promotion by estradiol in female A/J mice.

Coggon D, Ntanis G, Harris EC, Palmer KT.

Upper airway cancer, myeloid leukemia, and other cancers in a cohort of British chemical workers exposed to formaldehyde.

Schüz J.

Airline crew cohorts: is there more to learn regarding their cancer risk?

Stern AH.

Hazard identification of the potential for dieldrin carcinogenicity to humans.

Yong LC, Pinkerton LE, Yin JH, Anderson JL, Deddens JA.

Mortality among a cohort of U.S. commercial airline cockpit crew.

Evaluation of human health risks posed by carcinogenic and non-carcinogenic multiple contaminants associated with consumption of fish from Taihu Lake, China.

Cardiotoxicity

Alenezi HS, Salih SB, Alghamdi A.

Reply to: First degree AV block due to carbon monoxide or cyanide poisoning. Which of them?
J Saudi Heart Assoc 2014; 26: 125.
Cardiotoxicity
Chou R, Weimer MB, Dana T.

Çeçek Yilmaz D, Karabulut Ü, Gündes A, Çelik A.
Rapidly progressive and reversible myocarditis after a spider bite. Am J Cardiol 2014; 113: S133-S134.

Ertutrul I, Polat E, Yoldas T, Aksin S, Özgür S, Özrun UA, Karademir S.
Colchicine intoxication leading to complete AV block. Am J Cardiol 2014; 113: S144.

Jalaludin B, Cowie C.

Kalcik M, Gursoy MO, Yesin M, Ocal L, Eren H, Karakoyun S, Astarcioglu MA, Özkam M.
Coronary vasospasm causing acute myocardial infarction: an unusual result of wild mushroom poisoning. Herz 2014; online early: doi: 10.1007/s00059-014-0471-8:

Kan AA, de Lange DW, Donker DW, Meulenbelt J.

Controlled exposures to air pollutants and risk of cardiac arrhythmia. Environ Health Perspect 2014; online early: doi: 10.1289/ehp.1307337:

Lu H-C, Chen J-D, How C-K.

Mayr D, Fridrik MA.

Miranda CH, Maio KT, Moreira HT, Moraes M, Custodio VIDC, Pazin-Filho A, Cupo P.

Salimi A, Okazi A, Sangsefidi J.

Sanaei-Zadeh H.

Su JA, Tang W, Rivero N, Bar-Cohen Y.

Tong H, Rappold AG, Caughey M, Hindelilter AL, Graff DW, Berntsen JH, Cascio WE, Devlin RB, Samet JM.
Cardiovascular effects caused by increasing concentrations of diesel exhaust in middle-aged healthy GSTM1 null human volunteers. Inhal Toxicol 2014; 26: 319-26.

Dermatological toxicity
Anon.

De D, Handa S.
Relevance of plant series of allergens (Chemotechnique Diagnostics) in north Indian patients with suspected occupational contact dermatitis to plants. J Am Acad Dermatol 2014; 70: 8470.

Edwarda A, Coman G, Blickenstaff N, Maibach H.

Glatstein MM, Rimon A, Danino D, Scolnik D.
Severe allergic contact dermatitis from temporary "Black Henna" coloring of the hair during religious cultural celebrations: three different cases, same history. Am J Ther 2014; online early: doi: 10.1097/MTJ.0b013e318296f141:

Gorayski P, Pinkham MB, Muir JB, Pullar AP.

Ji JS, Schwartz J, Sparrow D, Hu H, Weisskopf MG.

Kumar Das K, Khondokar S, Rahman A, Chakraborty A.

Sharma V, Mahajan V, Mehta K, Chauhan P.

Swinnen I, Ghys K, Kerre S, Constant L, Goossens A.
Occupational airborne contact dermatitis from benzodiazepines and other drugs. Contact Derm 2014; 70: 227-32.
Developmental toxicology
Barrett JR.
Apples to apples: comparing PM$_{1.5}$ exposures and birth outcomes in understudied countries.
Environ Health Perspect 2014; 122: A110.

Chen X-P, Chen W-F, Wang D-W.
Prenatal organophosphates exposure alternates the cleavage plane orientation of apical neural progenitor in developing neocortex.

Maternal arsenic exposure and DNA damage biomarkers, and the associations with birth outcomes in a general population from Taiwan.

Desai A, Mark K, Terplan M.
Marijuana use and pregnancy: prevalence, associated behaviors, and birth outcomes.

Govarts E, Casas M, Schoeters G, Eggesboe M, Valvi D, Nieuwenhuijsen M, Bonde JP, on behalf of the ENRICO, OBELIX, and CHICOS Consortia.
Prenatal PCB-153 exposure and decreased birth weight: the role of gestational weight gain.
Environ Health Perspect 2014; 122: A89.

Harrington RA, Lee L-C, Crum RM, Zimmerman AW, Herz-Picciotto I.
Prenatal SSRI use and offspring with autism spectrum disorder or developmental delay.

Prenatal exposure to PM$_{10}$ and NO$_{2}$ and children's neurodevelopment from birth to 24 months of age: mothers and children's environmental health (MOCEH) study.

Konkel L.
Birth defects and mothers' proximity to natural gas development: is there a connection?

Koutroulakis D, Sifakis S, Tzatzarakis NM, Alegakis HA, Theodoropoulou E, Kavlaklis M, Kappou D, Tsatsakis MA.
Dialkyl phosphates in amniotic fluid as a biomarker of fetal exposure to organophosphates in Crete, Greece; association with fetal growth.

Liu J, Gao D, Chen Y, Jing J, Hu Q, Chen Y.
Lead exposure at each stage of pregnancy and neurobehavioral development of neonates.
Neurotoxicology 2014; online early: doi: 10.1016/j.neuro.2014.03.003.

Maternal diet, prenatal exposure to dioxin-like compounds and birth outcomes in a European prospective mother-child study (NewGeneris).

Preconception low-dose aspirin and pregnancy outcomes: results from the EAGeR randomised trial.

Sharma R, Mogra S.
Lead as a developmental toxicant: a review.

Maternal exposure to criteria air pollutants and congenital heart defects in offspring: results from the national birth defects prevention study.
Environ Health Perspect 2014; online early: doi: 10.1289/ehp.1307289.

Verner M-A, Andersen ME, Clewell III HJ, Longnecker MP.
Prenatal PCB-153 exposure and decreased birth weight: Verner et al. respond.
Environ Health Perspect 2014; 122: A89-A90.

Werner M, Wesselinik A, Harley KG, Bradman A, Kogut K, Eskenza B.
Prenatal exposure to dichlorodiphenyltrichloroethane and obesity at 9 years of age in the CHAMACOS study cohort.

Wright TE, Schuetter R, Sauvage L.
Metamphetamine and birth outcomes.
Obstet Gynecol 2014; 123 Suppl 1: 178S.

Prenatal exposure to organophosphate pesticides and neurobehavioral development of neonates: a birth cohort study in Shenyang, China.

Driving under the influence of alcohol and other drugs
Bostrøm ST, Gjerde H.
Which drugs are associated with highest risk for being arrested for driving under the influence? A case-control study.

Paulke A, Wunder C, Toennes SW.
Sleep self-intoxication and sleep driving as rare zolpidem-induced complex behaviour.

Salomonsen-Sautel S, Min S-J, Sakai JT, Thurstone C, Hopfer C.
Trends in fatal motor vehicle crashes before and after marijuana commercialization in Colorado.
Epidemiology

Chippaux JP, Postigo JR. Appraisal of snakebite incidence and mortality in Bolivia. Toxicon 2014; online early: doi: 10.1016/j.toxicon.2014.03.007:

Chippaux JP. About snake bite cases in children at the Fez University Hospital (Morocco). Medecale et Sante Tropicales 2014; 24: 111.

Kuehn BM. WHO: more than 7 million air pollution deaths each year. JAMA 2014; 311: 1486.

Forensic toxicology

Genotoxicity

Hepatotoxicity

Hepatotoxicity

Khalique S, Paccone R, Lo B.

Clarithromycin associated hepatotoxicity.

Kopec AK, Luynedyk JP.

Coagulation in liver toxicity and disease: role of hepatocyte tissue factor.

Kovacevic Z, Davidovic G, Vuckovic-Filipovic J, Janicijevic-Petrovic MA, Janicijevic K, Popovic A.

A toxic hepatitis caused the kambucha tea – Case report.

Methylprednisolone-induced liver injury: a diagnostic challenge.

Liver toxicity during temozolomide chemotherapy caused by Chinese herbs.

Nencini C, Galluzzi P, Pippi F, Menchiari A, Micheli L.

Hepatotoxicity of Teucrium chamaedrys L. decocction: role of difference in the harvesting area and preparation method.

Russmann S, Niedrig DF, Budmiger M, Schmidt C, Stieger B, Hurlimann S, Kullak-Ublick GA.

Rivaroxaban postmarketing risk of liver injury.

J Hepatol 2014; online early: doi: 10.1016/j.jhep.2014.03.026.

Warner JV, Morton AP, Hall AJ, Henman MG, Pool LFS.

Internet slimming, thyrotoxicosis and the liver.

High daily dose and being a substrate of cytochrome P450 enzymes are two important predictors of drug-induced liver injury.

Inhalation toxicity

Pulmonary toxicity following exposure to a tile coating product containing alkylsiloxanes. A clinical and toxicological evaluation.

Clin Toxicol 2014; online early: doi: 10.3109/15563650.2014.915412:

Kanat S, Dinc Asarcilik L, Demir M, Ucar Elalimis O, Sahin D, Gursoy HT, Ilter M.

Transient heart block is a result of pepper gas inhalation as a chemical weapon.

Am J Cardiol 2014; 113: S85.

Deterioration of pulmonary function in stone quarry workers.

Peng X, Perkins MW, Simons J, Witriol AM, Rodriguez AM, Benjamin BM, Devorak J, Scuito AM.

Acute pulmonary toxicity following inhalation exposure to aerosolized VX in anesthetized rats.

Inhal Toxicol 2014; online early: doi: 10.3109/08958378.2014.899410:

Kinetics

Basić Z, Eraslan G.

Toxicokinetic of flumethrin in rabbits.

Application of physiologically based toxicokinetic modelling in oral-to-dermal extrapolation of threshold doses of cosmetic ingredients.

Toxicol Lett 2014; online early: doi: 10.1016/j.toxlet.2014.03.013:

Meyer MR, Robert A, Maurer HH.

Toxicokinetics of novel psychoactive substances: characterization of N-acetyltansferase (NAT) isoenzymes involved in the phase II metabolism of 2C designer drugs.

Toxicol Lett 2014; online early: doi: 10.1016/j.toxlet.2014.03.010:

Nyman A-M, Schirmer K, Ashauer R.

The importance of toxicokinetics for interspecies variation in sensitivity to chemicals.

Mechanisms of toxicity

El-Ansary AK, Kotb M, Rizk MZ, Siddiqi NJ.

Prooxidant mechanisms in toxicology.

Józwiak-Bebenista M, Nowak JZ.

Paracetamol: mechanism of action, applications and safety concern.

Medication errors

Kirkendall ES, Kouril M, Minich T, Spooner S.

Analysis of electronic medication orders with large overdoses: opportunities for mitigating dosing errors.

Le A, Patel S.

Extravasation of noncytotoxic drugs: a review of the literature.

Ann Pharmacother 2014; online early: doi: 10.1177/1060028014527820:

Metabolism

Ramaley C, Leonard SC, Miller JD, Wilson DTM, Chang SY, Chen Q, Li F, Du C.

In vitro metabolism of 3,4-methylenedioxymethamphetamine in human hepatocytes.

J Anal Toxicol 2014; online early: doi: 10.1093/jat/blk023:

Nephrotoxicity

Griebing TL.

Re: Haematuria and acute kidney injury in elderly patients admitted to hospital with supratherapeutic warfarin anticoagulation.

J Urol 2014; 191: 386.
Nephrotoxicity

Holmes I, Berman N, Domingues V.

Paththaranitima P, Tasanarong A.

Pharmacological strategies to prevent contrast-induced acute kidney injury.

Bilateral renal cortical necrosis with end-stage renal failure following envenoming by *Proatheris superciliaris*: a case report.

Toxicon 2014; 84: 36-40.

Torrez PPQ, Said R, Quiroga MMM, Duarte MR, Franca FOS.

Forest pit viper (*Bothriopsis bilineata bilineata*) bite in the Brazilian Amazon with acute kidney injury and persistent thrombocytopenia.

Toxicon 2014; online early: doi: 10.1016/j.toxicon.2014.04.001:

Trzeciakowski JP, Gardiner L, Parrish AR.

Effects of environmental levels of cadmium, lead and mercury on human renal function evaluated by structural equation modeling.

Neurotoxicity

Afshar M, Birnbaum D, Golden C.

Review of dextromethorphan administration in 18 patients with subacute methotrexate central nervous system toxicity.

Pediatr Neurol 2014; online early; doi: 10.1016/j.pediatrneurol.2014.01.048:

Avelino MA, Fusao EF, Pedroso JL, Arita JH, Ribeiro RT, Pinho RS, Tuschl K, Barsottini OG, Masruha MR.

Inherited manganism: the “cock’s-walk” gait and typical neuroimaging features.

J Neurol Sci 2014; online early: doi: 10.1016/j.jns.2014.03.057:

Gatto MP, Fioretti M, Fabrizi G, Gherardi M, Strafella E, Santarelli L.

Effects of potential neurotoxic pesticides on hearing loss: a review.

Graziani S, Christin D, Daulet S, Breton P, Perrier N, Tayse L.

Effects of repeated low-dose exposure of the nerve agent VX on monoamine levels in different brain structures in mice.

Neurochem Res 2014; online early: doi: 10.1007/s11064-014-1286-2:

Association of blood lead level with neurological features in 972 children affected by an acute severe lead poisoning outbreak in Zamfara state, northern Nigeria.

Iwamoto K, Ikeda K, Mizumura S, Tachiki K, Yanagihashi M, Iwasaki Y.

Combined treatment of methylprednisolone pulse and memantine hydrochloride prompts recovery from neurological dysfunction and cerebral hypoperfusion in carbon monoxide poisoning: a case report.

Mannou H, Ikemura M, Nakagawa Y, Nata M, Inoue H.

An autopsy case of serotonin toxicity resulting from suicidal administrations of fluvoxamine and lithium. Case report.

Nakamura M, Hachiya N, Murata KY, Nakanishi I, Kondo T, Yasutake A, Miyamoto KI, Ser PH, Omi S, Furusawa H, Watanabe C, Usuki F, Sakamoto M.

Methylmercury exposure and neurological outcomes in Taiji residents accustomed to consuming whale meat.

Park RM, Bouchard MF, Baldwin M, Bowler R, Mergler D.

Respiratory manganese particle size, time-course and neurobehavioral outcomes in workers at a manganese alloy production plant.

Neurotoxicology 2014; online early: doi: 10.1016/j.neurotoxicology.2014.03.015:

Prakash S, Gosai F, Brahmbhatt J, Shah C.

Serotonin syndrome in patients with peripheral neuropathy: a diagnostic challenge.

Gen Hosp Psychiatry 2014; online early: doi: 10.1016/j.genhosppsych.2014.03.012:

Savage S, Ma D.

The neurotoxicity of nitrous oxide: the facts and “putative” mechanisms.

Sheehan MC, Burke TA, Navas-Acien A, Bresyse PN, McGready J, Fox MA.

Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review.

Bull World Health Organ 2014; 92: 254-269F.

Sinner B.

Anesthetic neurotoxicity in the newborns.

Is brain gliosis a characteristic of chronic methamphetamine use in the human?

Zhou Z, Ma D.

Anaesthetics-induced neurotoxicity in developing brain: an update on preclinical evidence.

Occupational toxicology

Ahmad SA, Khan MH, Khankdeker S, Sarwar AF, Yasmin N, Faruque MH, Yasmin R.

Blood lead levels and health problems of lead acid battery workers in Bangladesh.

Occupational toxicology

Gibb H, O'Leary KG. Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining community: a comprehensive review. Environ Health Perspect 2014; online early: doi: 10.1289/ehp.1307864:

Park RM, Baldwin M, Bouchard MF, Mergler D. Airborne manganese as dust vs. fume determining blood levels in workers at a manganese alloy production plant. Neurotoxicology 2014; online early: doi: 10.1016/j.neuro.2014.03.006:

Park RM, Bouchard MF, Baldwin M, Bowler R, Mergler D. Respiratory manganese particle size, time-course and neurobehavioral outcomes in workers at a manganese alloy production plant. Neurotoxicology 2014; online early: doi: 10.1016/j.neuro.2014.03.015:

Schaap K, Christopher-de Vries Y, Mason CK, De Vocht F, Portengen L, Kromhout H. Occupational exposure of healthcare and research staff to static magnetic stray fields from 1.5-7 Tesla MRI scanners is associated with reporting of transient symptoms. Occup Environ Med 2014; online early: doi: 10.1136/oemed-2013-101890:

Occupational toxicology

Walters GJ, Robertson AS, Moore VC, Burge PS. Cobalt asthma in metalworkers from an automotive engine valve manufacturer. Occup Med (Oxf) 2014; online early: doi: 10.1093/occmed/kqu043:

Ocular toxicity

Paediatric toxicology

Al-Abri SA, Yang HS, Olson KR. Unintentional pediatric ophthalmic tetrahydrozoline ingestion: case files of the medical toxicology fellowship at the University of California, San Francisco. J Med Toxicol 2014; online early: doi: 10.1007/s13181-014-0400-9:

Durmowicz EL. The impact of electronic cigarettes on the paediatric population. Tob Control 2014; 23 Suppl 2: ii41-ii46.
Paediatric toxicology

Paediatric toxicity

Moore S.
Review of opioid misuse among pediatric patients prescribed opioids for the treatment of chronic pain.

Morgan MK, Wilson NK, Chuang JC.
Exposures of 129 preschool children to organochlorines, organophosphates, pyrethroids, and acid herbicides at their homes and daycares in North Carolina.

Nacano LR, De Freitas R, Barbosa F, Jr.
Evaluation of seasonal dietary exposure to arsenic, cadmium and lead in schoolchildren through the analysis of meals served by public schools of Ribeirão Preto, Brazil.

Ostrea EM, Jr., Villanueva-Uy E, Bielawski D, Birn S, Janisse JJ.
Trends in long term exposure to propoxur and pyrethroids in young children in the Philippines.

Quinlan M.

Ram P, Kanchan T, Unnikrishnan B.
Pattern of acute poisonings in children below 15 years – A study from Mangalore, South India.
J Forensic Legal Med 2014; online early: doi: 10.1016/j.jflm.2014.04.001:

Rapoport Y, Benegas N, Kuchtey RW, Joos KM.
Acute myopia and angle closure glaucoma from topiramate in a seven-year-old: a case report and review of the literature.
BMC Pediatr 2014; 14: 96.

Rascoff N, Hayward K.
A142: implementation of a quality improvement initiative to reduce unintended fetal exposure to teratogenic medications among female pediatric rheumatology patients.

The influence of declining air lead levels on blood lead–air lead slope factors in children.
Environ Health Perspect 2014; online early: doi: 10.1289/ehp.1307072:

Roca M, Miralles-Marcos A, Ferré J, Pérez R, Yusà V.
Biomonitoring exposure assessment to contemporary pesticides in a school children population of Spain.
Environ Res 2014; 131: 77-85.

Salami IRS, As ZA, Marselina M, Roosmini D.
Respiratory health risk assessment of children living close to industrial areas in Indonesia.
Rev Environ Health 2014; 29: 139-42.

Sasaki J, Khalil PA, Chegondi M, Raszynski A, Meyer KG, Totapally BR.
Coral snake bites and envenomation in children: a case series.

Sinner B.
Anesthetic neurotoxicity in the newborns.

Su JA, Tang W, Rivero N, Bar-Cohen Y.
Prenatal exposure to methyldopa leading to hypertensive crisis and cardiac failure in a neonate.
Pediatrics 2014; online early: doi: 10.1542/peds.2013-1438:

Taraschenko OD, Powers KM.
Neurotoxin-induced paralysis: a case of tick paralysis in a 2-year-old child.
Pediatr Neurol 2014; online early: doi: 10.1016/j.pediatrneurol.2014.01.041:

Taylor CM, Golder J, Emond AM.
Girl or boy? Prenatal lead, cadmium and mercury exposure and the secondary sex ratio in the ALS PAC study.
Reprod Toxicol 2014; online early: doi: 10.1016/j.reprotox.2014.03.011:
*Thomson L, Paton J.
Oxygen toxicity.
Paediatr Respir Rev 2014; online early: doi: 10.1016/j.jprv.2014.03.003:

The nonmedical use of prescription medicines among high school students: a cross-sectional study in Southern China.
Drug Alcohol Depend 2014; online early: doi: 10.1016/j.drugalcdep.2014.04.004:

J Adolesc Health 2014; online early: doi: 10.1016/j.jadohealth.2014.02.021:

A cross-sectional study of well water arsenic and child IQ in Maine schoolchildren.
Environ Health 2014; 13: 23.

Woods JS, Heyer NJ, Russo JE, Martin MD, Pillai PB, Bammler TK, Fanin FM.
Genetic polymorphisms of catechol-O-methyltransferase modify the neurobehavioral effects of mercury in children.
J Toxicol Environ Health A 2014; 77: 293-312.

Wooff AD, Greco C.
Why can't we retire codeine?
Pediatrics 2014; 133: e1354-e1355.

Yang Y, Zhang X, Fu Y, Yang H.
Leptin and IL-8: two novel cytokines screened out from RayBio® human cytokine antibody array in childhood lead exposure.
Toxicol Lett 2014; online early: doi: 10.1016/j.toxlet.2014.03.009:

Yi Y, Lee JH, Suh ES.
Toxic epidermal necrolysis induced by lamotrigine treatment in a child.
Polymorphisms
Ann Hum Genet 2014; online early: doi: 10.1111/ahg.12064:
Wan H, Wu J, Sun P, Yang Y.
Investigation of delta-aminolevulinic acid dehydratase polymorphism affecting hematopoietic, hepatic and renal toxicity from lead in Han subjects of southwestern China.
Woods JS, Heyer NJ, Russo JE, Martin MD, Pillai PB, Bammler TK, Farin FM.
Genetic polymorphisms of catechol-O-methyltransferase modify the neurobehavioral effects of mercury in children.
J Toxicol Environ Health A 2014; 77: 293-312.

Reprotoxicity
Condorelli RA, Calogero AE, Vicari E, La Vignera S.
Chronic consumption of alcohol and sperm parameters: our experience and the main evidences.
Andrologia 2014; online early: doi: 10.1111/and.12284:
Lassen TH, Frederiksen H, Jensen TK, Petersen JH, Joensen UN, Main KM, Skakkebaek NE, Juul A, Jørgensen N, Andersson A-M.
Urinary bisphenol A levels in young men: association with reproductive hormones and semen quality.
Environ Health Perspect 2014; 122: 478-84.
Mesen TB, Steiner AZ.
Effect of vaginal lubricants on natural fertility.
Curr Opin Obstet Gynecol 2014; online early: doi: 10.1097/GCO.0000000000000066:
Moridi M, Ziaei S, Kazemnejad A.
Exposure to ambient air pollutants and spontaneous abortion.
Savitz DA, Klebanoff MA, Wellenius GA, Jensen ET, Longnecker MP.
Persistent organochlorines and hypertensive disorders of pregnancy.
Song Y, Jia ZC, Chen JY, Hu JX, Zhang LS.
Toxic effects of atrazine on reproductive system of male rats.
Wei Q, Li J, Li X, Zhang L, Shi F.
Reproductive toxicity in acrylamide-treated female mice.
Reprod Toxicol 2014; online early: doi: 10.1016/j.reprotox.2014.03.007:
Drinking-water disinfection by-products and semen quality: a cross-sectional study in China.
Environ Health Perspect 2014; online early: doi: 10.1289/ehp.1307067:

Risk assessment
Ecological risk assessment of the presence of pharmaceutical residues in a French national water survey.
Changiwat P, Lee BT, Kim KW, Sthiannopkao S.
Human health risk assessment for ingestion exposure to groundwater contaminated by naturally occurring mixtures of toxic heavy metals in the Lao PDR.
Environ Monit Assess 2014; online early: doi: 10.1007/s10661-014-3747-0:
Gehan SC, Blacker AM, Boverhof DR, Hanley TR, Jr., Hastings CE, Ladics GS, Lu H, O’Neal FO.
Retrospective evaluation of the impact of functional immunotoxicity testing on pesticide hazard identification and risk assessment.
Giesy JP, Soloman KR, Cutler GC, Giddings JM, Mackay D, Moore DR, Purdy J, Williams WM.
Ecological risk assessment of the uses of the organophosphorus insecticide chlorpyrifos, in the United States.
Pollution characteristics and health risk assessment of benzene homologues in ambient air in the northeastern urban area of Beijing, China.
Salami IRS, As ZA, Marselina M, Roosmini D.
Respiratory health risk assessment of children living close to industrial areas in Indonesia.
Schmidt CW.
Low-dose arsenic: in search of a risk threshold.
Environ Health Perspect 2014; 122: A130-A134.

Suicide
Bonsignore A, Sbiano S, Pozzi F, Ventura F, Dell’Erba A, Palmiere C.
A case of suicide by ingestion of caffeine.
Forensic Sci Med Pathol 2014; online early: doi: 10.1007/s12024-014-9571-6:
Garg A, Panda S, Dalvi F, Mehra S, Ray S, Singh VK.
Severe suicidal digoxin and propranolol toxicity with insulin overdose: a case report.
Paraschakis A, Michopoulos I, Douzenis A, Christodoulou C, Lykouras L, Koutsatsis F.
Switching suicide methods in order to achieve lethality: a study of Greek suicide victims.
Paulzen M, Henkel K, Tauber S, Reich A, Eap CB, Grünert G.
Plasma levels and cerebrospinal fluid penetration of venlafaxine in a patient with a nonfatal overdose during a suicide attempt.

MANAGEMENT
General
Abu MNI, Foxworth J.
Using toxidromes to assess poisoned patients.
Bothwell J, Skinner C, Della-Giustina D, Kang C, Cookman L, Laselle B.
Impact of decontamination therapy on ultrasound visualization of ingested pills.
MANAGEMENT

General

Anisodamine

Antidotes

Kuehn BM, Easy-to-use overdose antidote earns fast-track approval. JAMA 2014; 311: 1600.

Acetylcysteine

Antivenom

Chelating agents
Chelating agents
Giampreti A, Lonati D, Locatelli CA.
Chelation in suspected prosthetic hip-associated cobalt toxicity.

Hydroxocobalamin
Bebarta VS, Tanen DA, Boudreau S, Castaneda M, Zarzabal LA, Vargas T, Boss GR.
Intravenous cobinamide versus hydroxocobalamin for acute treatment of severe cyanide poisoning in a Swine (Sus scrofa) model.

Lipid emulsion therapy
Whiteman DM, Kushins SI.
Successful resuscitation with intralipid after marcaine overdose.

Methylthioninium chloride (Methylene blue)
Nguyen V, Malik DS, Howland MA.
Methylene blue protects against paraquat-induced acute lung injury in rats.
Int Immunopharmacol 2014; 20: 358.
Sungar WG.
Methylene blue used in the treatment of refractory shock resulting from drug poisoning.

Pralidoxime
Coulson JM.
The efficacy of pralidoxime in organophosphorus poisoning: a commentary.

Dextromethorphan
Afshar M, Birnbaum D, Golden C.
Review of dextromethorphan administration in 18 patients with subacute methotrexate central nervous system toxicity.
Pediatr Neurol 2014; online early: doi: 10.1016/j.pediatrneurol.2014.01.048:

Extracorporeal treatments

General
Ghannoum M, Hoffman RS, Mowry JB, Lavergne V.
Trends in toxic alcohol exposures in the United States from 2000 to 2013: a focus on the use of antidotes and extracorporeal treatments.
Semin Dial 2014; online early: doi: 10.1111/sdi.12237:

Ghannoum M, Roberts DM, Hoffman RS, Ouellet G, Roy L, Decker BS, Bouchard J.
A stepwise approach for the management of poisoning with extracorporeal treatments.
Semin Dial 2014; online early: doi: 10.1111/sdi.12228:

Extracorporeal treatment for tricyclic antidepressant poisoning: recommendations from the EXTRIP workgroup.
Semin Dial 2014; online early: doi: 10.1111/sdi.12227:

Haemoperfusion
Comparison between kidney and continuous plasma perfusion for paraquat elimination.

MARS
Experience of treatments of Amanita phalloides induced fulminant liver failure with molecular adsorbent recirculating system and therapeutic plasma exchange.
ASAIO J 2014; online early: doi: 10.1097/MAT.0000000000000083:

Plasma perfusion
Comparison between kidney and continuous plasma perfusion for paraquat elimination.

Glucarpidase
Cavone JL, Yang D, Wang A.
Glucarpidase intervention for delayed methotrexate clearance.

Insulin
Woodward C, Pourmand A, Mazer-Amirshahi M.
High dose insulin therapy, an evidence based approach to beta blocker/calcium channel blocker toxicity.

Magnesium sulphate
Pokharel K, Garg S, Bhattarai B, Khatiwada S.
Role of magnesium sulphate in the management of acute human poisoning by organophosphorus insecticides.

Opioid maintenance therapy
Mauger S, Fraser R, Gill K.
Utilizing buprenorphine-naloxone to treat illicit and prescription-opioid dependence.

Methadone
Demirci JR, Bogen DL, Klionsky Y.
Breastfeeding and methadone therapy: the maternal experience.
Subst Abuse 2014; online early: doi: 10.1080/08897077.2014.902417:

Naloxone
Eizadi-Mood N, Ozcan D, Sabzghabaee AM, Mirmoghaddamee P, Hedaiaty M.
Does naloxone prevent seizure in tramadol intoxicated patients?

Pawasauskas J, Stevens B, Youssef R, Kelley M.
Predictors of naloxone use for respiratory depression and oversedation in hospitalized adults.
Naloxone

Naltrexone

Topiramate

DRUGS

General

Bogstrand ST, Gjerde H. Which drugs are associated with highest risk for being arrested for driving under the influence? A case-control study. Forensic Sci Int 2014; online early: doi: 10.1016/j.forsciint.2014.03.027:

Acetaminophen (see paracetamol)

Alpha 2 agonists

Methyldopa

Amfetamines and MDMA (ecstasy)

Aminorex

Amines

Clarithromycin

Anticholinergic drugs
Benztropine

Scopolamine

Anticoagulants

Dabigatran

Rivaroxaban

Warfarin

Anticonvulsants
Carbamazepine
Lamotrigine
Yi Y, Lee JH, Suh ES.
Toxic epidermal necrolysis induced by lamotrigine treatment in a child.

Phenytoin
Imam SH, Landry K, Kaul V, Gambhir H, John D, Kloss B.
"Free" phenytoin toxicity.

Topiramate
Rapoport Y, Benegas N, Kuchtey RW, Joos KM.
Acute myopia and angle closure glaucoma from topiramate in a seven-year-old: a case report and review of the literature.

Antidepressants
Bupropion
Neuman G, Colantonio D, Delaney S, Szyrkuruk M, Ito S.
Bupropion and escitalopram during lactation.

Polat M, Uzun Ö, Örs I, Boran Ç.
Pityriasis rosea-like drug eruption due to bupropion: a case report.
Hum Exp Toxicol 2014; online early: doi: 10.1177/0960327113478444:

Antihypertensive drugs
Hetterich N, Lauterbach E, Stürer A, Weilemann LS, Lauterbach M.
Toxicity of antihypertensives in unintentional poisoning of young children.

Antimalarial drugs
Isoniazid
Boelsterli UA, Lee KK.

Gourishankar A, Navarro F, DebRoy AN, Smith KC.
Isoniazid hepatotoxicity with clinical and histopathology correlate.

Atropine
Kozelj G, Perharic L, Stanovnik L, Prosen H.
Simple validated LC-MS/MS method for the determination of atropine and scopolamine in plasma for clinical and forensic toxicological purposes.

Baclofen
Severe tinnitus induced by off-label baclofen.

Barbiturates
Pentobarbital
Schepers R, van der Voort PHJ, V, van Werven EW, Uges DRA, Franssen EIJ.
Legal issues in patient management of intoxicated patients: a case of auto-intoxication by intravenous pentobarbital injection.

Benzodiazepines
Giginis C, Tsantili-Kakoulidou A, Theocharis S.
Applying quantitative structure-activity relationship (QSAR) methodology for modeling postmortem redistribution of benzodiazepines and tricyclic antidepressants.

Gopalan P, Glance JB, Azzam PN.

Kyang YY, Park JT, Choi KH.
Serial monitoring of sedation scores in benzodiazepine overdose.

Swinnen I, Ghys K, Kerre S, Constandt L, Goossens A.
Occupational airborne contact dermatitis from benzo-diazepines and other drugs.
Contact Derm 2014; 70: 227-32.
Beta blockers
Woodward C, Pourmand A, Mazer-Amirshahi M.
High dose insulin therapy, an evidence based approach to beta blocker/calcium channel blocker toxicity.

Propranolol
Garg A, Panda S, Dalvi P, Mehra S, Ray S, Singh VK.
Severe suicidal digoxin and propranolol toxicity with insulin overdose: a case report.

Caffeine
Bonsignore A, Sblano S, Pozi F, Ventura F, Dell’Erba A, Palmiere C.
A case of suicide by ingestion of caffeine.

Calcium channel blockers
Lu H-C, Chen J-D, How C-K.
Periportal edema after cardiac arrest due to calcium channel blocker overdose.

Pfeffer AN, Williams SR.

Woodward C, Pourmand A, Mazer-Amirshahi M.
High dose insulin therapy, an evidence based approach to beta blocker/calcium channel blocker toxicity.

Amlodipine
Roos JC, Haridas AS.
Prolonged mydriasis after inadvertent topical administration of the calcium channel antagonist amlodipine: implications for glaucoma drug development.
Cutan Ocul Toxicol 2014; online early: doi: 10.3109/15569527.2014.896016:

Cannabis (marijuana)
Desai A, Mark K, Terplan M.
marijuana use and pregnancy: prevalence, associated behaviors, and birth outcomes.
Obstet Gynecol 2014; 123 Suppl 1: 46S.

Farrell M, Buchbinder R, Hall W.
Should doctors prescribe cannabinoids?
Br Med J 2014; 348:

Hooper SR, Woolley D, De Bellis MD.
Intellectual, neurocognitive, and academic achievement in abstinent adolescents with cannabis use disorder.
Psychopharmacology 2014; 231: 1467-77.

Huppertz LM, Kneisel S, Auwerter V, Kempf J.
A comprehensive library-based, automated screening procedure for 46 synthetic cannabinoids in serum employing liquid chromatography-quadrupole ion trap mass spectrometry with high-temperature electrospray ionization.

II LK, Pereira D, Latimer W.
Self-reported lifetime marijuana use and interleukin-6 levels in middle-aged African Americans.

Koppel BS, Brust JCM, Fife T, Bronstein J, Youssof S, Gronseth G, Gloss D.
Systematic review: efficacy and safety of medical marijuana in selected neurologic disorders.
Neurology 2014; 82: 1556-63.

Moti D, Ahmed M.
First use of K2, first seizure.

Salomonsen-Sautel S, Min S-J, Sakai JT, Thurstone C, Hopfer C.
Trends in fatal motor vehicle crashes before and after marijuana commercialization in Colorado.
Drug Alcohol Depend 2014; online early: doi: 10.1016/j.drugalcdep.2014.04.008:

Schuermeyer J, Salomonsen-Sautel S, Price RK, Balan S, Thurstone C, Min S-J, Sakai JT.

Cholinesterase inhibitors

Donepezil

Garlich FM, Balakrishnan K, Shah SK, Howland MA, Fong J, Nelson LS.
Prolonged altered mental status and bradycardia following pediatric donepezil ingestion.

Cocaine

Farhoudian A, Sadeghi M, Khoddami Vishteh HR, Moazen B, Fekri M, Rahimi Movaghar A.
Component analysis of Iranian crack; a newly abused narcotic substance in Iran.

Karch SB, Defraia B, Messerini L, Mari F, Vaiano F, Bertol E.
Aminorex associated with possible idiopathic pulmonary hypertension in a cocaine user.
Forensic Sci Int 2014; online early: doi: 10.1016/j.forsciint.2014.03.028:

Early life stress and tumor necrosis factor superfamily in crack cocaine withdrawal.

Nuijten M, Blanken P, Van den Brink W, Hendriks V.
Treatment of crack-cocaine dependence with topiramate: a randomized controlled feasibility trial in The Netherlands.
Drug Alcohol Depend 2014; 138: 177-84.

Roldan CJ.
Phenytoin toxicity from cocaine adulteration.
Colchicine
Anon.
Colchicine: cytotoxic drug overdose.
Prescrire Int 2014; 23: 71.
Brennard MG, Monroe K.
Colchicine toxicity.
Ertutur I, Polat E, Yoldas T, Aksin S, Özgür S, Örún UA, Karademir S.
Colchicine intoxication leading to complete AV block.
Am J Cardiol 2014; 113: S144.
Corticosteroids
Methylprednisolone
Methylprednisolone-induced liver injury: a diagnostic challenge.
Designer drugs
Armenian P, Gerona RR.
The electric kool-aid NBOMe test: LC-TOF/MS confirmed 2c-c-NBOMe (25C) intoxication at Burning Man.
Batisse A, Fortlas M, Bourgogne E, Grégoire M, Sec I, Djezzar S.
Case series of 21 synthetic cathinones abuse.
Elliott S, Evans J.
A 3 year review of new psychoactive substances in casework.
Forensic Sci Int 2014; online early: doi: 10.1016/j.forsciint.2014.04.017:
Meyer MR, Robert A, Maurer HH.
Toxicokinetics of novel psychoactive substances: characterization of N-acetyltransferase (NAT) isoenzymes involved in the phase II metabolism of 2C designer drugs.
Toxicol Lett 2014; online early: doi: 10.1016/j.toxlet.2014.03.010:
Musselman ME, Hampton JP.
"Not for human consumption": a review of emerging designer drugs.
Pharmacotherapy 2014; online early: doi: 10.1002/phar.1424:
O’Connell CW, Schnir AB, Hwang JQ, Cantrell FL.
Phenibut, the appearance of another potentially dangerous product in the United States.
Am J Med 2014; online early: doi: 10.1016/j.amjmed.2014.03.029:
Penders TM, Gestring RE.
Letter to the editor—Methylenedioxyxpyrovalerone as a cause of excited delirium.
Stevenson R, Tuddenham L.
Novel psychoactive substance intoxication resulting in attempted murder.
J Forensic Legal Med 2014; online early: doi: 10.1016/j.jflm.2014.04.007:
Tang MHY, Ching CK, Tsui MSH, Chu FKC, Mak TWL.
Two cases of severe intoxication associated with analytically confirmed use of the novel psychoactive substances 25B-NBOMe and 25C-NBOMe.
Clin Toxicol 2014; online early: doi: 10.3109/15563650.2014.909332:
Methyliopropamine
Lee HM, Wood DM, Hudson S, Archer JR, Dargan PI.
Acute toxicity associated with analytically confirmed recreational use of methiopropamine (1-((thiophen-2-yl)-2-methylaminopropane).
J Med Toxicol 2014; online early: doi: 10.1007/s13181-014-0399-y:
Digoxin
Garg A, Panda S, Dalvi P, Mehra S, Ray S, Singh VK.
Severe suicidal digoxin and propranolol toxicity with insulin overdose: a case report.
See I, Shehab N, Kegler SR, Laskar SR, Budnitz DS.
Emergency department visits and hospitalizations for digoxin toxicity United States, 2005 to 2010.
Circ Heart Fail 2014; 7: 28-34.
Ephedrone
Koksal A, Keskinkilic C, Sozmen MV, Dirican AC, Aysal F, Altunkaynak Y, Baybas S.
Evaluation of cognitive characteristics of patients developing manifestations of parkinsonism secondary to long-term ephedrone use.
Gamma hydroxybutyrate
Stomberg MW, Knudsen K, Stomberg H, Skärsäter I.
Symptoms and signs in interpreting gamma-hydroxybutyrate (GHB) intoxication – An explorative study.
Herbal medicines, ethnic remedies and dietary supplements
Cohen PA.
Hazards of hindsight – Monitoring the safety of nutritional supplements.
James K, Forester S, Lambert J.
Effect of dietary (-)-epigallocatechin-3-gallate (EGCG) pretreatment on the hepatotoxicity of acute high dose EGCG.
FASEB J 2014; 28: 270.3.
Kumar Das K, Khondokar S, Rahman A, Chakraborty A.
Unidentified drugs in traditional medications causing toxic epidermal necrolysis: a developing country experience.
Lopez AM, Kornegay J, Hendrickson RG.
Serotonin toxicity associated with Garcinia cambogia over-the-counter supplement.
J Med Toxicol 2014; online early: doi: 10.1007/s13181-014-0390-7:
Liver toxicity during temozolomide chemotherapy caused by Chinese herbs.
Herbal medicines, ethnic remedies and dietary supplements

Heroin (diacetylmorphine)

Hypnotics

Zolpidem

Paulke A, Wunder C, Toennes SW. Sleep self-intoxication and sleep driving as rare zolpidem-induced complex behaviour. Int J Legal Med 2014; online early: doi: 10.1007/s00414-014-0997-x:

Immunosuppressants

Azathioprine

Cyclophosphamide

Ivabradine

Ketamine

Lithium

Methylnithonium chloride (Methylene blue)

Monoclonal antibodies

Infliximab

Nicotine

NSAIDs

Clopidogrel

Diclofenac

Niu X, de Graaf IA, Langelaar-Makkink J, Horvatovich P, Groothuis GM. Diclofenac toxicity in human intestine ex vivo is not related to the formation of intestinal metabolites. Arch Toxicol 2014; online early: doi: 10.1007/s00204-014-1242-6:

Ibuprofen

Naproxen

Opioids

Opioids

Moore S.

Papoutsis I, Nikolaou P, Pistos C, Dona A, Stefanidou M, Spiliopoulou C, Athanasaels S.

Pawasauskas J, Stevens B, Youssef R, Kelley M.

Volkw N, Frieden TR, Hyde PS, Cha SS.

Wells K, DeCrane SK.

Codeine

Pilgrim JL, Drummer OH.

Woolf AD, Greco C.

Why can’t we retire codeine? Pediatrics 2014; 133: e1354-e1355.

Methadone

Chou R, Weimer MB, Dana T.

Dawson C, Paterson F, McFatter F, Buchanan D.

Kessler BD, Hoffman RS.

Salimi A, Okazi A, Sangsefidi J.

Nalbuphine

Siemianowski LA, Rosenheck JP, Whitman CB.

Naloxone

Pawasauskas J, Stevens B, Youssef R, Kelley M.

Siemianowski LA, Rosenheck JP, Whitman CB.

Waldfogel J, Nguyen K, Nesbit S, Gibbs H, Ortmann M.

Oxycodone

Taylor R, Jr., Pergolizzi J, Raffa R, Kinzler E.

Tramadol

Eizadi-Mood N, Ozcan D, Sabzghabaee AM, Mirmoghtadae P, Hedaiaty M.

Paracetamol (acetaminophen)

Anon.

Acetaminophen safety: be cautious but not afraid. Read labels and stick to guidelines to prevent this widely used pain and fever remedy from harming your liver. Harv Mens Health Watch 2014; 18: 3.

Bateman DN, Dear JW, Thanacoody HKR, Thomas SHL, Eddleston M.

Blieden M, Paramore LC, Shah D, Ben-Joseph R.

Bucaretchi F, Fernandes CB, Branco MM, de Capitani EM, Hyslop S, Caldas JP, Moreno CA, Porta G.

Paracetamol (acetaminophen)

Chomchai S, Lawattanarakul N, Chomchai C.
Acetaminophen Psion nomogram: a sensitive and specific clinical tool to predict hepatotoxicity secondary to acute acetaminophen overdose.

Dimitropoulos E, Ambizas EM.
Acetaminophen toxicity: what pharmacists need to know.
US Pharm 2014; 39: HS2-HSB.

Enwere OO, Eze CV.
Reported case of paracetamol and non-steroidal anti-inflammatory drug (NSAID)-induced seizures in a patient with HIV infection.

MicroRNA upregulation and acetaminophen protein adducts in acetaminophen toxicity in children.

Jones GRN.
The Alzheimer pandemic: is paracetamol to blame?
Inflamm Allergy Drug Targets 2014; 13: 2-14.

Józwiak-Bebenista M, Nowak JZ.
Paracetamol: mechanism of action, applications and safety concern.

Kessler B, Hoffman R.
Treatment of paracetamol overdose.

Susalla M.
Fatalities involving acetaminophen combination products reported to United States poison centers.

Wang G, Gong Y, Yan J, Chen Y, Burczynski FJ.
Hepatoprotective role of liver fatty acid binding protein in acetaminophen induced toxicity.
BMC Gastroenterol 2014; 14: 44.

Wong A, Graudins A, Kerr F, Greene SL.
Paracetamol toxicity: what would be the implications of a change in Australian treatment guidelines?

Zyoud SH, Al-Jabi SW, Sweiileh WM.
Hum Exp Toxicol 2014; online early: doi: 10.1177/0960377214531993:

Phenazopyridine

Holmes I, Berman N, Domingues V.
Case Rep Nephrol 2014; 72.

Proton pump inhibitors

Wang Q, Ljung R, Lagergren J, Lu Y.
Prognosis of concomitant users of clopidogrel and proton-pump inhibitors in a high-risk population for upper gastrointestinal bleeding.

Psychotropic drugs

Fischella M, Morini L, Sempio C, Groppi A.
Validation of a multi-analyte LC-MS/MS method for screening and quantification of 87 psychoactive drugs and their metabolites in hair.
Anal Bioanal Chem 2014; online early: doi: 10.1007/s00216-014-7763-2:

Palmer KT, D’Angelo S, Harris EC, Linaker C, Coggon D.
The role of mental health problems and common psychotropic drug treatments in accidental injury at work: a case–control study.

Salicylate

Madan RK, Levitt J.
A review of toxicity from topical salicylic acid preparations.

Preconception low-dose aspirin and pregnancy outcomes: results from the EAGeR randomised trial.
Lancet 2014; online early: doi: 10.1016/S0140-6736(14)60157-4:

Schwartz DW.
Persistent metabolic acidosis in dialysis patient after unintentional salicylate overdosing.

SSRIs

Harrington RA, Lee L-C, Crum RM, Zimmerman AW, Hertz-Picciotto I.
Prenatal SSRI use and offspring with autism spectrum disorder or developmental delay.
Pediatrics 2014; online early: doi: 10.1542/peds.2013-3406:

Citalopram

Edriss H, Pfarr M, Nugent K.
Citalopram overdose can cause noncardiac pulmonary edema.

Escitalopram

Neuman G, Colantonio D, Delaney S, Szyznaruk M, Ito S.
Bupropion and escitalopram during lactation.
Neuman G, Colantonio D, Delaney S, Szynkaruk M, Ito S.

Citalopram overdose can cause noncardiac pulmonary edema.

Escitalopram

Neuman G, Colantonio D, Delaney S, Szyznaruk M, Ito S.
Bupropion and escitalopram during lactation.
Ann Pharmacother 2014; online early: doi: 10.1542/peds.2013-3406:

Fluvoxamine

Mannou H, Ikemura M, Nakagawa Y, Nata M, Inoue H.
An autopsy case of serotonin toxicity resulting from suicidal administrations of fluvoxamine and lithium. Case report.

Venlafaxine

Murrell MD, Cruz DA, Javors MA, Thompson PM.
Distribution of venlafaxine, o-desmethylvenlafaxine, and o-desmethylvenlafaxine to venlafaxine ratio in postmortem human brain tissue.

Paulzen M, Henkel K, Tauber S, Reich A, Eap CB, Gründer G.
Plasma levels and cerebrospinal fluid penetration of venlafaxine in a patient with a nonfatal overdose during a suicide attempt.
Statins
Mygland A, Ljestad U, Krossnes BK.
Persisting weakness after withdrawal of a statin. BMJ Case Rep 2014; doi: 10.1136/bcr-2013-203094:

Substance abuse
Colucci SV, Perrino FJ, Shram M, Bartlett C, Wang Y, Harris SC.

Elliott S, Evans J.

Farhoodian A, Sadeghi M, Khoddami Vishteh HR, Moazen B, Fekri M, Rahimi Movaghar A.

Green AR, Nutt DJ.
Pharmacology should be at the centre of all preclinical and clinical studies on new psychoactive substances (recreational drugs). J Psychopharmacol 2014; online early: doi: 10.1177/0269881114528593:

Hagen EH, Roulette CJ, Sullivan RJ.

Hendriks JMA, Lagas JS, Daling R, Hooijberg JH, Schellens JHM, Beijnen JH, Brandjes DPM, Huitema ADR.

Levran O, Randesi M, Li Y, Rotrosen J, Ott J, Adelson M, Kreek MJ.

Metz VE, Brandt L, Unger A, Fischer G.

Pilgrim JL, Drummer OH.

Winslow MR, Mahendran R.

Suxamethonium
Shoib S, Dar MM.

Tetrahydrozoline
Al-Abri SA, Yang HS, Olson KR.
Unintentional pediatric ophthalmic tetrahydrozoline ingestion: case files of the medical toxicology fellowship at the University of California, San Francisco. J Med Toxicol 2014; online early: doi: 10.1007/s13181-014-0400-9:

Tricyclic antidepressants
Giaginis C, Tsantili-Kakoulidou A, Theocharis S.

Extracorporeal treatment for tricyclic antidepressant poisoning: recommendations from the EXTRIP workgroup. Semin Dial 2014; online early: doi: 10.1111/sdi.12227:

Vitamins
Calciferol
Vitamin D intoxication in two brothers: be careful to dietary supplements. J Pediatr Endocrinol Metab 2014; online early: doi: 10.1515/jpet-2013-0220:

Niacin
Ellsworth MA, Anderson KR, Hall DJ, Freese DK, Lloyd RM.

CHEMICAL INCIDENTS AND POLLUTION
Air pollution
Aydin S, Cingi C, San T, Ulusoy S, Orhan I.

Barrett JR.
Apples to apples: comparing PM$_{2.5}$ exposures and birth outcomes in understudied countries. Environ Health Perspect 2014; 122: A110.
Air pollution

Jalaludin B, Cowie C. Particulate air pollution and cardiovascular disease – It is time to take it seriously. Rev Environ Health 2014; 29: 129-32;

Kuehn BM. WHO: more than 7 million air pollution deaths each year. JAMA 2014; 311: 1486;

Tsai S-S, Chen C-C, Yang C-Y. Short-term effect of fine particulate air pollution on daily mortality: a case-crossover study in a Tropical City, Kaohsiung, Taiwan. J Toxicol Environ Health A 2014; 77: 467-77;

Wong JYY, De Vivo I, Lin X, Christiani DC. Cumulative PM_{2.5} exposure and telomere length in workers exposed to welding fumes. J Toxicol Environ Health A 2014; 77: 441-55;

Exhaust fumes

Exhaust fumes

PM$_{10}$

Pollution and hazardous waste

Water pollution

CHEMICALS

General

Acrylamide

Alcohol (ethanol)

Alcohol (ethanol)

Hendrikse J, Mermelstein R, Hooijberg JH, Schellens JHM, Beijnen JH, Brandjes DPM, Hulstema ADR.
Severe lactic acidosis in a diabetic patient after ethanol abuse and floor cleaner intake.

Kolikonda MK, Sriramula S, Joseph N, Dannaram S, Sharma A.
A case of mouthwash as a source of ethanol poisoning: is there a need to limit alcohol content of mouthwash?

Landen M, Roebel J, Naim T, Nielsen L, Sewell M.

Palmiere C, Augsburger M.

Snyder SR, Kivlehan SM, Collopy KT.
Acute alcohol poisoning: what can you do for the patient who's had too much?
EMS World 2014; 43: 36-42.

Spronk DB, Dumont GJ, Verkes RJ, De Bruijn ER.
The acute effects of MDMA and ethanol administration on electrophysiological correlates of performance monitoring in healthy volunteers.

Sutherland GT, Sheedy D, Sheahan PJ, Kaplan W, Kril JJ.
Comorbidities, confounders, and the white matter transcriptome in chronic alcoholism.

Alkylsiloxanes

Pulmonary toxicity following exposure to a tile coating product containing alkylsiloxanes. A clinical and toxicological evaluation.

Asbestos

Lemen RA, Frank AL, Koskolne CL, Weiss SH, Castlemo BL.
Asbestos exposure during home renovation in New South Wales.

Lim C-K, Chen Y-F.

Batteries

Liao W, Wen G, Zhang X.
Button battery intake as foreign body in Chinese children: review of case reports and the literature.

Benzene

Choi Y-H, Kim JH, Lee B-E, Hong Y-C.
Urinary benzene metabolite and insulin resistance in elderly adults.

Pollution characteristics and health risk assessment of benzene homologues in ambient air in the northeastern urban area of Beijing, China.

Trevisan P, Da Silva JN, Da Silva AP, Rosa RM, Paskulin GA, Thiesen FV, De Oliveira CAV, Zen PRG.
Evaluation of genotoxic effects of benzene and its derivatives in workers of gas stations.
Environ Monit Assess 2014; 186: 2195-204.

Bisphenol A

Glausiuss J.

Reproductibility of urinary bisphenol A concentrations measured during pregnancy in the Generation R Study.

Lassen TH, Frederiksen H, Jensen TK, Petersen JH, Joensen UN, Main KM, Skakkebaek NE, Juul A, Jergensen N, Andersson A-M.
Urinary bisphenol A levels in young men: association with reproductive hormones and semen quality.
Environ Health Perspect 2014; 122: 478-84.

Bisphenol A exposure and cardiac electrical conduction in excised rat hearts.

Brominated diphenyl ethers

Kim YR, Harden FA, Toms L-ML, Norman RE.
Health consequences of exposure to brominated flame retardants: a systematic review.

Carbon black

Hua J, Yin Y, Peng L, Du L, Geng F, Zhu L.
Acute effects of black carbon and PM2.5 on children asthma admissions: a time-series study in a Chinese city.

Carbon monoxide

Alenezi HS, Sairi SB, Alghamdi A.
Reply to: First degree AV block due to carbon monoxide or cyanide poisoning. Which of them?
J Saudi Heart Assoc 2014; 26: 125.

Brar R, Prasad A, Rana S.
Demystifying the fog – CT and MRI confirming the diagnosis of carbon monoxide poisoning by gas geysers.
Carbon monoxide
Chavouzis N, Pneumatikos I.
Carbon monoxide inhalation poisoning.

Chiew AL, Buckley NA.
Carbon monoxide poisoning in the 21st century.
Crit Care 2014; 18: 221.

Iwamoto K, Ikeda K, Mizumura S, Tachiki K, Yanagihashi M, Iwasaki Y.
Combined treatment of methylprednisolone pulse and memantine hydrochloride prompts recovery from neurological dysfunction and cerebral hypoperfusion in carbon monoxide poisoning: a case report.

Carbon monoxide-induced cardiomyopathy.

Sanaei-Zadeh H.
First degree AV block due to carbon monoxide or cyanide poisoning. Which of them?

Cerium chloride
Pulmonary toxicity in mice following exposure to cerium chloride.
Biol Trace Elem Res 2014; online early: doi: 10.1007/s12011-014-9953-3:

Contrast media
Azzouz M, Rømsing J, Thomsen HS.
Late adverse events after enhanced and unenhanced MRI and CT: a prospective study.

Golshahi J, Nasri H, Gharipour M.
Contrast-induced nephropathy; a literature review.

Pattharanitima P, Tasanarong A.
Pharmacological strategies to prevent contrast-induced acute kidney injury.

Cosmetics
Application of physiologically based toxicokinetic modelling in oral-to-dermal extrapolation of threshold doses of cosmetic ingredients.
Toxicol Lett 2014; online early; doi: 10.1016/j.toxlet.2014.03.013:

Crystalline silica
Deterioration of pulmonary function in stone quarry workers.

Cyanide
Alenezi HS, Salih SB, Alghamdi A.
Reply to: First degree AV block due to carbon monoxide or cyanide poisoning. Which of them?
J Saudi Heart Assoc 2014; 26: 125.

Bebarta VS, Tanen DA, Boudreau S, Castaneda M, Zarzabal LA, Vargas T, Boss GR.
Intravenous cobinamide versus hydroxocobalamin for acute treatment of severe cyanide poisoning in a Swine (Sus scrofa) model.
Ann Emerg Med 2014; online early:
doi: 10.1016/j.annemergmed.2014.02.009:

Kopari N, Pham TN, Honari SE, Moroseos T, Cacers M, Gibran NS.
Cyanide antidote for patients with suspected inhalation injuries: is this intervention associated with acute kidney injury?

Sanaei-Zadeh H.
First degree AV block due to carbon monoxide or cyanide poisoning. Which of them?

Diisocyanates
Genetic variants in the major histocompatibility complex class I and class II genes are associated with diisocyanate-induced asthma.

Dioxin
Maternal diet, prenatal exposure to dioxin and allergies in both children and adults.

Dust
Exposure to house dust phthalates in relation to asthma and allergies in both children and adults.

E-cigarettes
Callahan-Lyon P.
Electronic cigarettes: human health effects.
Tob Control 2014; 23 Suppl 2: ii36-ii40.

Chen I-L, Husten CG.
Introduction to tobacco control supplement.
Tob Control 2014; 23 Suppl 2: ii1-i3.

Cheng T.
Chemical evaluation of electronic cigarettes.
Tob Control 2014; 23 Suppl 2: ii11-ii17.

Durmowicz EL.
The impact of electronic cigarettes on the paediatric population.
Tob Control 2014; 23 Suppl 2: ii41-ii46.
E-cigarettes
Farsalinos KE, Romagna G, Tsiapras D, Kyrzopoulos S, Voudris V.
Characteristics, perceived side effects and benefits of electronic cigarette use: a worldwide survey of more than 19,000 consumers.

Kamerow D.
The poisonous "juice" in e-cigarettes.
Br Med J 2014; 348:

Lowry JA.
Electronic cigarettes: another pediatric toxic hazard in the home?
Clin Toxicol 2014; online early:
doi: 10.3109/15563650.2014.918998:

Orr MS.
Electronic cigarettes in the USA: a summary of available toxicology data and suggestions for the future.
Tob Control 2014; 23 Suppl 2: ii18-ii22.

Ethylene glycol
Ghannoum M, Hoffman RS, Mowry JB, Lavergne V.
Trends in toxic alcohol exposures in the United States from 2000 to 2013: a focus on the use of antidotes and extracorporeal treatments.
Semin Dial 2014; online early: doi: 10.1111/sdi.12237:

Su Z, Stone RW, Zhu Y.
Positive propylene glycol result in a patient with ethylene glycol poisoning.

Flavonoids
Isoquercitrin
Valentova K, Vrba J, Bancirova M, Ulrichova J, Kren V.
Isoquercitrin: pharmacology, toxicology, and metabolism.
Food Chem Toxicol 2014; online early:
doi: 10.1016/j.fct.2014.03.018:

Formaldehyde
Coggan D, Ntani G, Harris EC, Palmer KT.
Upper airway cancer, myeloid leukemia, and other cancers in a cohort of British chemical workers exposed to formaldehyde.
Am J Epidemiol 2014; online early:
doi: 10.1093/aje/kwu049:

Golden R, Valentini M.
Formaldehyde and methylene glycol equivalence: critical assessment of chemical and toxicological aspects.

Henna
Glatstein MM, Rimon A, Danino D, Scolnik D.
Severe allergic contact dermatitis from temporary "Black Henna" coloring of the hair during religious cultural celebrations: three different cases, same history.
Am J Ther 2014; online early:
doi: 10.1097/MJT.0b013e318296f141:

Isopropanol
Mahajan PS, Mathew JJ, Jayaram AP, Negi VC, Hmaira MMA.
Magnetic resonance imaging features of brain and spinal cord injury in a fatal case of isopropanol intoxication.

Kerosene
Chaudhary SC, Sawlani KK, Yathish BE, Singh A, Kumar S, Parihar A.
Pyopneumothorax following kerosene poisoning.

Kombucha tea
Kovacevic Z, Davidovic G, Vuckovic-Filipovic J, Janicijevic-Petrovic MA, Janicijevic K, Popovic A.
A toxic hepatitis caused the kombucha tea – Case report.

Magnets
Quinlan M.

Metalworking fluids
Picciotto S, Chevrier J, Balmes J, Eisen EA.
Hypothetical interventions to limit metalworking fluid exposures and their effects on COPD mortality: g-estimation within a public health framework.

Methanol
Ghannoum M, Hoffman RS, Mowry JB, Lavergne V.
Trends in toxic alcohol exposures in the United States from 2000 to 2013: a focus on the use of antidotes and extracorporeal treatments.
Semin Dial 2014; online early: doi: 10.1111/sdi.12237:

Gupta N, Sonambekar AA, Daksh SK, Tomar L.
A rare presentation of methanol toxicity.
Ann Indian Acad Neurol 2014; 17: 142.

Jung H, Idor A, Bucur MD, Jung A, Kereszteszi AA.
A rare case of fatal materno-fetal methanol poisoning.
Volatile congeners analysis as forensic evidence.

Loza R, Rodriguez D.
A case of methanol poisoning in a child.

Methylene glycol
Golden R, Valentini M.
Formaldehyde and methylene glycol equivalence: critical assessment of chemical and toxicological aspects.

Mineral fibres
Boffetta P, Donaldson K, Moolgavkar S, Mandel JS.
A systematic review of occupational exposure to synthetic vitreous fibers and mesothelioma.

Raymond LW.
Conglomerate pulmonary fibrosis in a mica bagger: 15-year follow-up.
Nanoparticles
Carlin DJ.
Nanotoxicology and nanotechnology: new findings from the NIEHS and Superfund Research Program scientific community.

Fu PP.
Introduction to the special issue: nanomaterials-toxicology and medical applications.

Herman A, Herman AP.
Nanoparticles as antimicrobial agents: their toxicity and mechanisms of action.

Iavicoli I, Leso V, Manno M, Schulte PA.
Biomarkers of nanomaterial exposure and effect: current status.

Kennedy IM.
Nanotechnology and toxicology.

Li Y, Zhang Y, Yan B.
Nanotoxicity overview: nano-threat to susceptible populations.

Sengupta J, Ghosh S, Datta P, Gomes A, Gomes A.
Physiologically important metal nanoparticles and their toxicity.

Zhang M, Jin J, Chang Y-N, Chang X, Xing G.
Toxicological properties of nanomaterials.

Nitrobenzene
Vaidyanathan R, Adarsh SP, Ashok HG.
Acute methaemoglobinemia in nitrobenzene poisoning.

Nitrous oxide
Hu M-H, Huang G-S, Wu C-T, Hung P-C.
Nitrous oxide myelopathy in a pediatric patient.

Savage S, Ma D.
The neurotoxicity of nitrous oxide: the facts and “putative” mechanisms.

Oxygen
Thomson L, Paton J.
Oxygen toxicity.
Paediatr Respir Rev 2014; online early: doi: 10.1016/j.prrv.2014.03.003:

Paraphenylenediamine
Edwards A, Coman G, Blickenstaff N, Maibach H.
Dermatotoxicologic clinical solutions: hair dying in hair dye allergic patients?
Cutan Ocul Toxicol 2014; online early: doi: 10.3109/15569527.2014.894520:
Sanchez L, Harish, Kannan, Siddalingeshwara, Alvarez-Uria G.
Mortality associated with hair dye (Super Vasmol) poisoning: experience from an intensive care unit in rural India.

Phthalate esters
Exposure to house dust phthalates in relation to asthma and allergies in both children and adults.

Cakmak S, Dales RE, Hebbner C, Saravanabhadran G.
The association between urinary phthalates and lung function.

Polychlorinated biphenyls
Govarts E, Casas M, Schoeters G, Eggens M, Valvi D, Nieuwenhuijsen M, Bonde JP, on behalf of the ENRIECO,OBELIX,and CHICOS Consortia.
Prenatal PCB-153 exposure and decreased birth weight: the role of gestational weight gain.
Environ Health Perspect 2014; 122: A89.

Verner M-A, Andersen ME, Clewell III HJ, Longnecker MP.
Prenatal PCB-153 exposure and decreased birth weight: Verner et al. respond.
Environ Health Perspect 2014; 122: A89-A90.

Polycyclic aromatic hydrocarbons
Time trends of polycyclic aromatic hydrocarbon exposure in New York city from 2001 to 2012: assessed by repeat air and urine samples.
Environ Res 2014; 131C: 95-103.

Radiation
Ansoborlo E.
Poisonous polonium.

Gorayski P, Pinkham MB, Muir JB, Pullar AP.
Severe acute radiation dermatitis in a patient with argyria.

Smoke
Effects of woodsmoke exposure on airway inflammation in rural Guatemalan women.

Tobacco
Zyoud SH, Al-Jabi SW, Swileh WM.
Bibliometric analysis of scientific publications on waterpipe (narghile, shisha, hookah) tobacco smoking during the period 2003–2012.
Trichloroethylene

White spirit

METALS
General

Aluminium

Arsenic

Arsenic

Interaction between arsenic exposure from drinking water and genetic susceptibility in carotid intima-media thickness in Bangladesh.

Cadmium

Aziz R, Rafiq MT, Yang J, Liu D, Lu L, He Z, Daud MK, Li T, Yang X.

Impact assessment of cadmium toxicity and its bioavailability in human cell lines (Caco-2 and HL-7702).

Effects of lead and cadmium co-exposure on bone mineral density in a Chinese population.

Bone 2014; 63: 76-80.

Nacano LR, De Freitas R, Barbosa F, Jr.

Evaluation of seasonal dietary exposure to arsenic, cadmium and lead in schoolchildren through the analysis of meals served by public schools of Ribeirão Preto, Brazil.

Cobalt

Devlin J, Pomerleau AC.

Interpreting cobalt values after hip replacement: should we treat the number or the patient?

Clin Toxicol 2014; online early.

Dijkman MA, De Vries I, Meulenbelt J.

Interpreting cobalt blood concentrations in hip implant patients – Let us not, yet, skip the uncertainty factor.

Clin Toxicol 2014; online early.

Fatemi SJ, Khajoee nejad F, Zandevakili T, Dahoe balooch F.

Chelation of cobalt by combining deferasirox, deferoxprone and desferoxamine in rats.

Toxin Rev 2014; online early.

Giampretti A, Lonati D, Locatelli CA.

Chelation in suspected prosthetic hip-associated cobalt toxicity.

Paustenbach D, Galbraith D, Finley B.

Authors’ response to letters to the editor re: Interpreting cobalt blood concentrations in hip implant patients.

Clin Toxicol 2014; online early.

Walters GI, Robertson AS, Moore VC, Burge PS.

Cobalt asthma in metalworkers from an automotive engine valve manufacturer.

 Occup Med (Oxf) 2014; online early.

Lead

Ahmad SA, Khan MH, Khandker S, Sarwar AF, Yasmin N, Faruquee MH, Yasmin R.

Blood lead levels and health problems of lead acid battery workers in Bangladesh.

Assessment of blood lead levels among children aged ≤5 years - Zamfara state, Nigeria, June-July 2012.

Gidlow D.

A case of tetraethyl lead poisoning.

Occup Med (Oxf) 2014; 64: 229.

Association of blood lead level with neurological features in 972 children affected by an acute severe lead poisoning outbreak in Zamfara state, northern Nigeria.

Ji JS, Schwartz J, Sparrow D, Hu H, Weisskopf MG.

Occupational determinants of cumulative lead exposure: analysis of bone lead among men in the VA normative aging study.

Kalahahti RB, Barman T, Rajmohan HR.

The relationship between blood lead levels and morbidities among workers employed in a factory manufacturing lead-acid storage battery.

Liu J, Gao D, Chen Y, Jing J, Hu Q, Chen Y.

Lead exposure at each stage of pregnancy and neurobehavioral development of neonates.

Neurotoxicology 2014; online early.

doi: 10.1016/j.neuro.2014.03.003.

Mazumdar I, Goswami K.

Congenital lead poisoning: an unusual presentation.

McCloskey K, Hardikar W, Cranswick N.

Case series: elevated lead levels following ingestion of sinkers.

Michalak I, Wolowiec P, Chojnacka K.

Determination of exposure to lead of subjects from southwestern Poland by human hair analysis.

Nacano LR, De Freitas R, Barbosa F, Jr.

Evaluation of seasonal dietary exposure to arsenic, cadmium and lead in schoolchildren through the analysis of meals served by public schools of Ribeirão Preto, Brazil.

The influence of declining air lead levels on blood lead–air lead slope factors in children.

Environ Health Perspect 2014; online early.

doi: 10.1289/ehp.1307072.
Lead
Seaton A.
Saturnism: an old story of poisoning.
QJM 2014; online early: doi: 10.1093/qjmed/hcu070:

Sharma R, Mogra S.
Lead as a developmental toxicant: a review.

Alleviation of lead toxicity by 5-aminolevulinic acid is related to elevated growth, photosynthesis, and suppressed ultrastructural damages in oilseed rape.

Wan H, Wu J, Sun P, Yang Y.
Investigation of delta-aminolevulinic acid dehydratase polymorphism affecting hematopoietic, hepatic and renal toxicity from lead in Han subjects of southwestern China.

Yang Y, Zhang X, Fu Y, Yang H.
Leptin and IL-8: two novel cytokines screened out from RayBio® human cytokine antibody array in childhood lead exposure.
Toxicol Lett 2014; online early: doi: 10.1016/j.toxlet.2014.03.009:

Lithium
Basile G, Epifanio A, Mandraffino R, Trifirò G.
Parkinsonism and severe hypothyroidism in an elderly patient: a case of lithium toxicity due to pharmacological interactions.
J Clin Pharm Ther 2014; online early: doi: 10.1111/jcpt.12162:

El-Bakush A, Fuller A, Tello W, Nugent K.
Diverse complications in a patient with lithium toxicity.

Manganese
Avelino MA, Fusao EF, Pedrosa JL, Arita JH, Ribeiro RT, Pinho RS, Tuschil K, Barsottini OG, Masruha MR.
Inherited manganism: the "cock-walk" gait and typical neuroimaging features.
J Neurol Sci 2014; online early: doi: 10.1016/j.jns.2014.03.057:

Park RM, Baldwin M, Bouchard MF, Mergler D.
Airborne manganese as dust vs. fume determining blood levels in workers at a manganese alloy production plant.
Neurotoxicology 2014; online early: doi: 10.1016/j.neuro.2014.03.006:

Park RM, Bouchard MF, Baldwin M, Bowler R, Mergler D.
Respiratory manganese particle size, time-course and neurobehavioral outcomes in workers at a manganese alloy production plant.
Neurotoxicology 2014; online early: doi: 10.1016/j.neuro.2014.03.015:

Puri BK.
Neurological and neuroimaging signs of reversible Parkinsonism associated with manganese exposure.

Mercury
Anon.
Mercury exposure on school bus.
JAMA 2014; 311: 1283.

Gibb H, O'Leary KG.
Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining community: a comprehensive review.
Environ Health Perspect 2014; online early: doi: 10.1289/ehp.1307864:

Golding J, Steer CD, Lowery T, Jones R, Hibbeln JR.
Fish consumption and blood mercury levels: Golding et al. respond.
Environ Health Perspect 2014; 122: A120-A121.

Groth EI.
Fish consumption and blood mercury levels.
Environ Health Perspect 2014; 122: A120.

Marinho JS, Lima MO, de Oliveira Santos EC, De Jesus IM, Pinheiro MDCN, Alves CN, Muller RCS.
Mercury speciation in hair of children in three communities of the Amazon, Brazil.

Nakamura M, Hachiya N, Murata KY, Nakanishi I, Kondo T, Yasutake A, Miyamoto KI, Ser PH, Omi S, Furusawa H, Watanabe C, Usuki F, Sakamoto M.
Methylmercury exposure and neurological outcomes in Taiji residents accustomed to consuming whale meat.

Sheehan MC, Burke TA, Navas-Acien A, Breysse PN, McGready J, Fox MA.
Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review.
Bull World Health Organ 2014; 92: 254-269F.

Woods JS, Heyer NJ, Russo JE, Martin MD, Pillai PB, Bammler TK, Farin FM.
Genetic polymorphisms of catechol-O-methyltransferase modify the neurobehavioral effects of mercury in children.
J Toxicol Environ Health A 2014; 77: 293-312.

Polonium
Ansoborlo E.
Poisonous polonium.

Vanadium
Overview of environmental and occupational vanadium exposure and associated health outcomes: an article based on a presentation at the 8th international symposium on vanadium chemistry, biological chemistry, and toxicology, Washington DC, August 15-18, 2012.

Influence of vanadium on serum lipid and lipoprotein profiles: a population-based study among vanadium exposed workers.
PESTICIDES

General

Morgan MK, Wilson NK, Chuang JC.

Exposures of 129 preschool children to organochlorines, organophosphates, pyrethroids, and acid herbicides at their homes and daycares in North Carolina.

National toxicovigilance for pesticide exposures resulting in health care contact – An example from the UK’s National Poisons Information Service.
Clin Toxicol 2014; online early: doi: 10.3109/15563650.2014.908203:

Aluminium phosphide

Mehrpour O, Abdolahi M, Davood M.

Oxidative stress and hyperglycemia in aluminium phosphide poisoning.

Carbamate insecticides

Propoxur

Ostrea EM, Jr., Villanueva-Uy E, Bielawski D, Bim S, Janisse J3.

Trends in long term exposure to propoxur and pyrethroids in young children in the Philippines.

Herbicides

Sulfonyleurea herbicides in an agricultural catchment basin and its adjacent wetland in the St. Lawrence River basin.

Upadhyaya AC, Nageshwar M, Krishna A, Shetty M, Venkateshwar P, Narendra AMVR.

Diagnostic and therapeutic challenges in management of uncommon herbicide pesticide poisoning-Nims experience.

Atrazine

Song Y, Jia ZC, Chen JY, Hu JX, Zhang LS.

Toxic effects of atrazine on reproductive system of male rats.

Diuron

da Rocha MS, Arnold LL, de Oliveira MLCS, Catalano SMI, Cardoso APF, Pontes MGN, Ferrucio B, Dodmane PR, Cohen SM, de Camargo JL.

Glyphosate

Comparison of the in vivo and in vitro genotoxicity of glyphosate isopropylamine salt in three different organisms.

Vidyadhara, Sivakumar MN, Suresh Kumar T, Hisham M.

Atypical presentation of glyphosate poisoning.

Napropamide

The chiral separation and enantioselective degradation of the chiral herbicide napropamide.

Insecticides (general)

Nutter TJ, Cooper BY.

Persistent modification of Na+,1.9 following chronic exposure to insecticides and pyridostigmine bromide.
Toxicol Appl Pharmacol 2014; online early: doi: 10.1016/j.taap.2014.04.005:

Organochlorine pesticides

General

Kaushik CP, Kaushik A, Sharma HR.

Seasonal trends in organochlorine pesticide residues in raw bovine milk from rural areas of Haryana, India.

Selected organochlorine pesticides and polychlorinated biphenyls in urban atmosphere of Pakistan: concentration, spatial variation and sources.
Environ Sci Technol 2014; online early: doi: 10.1021/es404711n:

Parween M, Ramanathan A, Killare PS, Raju NJ.

Persistence, variance and toxic levels of organochlorine pesticides in fluvial sediments and the role of black carbon in their retention.
Environ Sci Pollut Res Int 2014; online early: doi: 10.1007/s11356-014-2351-6:

Savitz DA, Klebanoff MA, Wellniesius GA, Jensen ET, Longnecker MP.

Persistent organochlorines and hypertensive disorders of pregnancy.

DDE

Bible E.

High serum levels of the pesticide metabolite DDE – A potential environmental risk factor for Alzheimer disease.

Prenatal exposure to DDE and PCB 153 and respiratory health in early childhood: a meta-analysis.
Epidemiology 2014; online early: doi: 10.1097/EDE.0000000000000097:

DDT

Warner M, Wesselink A, Harley KG, Bradman A, Kogut K, Eskenazi B.

Prenatal exposure to dichlorodiphenyltrichloroethene and obesity at 9 years of age in the CHAMACOS study cohort.
Am J Epidemiol 2014; online early: doi: 10.1093/aje/kwu046:
Dieldrin

Stern AH.
Hazard identification of the potential for dieldrin carcinogenicity to humans.

Lindane

Ramabhatta S, Sunilkumar G, Somashekar C.
Lindane toxicity following accidental oral ingestion.
Indian J Dermatol Venereol Leprol 2014; 80: 181-2.

Organophosphorus insecticides

General

Behera SK.
An experience of organophosphorus [sic] poisoning in intensive care unit.

Chen X-P, Chen W-F, Wang D-W.
Prenatal organophosphates exposure alternates the cleavage plane orientation of apical neural progenitor in developing neocortex.

Coulson JM.
The efficacy of pralidoxime in organophosphorus poisoning: a commentary.

Gaur N, Rungta N, Munjal M, Choudhary A, Badagujar K.
Zero tolerance for mortality in organophosphorus poisoning in intensive care unit.

Giesy JP, Solomon KR, Cutler GC, Giddings JM, Mackay D, Moore DR, Purdy J, Williams WM.
Ecological risk assessment of the uses of the organophosphorus insecticide chlorpyrifos, in the United States.

Organophosphate-pyrethroid combination pesticides may be associated with increased toxicity in human poisoning compared to either pesticide alone.

Koutroulakis D, Sifakis S, Tzatzarakis NM, Alegakis HA, Theodoropoulou E, Kavvalakis M, Kappou D, Tsatsakis MA.
Dialkyl phosphates in amniotic fluid as a biomarker of fetal exposure to organophosphates in Crete, Greece; association with fetal growth.
Reprod Toxicol 2014; online early; doi: 10.1016/j.reprotox.2014.03.010.

Kumar MR, Vignan Kumar GP, Babu PR, Kumar SS, Subrahmanyam BV, Veeraprasad M, Rammohan P, Srinivas M, Agrawal A.
A retrospective analysis of acute organophosphorus poisoning cases admitted to the tertiary care teaching hospital in South India.

Lee DH, Jung KY, Choi YH, Cheon YJ.
Body mass index (BMI) as a prognostic factor in organophosphate poisoned patients.

Manivachagan, Ebenezer K, Jacob JE.
Intensive care management of organophosphate poisoning without oximes—Experience from a tertiary care center.
Indian J Crit Care Med 2014; 18: S34.

Pokharel K, Garg S, Bhattarai B, Khatiwada S.
Role of magnesium sulphate in the management of acute human poisoning by organophosphorus insecticides.

Senthilkumaran S, Menezes RG, Ananth C, Thirumalaikolundusubramanian P.
Red cell distribution width in organophosphate insecticide poisoning: utility or futility?

Shoib S, Dar MM.
Adverse interaction between suxamethonium and organophosphorus compounds: a challenge to both psychiatrist and anesthesiologist.

Sri R, Janarthanan V, Senthil S, Thirumalaikolundusubramanian P.
Factors in predicting the need of endotracheal intubation in organophosphorus compounds poisoning victims.

Wang W, Chen Q-F, Ruan H-L, Chen K, Chen B, Wen J-M.
Can anisodamine be a potential substitute for high-dose atropine in cases of organophosphate poisoning?

Wang W, Chen Q-F, Li Q-B, Wu Y-B, Chen K, Chen B, Wen J-M.
Efficiency of anisodamine for organophosphorus-poisoned patients when atropinization cannot be achieved with high doses of atropine.

Prenatal exposure to organophosphate pesticides and neurobehavioral development of neonates: a birth cohort study in Shenyang, China.

Chlorpyrifos

Short communication: Interaction of bovine milk protein with chlorpyrifos.

Mackay D, Giesy JP, Solomon KR.
Fate in the environment and long-range atmospheric transport of the organophosphorus insecticide, chlorpyrifos and its oxon.
Rev Environ Contam Toxicol 2014; 231: 35-76.

Solomon KR, Williams WM, Mackay D, Purdy J, Giddings JM, Giesy JP.
Properties and uses of chlorpyrifos in the United States.
Rev Environ Contam Toxicol 2014; 231: 13-34.
Dichlorvos
Mishra M, Sharma A, Shukla AK, Kumar R, Dwivedi UN, Choudhuri DK.
Trail of genotoxicity of dichlorvos in *Drosophila melanogaster*. Mutat Res 2014; online early: doi: 10.1016/j.mrgentox.2014.02.004:

Paraquat and diquat
Izumi Y, Ezumi M, Takada-Takator Y, Akaie A, Kume T.

Nguyen V, Malik DS, Howland MA.

Prasanna L, Pasha SKA, Vijaykumar, Rao MN, Suhasini T.

Wei T, Tian W, Liu F, Xie G.

Wunnapuk K, Mohammed F, Gawarammana I, Liu X, Verbeeck RK, Buckley NA, Roberts MS, Musuamba FT.

Pyrethroid insecticides

General
Organophosphate-pyrethroid combination pesticides may be associated with increased toxicity in human poisoning compared to pesticide alone. Clin Toxicol 2014; online early: doi: 10.3109/15563650.2014.909933:

Ostrea EM, Jr., Villanueva-Uy E, Bielawski D, Birn S, Janisse J.

Trunnelle KJ, Bennett DH, Ahn KC, Schenker MB, Tancredi DJ, Gee SJ, Stoecklin-Marots MD, Hammock BD.

Flumethrin
Basi Z, Eraslan G.

Rodenticides
Xiang L, Min Z, Alan Z, Yaohui W.

Sodium monofluoroacetate
Kim JB, Jang JW, Kim JH.

CHEMICAL WARFARE, BIOLOGICAL WARFARE AND RIOT CONTROL AGENTS

Biological warfare

Anthrax
Bradley JS, Peacock G, Krug SE, Bower WA, Cohn AC, Meaney-Delman D, Pavia AT, AAP Committee on Infectious Diseases and Disaster Preparedness Advisory Council.

Bradley JS, Peacock G, Krug SE, Bower WA, Cohn AC, Meaney-Delman D, Pavia AT, AAP Committee on Infectious Diseases and Disaster Preparedness Advisory Council.

Chemical warfare

Agent orange
Anon.

Committee to Review the Health Effects in Vietnam Veterans of Exposure to Herbicides, Board on the Health of Select Populations.

Lurker PA, Berman F, Clapp RW, Stellman J.

Mustard gas
DNA damage in internal organs after cutaneous exposure to sulphur mustard. Toxicol Appl Pharmacol 2014; online early: doi: 10.1016/j.taap.2014.04.003:

Panahi Y, Ghanei M, Vahedi E, Ghazvini A, Parvin S, Madanchi N, Bagheri M, Sahelkbar A.
Nerve agents

Pyridostigmine

Nutter TJ, Cooper BY.
Persistent modification of Na ,1.9 following chronic exposure to insecticides and pyridostigmine bromide.

VX

Graziati S, Christin D, Daulon S, Breton P, Perrier N, Tayssé L.
Effects of repeated low-dose exposure of the nerve agent VX on monoamine levels in different brain structures in mice.

Peng X, Perkins MW, Simons J, Wittiol AM, Rodriguez AM, Benjamin BM, Devorak J, Sciuto AM.
Acute pulmonary toxicity following inhalation exposure to aerosolized VX in anesthetized rats.

Riot control agents

Kanat S, Dinc Asarcikli L, Demir M, Ucar Elalmis O, Sahin D, Gursoy HT, Ileri M.
Transient heart block is a result of pepper gas inhalation as a chemical weapon.

Am J Cardiol 2014; 113: 585.

Kearney T, Hiatt P, Birdsall E, Smollin C.
Pepper spray injury severity: ten-year case experience of a Poison Control System.

PLANTS

General

De D, Handa S.
Relevance of plant series of allergens (Chemotechnique Diagnostics) in north Indian patients with suspected occupational contact dermatitis to plants.

J Am Acad Dermatol 2014; 70: AB70.

Mushrooms

Shiitake dermatitis: toxic or allergic reaction?

Kalciç M, Gursoy MO, Yesin M, Ocal L, Eren H, Karakoyun S, Astarcioglu MA, Özkan M.
Coronary vasospasm causing acute myocardial infarction: an unusual result of wild mushroom poisoning.

Llorente-Mirandes T, Barbero M, Rubio R, López-Sánchez JF.
Occurrence of inorganic arsenic in edible Shiitake (Lentinula edodes) products.

Chemical and toxicological investigations of a previously unknown poisonous European mushroom Tricholoma terreum.

Experience of treatments of Amanita phalloides induced fulminant liver failure with molecular adsorbent recirculating system and therapeutic plasma exchange.

Salvia divinorum

Winslow MR, Mahendoran R.
From divination to madness: features of acute intoxication with Salvia use.

Teucrium chamaedrys L

(Wild germander)

Nencini C, Galluzzi P, Pipiti F, Menchiarri A, Michelini L.
Hepatotoxicity of Teucrium chamaedrys L. decocation: role of difference in the harvesting area and preparation method.

ANIMALS

Fish/marine poisoning

Thottumkara AP, Parsons WH, Du Bois J.
Saxitoxin.

Ciguatera

Gaboriau M, Ponton D, Darius HT, Choinain M.
Ciguatera fish toxicity in French Polynesia: size does not always matter.

Toxicon 2014; 84: 41-50.

Hymenoptera

Casale TB, Burks AW.
Hymenoptera-sting hypersensitivity.

Scorpions

García-Bournissen F, Gonzalez N, Altcheh J.
Studying neglected diseases in children: antiserum for Indian red scorpion envenomation.

Arch Dis Child 2014; early online: doi: 10.1136/archdischild-2014-306077:

Miranda CH, Maio KT, Moreira HT, Moraes M, Custodio VDCC, Pazin-Ali A, Cupo P.
Sustained ventricular tachycardia and cardiogenic shock due to scorpion envenomation.

Snake bites

Chippaux J-P, Postigo JR.
Appraisal of snakebite incidence and mortality in Bolivia.

Toxicon 2014; early online: doi: 10.1016/j.toxicon.2014.03.007:

Chippaux JP.
About snake bites in children at the Fez University Hospital (Morocco).

Medicale et Sante Tropicales 2014; 24: 111.

Epidemiology of venomous and semi-venomous snakebites (Ophidia: Viperidae, Colubridae) in the Kashan city of the Isfahan province in Central Iran.

Snake bites

Ishita D, Solu MG, Pavan D, Prashant C, Deepak A.
Snakebite envenomation: a comprehensive evaluation of severity, treatment and outcome; correlation between timing of anti-snake venom administration and complications in snakebite, a study of 100 cases in new civil hospital, Surat, Gujarat.

Monzavi SM, Dadpour B, Afshari R.
Snakebite management in Iran: devising a protocol.

Paul T, Seenivasan R.
Targeting Mangrove species as an alternative for snake bite envenomation therapy with special reference to phospholipase A2 inhibitory activity: a mini review.

Rahmani AH, Jalali A, Alemzadeh-Ansari MH, Tafazoli M, Rahim F.
Dosage comparison of snake anti-venom coagulopathy.

Razavi S, Weinstein SA, Bates DJ, Alfred S, White J.
The Australian mulga snake (*Pseudechis australis; Elapidae*): report of a large case series of bites and review of current knowledge.
Toxicon 2014; online early; doi: 10.1016/j.toxicon.2014.04.003:

Coral snake

Sasaki J, Khalil PA, Chegondi M, Raszynski A, Meyer KG, Totapally BR.
Coral snake bites and envenomation in children: a case series.

Crotalinae (Pit vipers)

Torrez PPQ, Said R, Quiroga MMM, Duarte MR, Franca FOS.
Forest pit viper (*Bothrops bilineata bilineata*) bite in the Brazilian Amazon with acute kidney injury and persistent thrombocytopenia.
Toxicon 2014; online early; doi: 10.1016/j.toxicon.2014.04.001:

Rattlesnake

Askari R, Farahi V, Koshy SK, Weber KT.
Heart, muscle and liver necrosis following envenomation by timber rattle snake.

Levine M, Ruha A-M, Padilla-Jones A, Gerkin R, Thomas SM.
Bleeding following rattlesnake envenomation in patients with preenvenomation use of antiplatelet or anticoagulant medications.

Viperinae (True vipers)

Mion G, Larréché S.
Which antivenom for *Cerastes* envenoming?
Medecine et Sante Tropicales 2014; 24: 105-6.

Bilateral renal cortical necrosis with end-stage renal failure following envenoming by *Proatheris superciliaris*: a case report.
Toxicon 2014; 84: 36-40.

Spiders

Çiçek Yılmaz D, Karabulut Ü, Gündes A, Çelik A.
Rapidly progressive and reversible myocarditis after a spider bite.
Am J Cardiol 2014; 113: S133-S134.

McKeown N, Vetter RS, Hendrickson RG.
Verified spider bites in Oregon (USA) with the intent to assess hobo spider venom toxicity.
Toxicon 2014; 84: 51-5.

Tick bite

Taraschenko OD, Powers KM.
Neurotoxin-induced paralysis: a case of tick paralysis in a 2-year-old child.
Pediatr Neurol 2014; online early; doi: 10.1016/j.pediatrneurol.2014.01.041:

INDEX

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen</td>
<td>31</td>
</tr>
<tr>
<td>Acetylsalicylate</td>
<td>23</td>
</tr>
<tr>
<td>Acrylamide</td>
<td>35</td>
</tr>
<tr>
<td>Agent orange</td>
<td>45</td>
</tr>
<tr>
<td>Air pollution</td>
<td>33</td>
</tr>
<tr>
<td>Alcoholic drinks</td>
<td>35</td>
</tr>
<tr>
<td>Alkylsiloxyanes</td>
<td>36</td>
</tr>
<tr>
<td>Alkyl pyridines</td>
<td>25</td>
</tr>
<tr>
<td>Aluminium</td>
<td>40</td>
</tr>
<tr>
<td>Aluminium phosphide</td>
<td>43</td>
</tr>
<tr>
<td>Amphetamines</td>
<td>26</td>
</tr>
<tr>
<td>Aminorex</td>
<td>26</td>
</tr>
<tr>
<td>Amlodipine</td>
<td>28</td>
</tr>
<tr>
<td>Anaesthetics</td>
<td>26</td>
</tr>
<tr>
<td>Analytical toxicology</td>
<td>11</td>
</tr>
<tr>
<td>Animals, general</td>
<td>46</td>
</tr>
<tr>
<td>Anisodamine</td>
<td>23</td>
</tr>
<tr>
<td>Anthracyclines</td>
<td>26</td>
</tr>
<tr>
<td>Antibiotics</td>
<td>26</td>
</tr>
<tr>
<td>Anticholinergic drugs</td>
<td>26</td>
</tr>
<tr>
<td>Anticoagulants</td>
<td>26</td>
</tr>
<tr>
<td>Anticonvulsants</td>
<td>26</td>
</tr>
<tr>
<td>Antidepressants</td>
<td>27</td>
</tr>
<tr>
<td>Antidotes</td>
<td>23</td>
</tr>
<tr>
<td>Antihypertensive drugs</td>
<td>27</td>
</tr>
<tr>
<td>Antimalarial drugs</td>
<td>27</td>
</tr>
<tr>
<td>Antineoplastics</td>
<td>27</td>
</tr>
<tr>
<td>Antitubercular drugs</td>
<td>27</td>
</tr>
<tr>
<td>Arsenic</td>
<td>23</td>
</tr>
<tr>
<td>Asbestos</td>
<td>36</td>
</tr>
<tr>
<td>Atrazine</td>
<td>43</td>
</tr>
<tr>
<td>Term</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Atropine</td>
<td>27</td>
</tr>
<tr>
<td>Azathioprine</td>
<td>30</td>
</tr>
<tr>
<td>Baclofen</td>
<td>27</td>
</tr>
<tr>
<td>Barbiturates</td>
<td>27</td>
</tr>
<tr>
<td>Batteries</td>
<td>36</td>
</tr>
<tr>
<td>Benzene</td>
<td>36</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>27</td>
</tr>
<tr>
<td>Benztropine</td>
<td>26</td>
</tr>
<tr>
<td>Beta blockers</td>
<td>28</td>
</tr>
<tr>
<td>Biological warfare</td>
<td>45</td>
</tr>
<tr>
<td>Biomarkers</td>
<td>11</td>
</tr>
<tr>
<td>Bisphenol A</td>
<td>36</td>
</tr>
<tr>
<td>Brominated diphenyl ethers</td>
<td>36</td>
</tr>
<tr>
<td>Bupivacaine</td>
<td>26</td>
</tr>
<tr>
<td>Bupropion</td>
<td>27</td>
</tr>
<tr>
<td>Cadmium</td>
<td>41</td>
</tr>
<tr>
<td>Caffeine</td>
<td>28</td>
</tr>
<tr>
<td>Calcinol</td>
<td>33</td>
</tr>
<tr>
<td>Calcium channel blockers</td>
<td>28</td>
</tr>
<tr>
<td>Cannabis</td>
<td>28</td>
</tr>
<tr>
<td>Carbamate insecticides</td>
<td>43</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>26</td>
</tr>
<tr>
<td>Carbon black</td>
<td>36</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>36</td>
</tr>
<tr>
<td>Carcinogenicity</td>
<td>11</td>
</tr>
<tr>
<td>Cardiotoxicity</td>
<td>11</td>
</tr>
<tr>
<td>Cerium chloride</td>
<td>27</td>
</tr>
<tr>
<td>Chelating agents</td>
<td>23</td>
</tr>
<tr>
<td>Chemical warfare, general</td>
<td>45</td>
</tr>
<tr>
<td>Chemicals, general</td>
<td>35</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>44</td>
</tr>
<tr>
<td>Cholinesterase inhibitors</td>
<td>28</td>
</tr>
<tr>
<td>Cigauetera</td>
<td>46</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>27</td>
</tr>
<tr>
<td>Citalopram</td>
<td>32</td>
</tr>
<tr>
<td>Chlorothromycin</td>
<td>26</td>
</tr>
<tr>
<td>Clopidogrel</td>
<td>30</td>
</tr>
<tr>
<td>Cobalt</td>
<td>41</td>
</tr>
<tr>
<td>Cocaine</td>
<td>28</td>
</tr>
<tr>
<td>Codeine</td>
<td>31</td>
</tr>
<tr>
<td>Codeine</td>
<td>27</td>
</tr>
<tr>
<td>Contrast media</td>
<td>37</td>
</tr>
<tr>
<td>Coral snake</td>
<td>47</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>29</td>
</tr>
<tr>
<td>Cosmetics</td>
<td>37</td>
</tr>
<tr>
<td>Crotaline</td>
<td>47</td>
</tr>
<tr>
<td>Crystalline silica</td>
<td>37</td>
</tr>
<tr>
<td>Cyanide</td>
<td>37</td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>30</td>
</tr>
<tr>
<td>Dabigatran</td>
<td>26</td>
</tr>
<tr>
<td>DDE</td>
<td>43</td>
</tr>
<tr>
<td>DDT</td>
<td>43</td>
</tr>
<tr>
<td>Dermal toxicity</td>
<td>12</td>
</tr>
<tr>
<td>Designer drugs</td>
<td>29</td>
</tr>
<tr>
<td>Developmental toxicology</td>
<td>13</td>
</tr>
<tr>
<td>Dextromethorphan</td>
<td>24</td>
</tr>
<tr>
<td>Dicacetylmorphine</td>
<td>30</td>
</tr>
<tr>
<td>Dichlorvos</td>
<td>45</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>30</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>44</td>
</tr>
<tr>
<td>Dietary supplements</td>
<td>29</td>
</tr>
<tr>
<td>Digoxin</td>
<td>29</td>
</tr>
<tr>
<td>Disocyanates</td>
<td>37</td>
</tr>
<tr>
<td>Disopyramates</td>
<td>37</td>
</tr>
<tr>
<td>Dioxin</td>
<td>37</td>
</tr>
<tr>
<td>Diquat</td>
<td>45</td>
</tr>
<tr>
<td>Diuron</td>
<td>43</td>
</tr>
<tr>
<td>Donepezil</td>
<td>28</td>
</tr>
<tr>
<td>Driving under the influence</td>
<td>29</td>
</tr>
<tr>
<td>Drugs, general</td>
<td>25</td>
</tr>
<tr>
<td>Dust</td>
<td>37</td>
</tr>
<tr>
<td>E-cigarettes</td>
<td>37</td>
</tr>
<tr>
<td>Ecstasy</td>
<td>26</td>
</tr>
<tr>
<td>Ephedrine</td>
<td>29</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>14</td>
</tr>
<tr>
<td>Escitalopram</td>
<td>32</td>
</tr>
<tr>
<td>Ethanol</td>
<td>35</td>
</tr>
<tr>
<td>Ethnic remedies</td>
<td>29</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>38</td>
</tr>
<tr>
<td>Exhaust fumes</td>
<td>24</td>
</tr>
<tr>
<td>Extracorporeal treatments</td>
<td>24</td>
</tr>
<tr>
<td>Fish/marine poisoning</td>
<td>46</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>38</td>
</tr>
<tr>
<td>Flumethrin</td>
<td>45</td>
</tr>
<tr>
<td>Fluvoxamine</td>
<td>32</td>
</tr>
<tr>
<td>Forensic toxicology</td>
<td>15</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>38</td>
</tr>
<tr>
<td>Gamma hydroxybutyrate</td>
<td>29</td>
</tr>
<tr>
<td>Genotoxicity</td>
<td>15</td>
</tr>
<tr>
<td>Glucarpidase</td>
<td>24</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>43</td>
</tr>
<tr>
<td>Haemoperfusion</td>
<td>24</td>
</tr>
<tr>
<td>Hazardous waste</td>
<td>35</td>
</tr>
<tr>
<td>Henna</td>
<td>30</td>
</tr>
<tr>
<td>Hepatotoxicity</td>
<td>15</td>
</tr>
<tr>
<td>Herbal medicines</td>
<td>29</td>
</tr>
<tr>
<td>Herbicides</td>
<td>43</td>
</tr>
<tr>
<td>Heroin</td>
<td>30</td>
</tr>
<tr>
<td>Hydroxocobalamin</td>
<td>24</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>27</td>
</tr>
<tr>
<td>Hypnotics</td>
<td>30</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>30</td>
</tr>
<tr>
<td>Immunosuppressants</td>
<td>30</td>
</tr>
<tr>
<td>Infliximab</td>
<td>30</td>
</tr>
<tr>
<td>Inhalation toxicity</td>
<td>16</td>
</tr>
<tr>
<td>Insecticides</td>
<td>43</td>
</tr>
<tr>
<td>Insulin</td>
<td>24</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>27</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>38</td>
</tr>
<tr>
<td>Isoquercitrin</td>
<td>38</td>
</tr>
<tr>
<td>Ivabradine</td>
<td>30</td>
</tr>
<tr>
<td>Kerosene</td>
<td>38</td>
</tr>
<tr>
<td>Ketamine</td>
<td>30</td>
</tr>
<tr>
<td>Kinetics</td>
<td>16</td>
</tr>
<tr>
<td>Kombucha tea</td>
<td>38</td>
</tr>
<tr>
<td>Lamotrigine</td>
<td>27</td>
</tr>
<tr>
<td>Lead</td>
<td>41</td>
</tr>
<tr>
<td>Lindane</td>
<td>44</td>
</tr>
<tr>
<td>Lipid emulsion therapy</td>
<td>24</td>
</tr>
<tr>
<td>Lithium</td>
<td>30, 42</td>
</tr>
<tr>
<td>Magnesium sulphate</td>
<td>38</td>
</tr>
<tr>
<td>Magnets</td>
<td>38</td>
</tr>
<tr>
<td>Management, general</td>
<td>22</td>
</tr>
<tr>
<td>Manganese</td>
<td>42</td>
</tr>
<tr>
<td>Marijuana</td>
<td>28</td>
</tr>
<tr>
<td>MARS</td>
<td>24</td>
</tr>
<tr>
<td>MDMA</td>
<td>26</td>
</tr>
<tr>
<td>Mechanisms</td>
<td>16</td>
</tr>
<tr>
<td>Medication errors</td>
<td>16</td>
</tr>
<tr>
<td>Mercury</td>
<td>42</td>
</tr>
<tr>
<td>Metabolism</td>
<td>16</td>
</tr>
<tr>
<td>Metals, general</td>
<td>40</td>
</tr>
<tr>
<td>Metalworking fluids</td>
<td>38</td>
</tr>
<tr>
<td>Methadone</td>
<td>24, 31</td>
</tr>
<tr>
<td>Methanol</td>
<td>38</td>
</tr>
<tr>
<td>Methiopropamine</td>
<td>29</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>27</td>
</tr>
<tr>
<td>Metyldopa</td>
<td>25</td>
</tr>
<tr>
<td>Methylene blue</td>
<td>24, 30</td>
</tr>
<tr>
<td>Methylene glycol</td>
<td>38</td>
</tr>
<tr>
<td>Methylprednisolone</td>
<td>38</td>
</tr>
<tr>
<td>Methylthioninium chloride</td>
<td>24, 30</td>
</tr>
<tr>
<td>Mineral fibres</td>
<td>38</td>
</tr>
<tr>
<td>Monoclonal antibodies</td>
<td>30</td>
</tr>
<tr>
<td>Mushrooms</td>
<td>46</td>
</tr>
<tr>
<td>Substance</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Mustard gas</td>
<td>45</td>
</tr>
<tr>
<td>Nalbuphine</td>
<td>31</td>
</tr>
<tr>
<td>Naloxone</td>
<td>24, 31</td>
</tr>
<tr>
<td>Naltrexone</td>
<td>25</td>
</tr>
<tr>
<td>Nanoparticles</td>
<td>39</td>
</tr>
<tr>
<td>Napropamide</td>
<td>43</td>
</tr>
<tr>
<td>Naproxen</td>
<td>30</td>
</tr>
<tr>
<td>Nephrotoxicity</td>
<td>16</td>
</tr>
<tr>
<td>Nerve agents</td>
<td>46</td>
</tr>
<tr>
<td>Neurotoxicity</td>
<td>17</td>
</tr>
<tr>
<td>Nicacin</td>
<td>33</td>
</tr>
<tr>
<td>Nicotine</td>
<td>30</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>39</td>
</tr>
<tr>
<td>Nitrous oxide</td>
<td>39</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>30</td>
</tr>
<tr>
<td>Occupational toxicity</td>
<td>17</td>
</tr>
<tr>
<td>Ocular toxicity</td>
<td>19</td>
</tr>
<tr>
<td>Opioids</td>
<td>30</td>
</tr>
<tr>
<td>Organochlorine pesticides, general</td>
<td>43</td>
</tr>
<tr>
<td>Organophosphorus insecticides, general</td>
<td>44</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>31</td>
</tr>
<tr>
<td>Oxygen</td>
<td>39</td>
</tr>
<tr>
<td>Paediatric toxicology</td>
<td>19</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>31</td>
</tr>
<tr>
<td>Paraphenylenediamine</td>
<td>39</td>
</tr>
<tr>
<td>Paraquat</td>
<td>45</td>
</tr>
<tr>
<td>Pentobarbital</td>
<td>27</td>
</tr>
<tr>
<td>Pesticides, general</td>
<td>43</td>
</tr>
<tr>
<td>Phenazopyridine</td>
<td>32</td>
</tr>
<tr>
<td>Phenyltoxin</td>
<td>27</td>
</tr>
<tr>
<td>Phthalate esters</td>
<td>39</td>
</tr>
<tr>
<td>Pit vipers</td>
<td>47</td>
</tr>
<tr>
<td>Plants, general</td>
<td>46</td>
</tr>
<tr>
<td>Plasma perfusion</td>
<td>24</td>
</tr>
<tr>
<td>PM10</td>
<td>35</td>
</tr>
<tr>
<td>Pollution</td>
<td>35</td>
</tr>
<tr>
<td>Polonium</td>
<td>42</td>
</tr>
<tr>
<td>Polonium</td>
<td>42</td>
</tr>
<tr>
<td>Polychlorinated biphenyls</td>
<td>39</td>
</tr>
<tr>
<td>Polycyclic aromatic hydrocarbons</td>
<td>39</td>
</tr>
<tr>
<td>Polymorphisms</td>
<td>22</td>
</tr>
<tr>
<td>Pralidoxime</td>
<td>24</td>
</tr>
<tr>
<td>Propranolol</td>
<td>28</td>
</tr>
<tr>
<td>Proton pump inhibitors</td>
<td>32</td>
</tr>
<tr>
<td>Psychotropic drugs</td>
<td>32</td>
</tr>
<tr>
<td>Pyrethroid insecticides, general</td>
<td>45</td>
</tr>
<tr>
<td>Pyridostigmine</td>
<td>46</td>
</tr>
<tr>
<td>Radiation</td>
<td>39</td>
</tr>
<tr>
<td>Rattlesnake</td>
<td>47</td>
</tr>
<tr>
<td>Reprotoxicity</td>
<td>22</td>
</tr>
<tr>
<td>Riot control agents</td>
<td>46</td>
</tr>
<tr>
<td>Risk assessment</td>
<td>22</td>
</tr>
<tr>
<td>Rivaroxaban</td>
<td>26</td>
</tr>
<tr>
<td>Rodenticides</td>
<td>45</td>
</tr>
<tr>
<td>Smoke</td>
<td>39</td>
</tr>
<tr>
<td>Snake bites</td>
<td>46</td>
</tr>
<tr>
<td>Sodium monofluoroacetate</td>
<td>45</td>
</tr>
<tr>
<td>Spiders</td>
<td>47</td>
</tr>
<tr>
<td>SSRIs</td>
<td>32</td>
</tr>
<tr>
<td>Statins</td>
<td>33</td>
</tr>
<tr>
<td>Substance abuse</td>
<td>33</td>
</tr>
<tr>
<td>Suicide</td>
<td>22</td>
</tr>
<tr>
<td>Suxamethonium</td>
<td>33</td>
</tr>
<tr>
<td>Temazolam</td>
<td>27</td>
</tr>
<tr>
<td>Tetrahydrozoline</td>
<td>33</td>
</tr>
<tr>
<td>Teucrium chamaedrys</td>
<td>46</td>
</tr>
<tr>
<td>Tick bite</td>
<td>47</td>
</tr>
<tr>
<td>Tobacco</td>
<td>39</td>
</tr>
<tr>
<td>Topiramate</td>
<td>25, 27</td>
</tr>
<tr>
<td>Toxicology, general</td>
<td>11</td>
</tr>
<tr>
<td>Tramadol</td>
<td>31</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>40</td>
</tr>
<tr>
<td>Tricyclic antidepressants</td>
<td>33</td>
</tr>
<tr>
<td>True vipers</td>
<td>47</td>
</tr>
<tr>
<td>Vanadium</td>
<td>42</td>
</tr>
<tr>
<td>Venlafaxine</td>
<td>32</td>
</tr>
<tr>
<td>Viperinae</td>
<td>47</td>
</tr>
<tr>
<td>Vitamins</td>
<td>33</td>
</tr>
<tr>
<td>VX</td>
<td>46</td>
</tr>
<tr>
<td>Warfarin</td>
<td>26</td>
</tr>
<tr>
<td>Water pollution</td>
<td>35</td>
</tr>
<tr>
<td>White spirit</td>
<td>40</td>
</tr>
<tr>
<td>Wild germander</td>
<td>46</td>
</tr>
<tr>
<td>Zolpidem</td>
<td>30</td>
</tr>
</tbody>
</table>

Current Awareness in Clinical Toxicology is produced monthly for the American Academy of Clinical Toxicology by the Birmingham Unit of the UK National Poisons Information Service, with contributions from the Cardiff, Edinburgh, and Newcastle Units.

The NPIS is commissioned by Public Health England