ANNOUNCEMENT

For more than 25 years, Current Awareness in Clinical Toxicology has been circulated monthly to staff of the UK National Poisons Information Service and, via the International Clinical Toxicological Societies [the American Academy of Clinical Toxicology, The European Association of Poisons Centres and Clinical Toxicologists and, more recently, to the Asia-Pacific Association of Medical Toxicology], to readers in Poisons Centres worldwide. Spontaneous and regular comments from readers have testified to the value of this monthly citation of the published literature.

The publication of Current Awareness in Clinical Toxicology has been made possible by the generous financial support of the UK Departments of Health, via Public Health England most recently. The decision has now been taken that this support cannot continue as there are greater financial priorities within the National Poisons Information Service. This issue of Current Awareness in Clinical Toxicology is therefore the last.

I would like to acknowledge the massive support of Sarah Cage and Damian Ballam in ensuring the timely publication of Current Awareness in Clinical Toxicology over three decades and to thank readers for their strong support.

If readers would like a digital version of the underlying archive to March 2018, which contains some 130,000 citations, please let me know. This can be offered either in Reference Manager™ or EndNote™ format.

Allister Vale
Editor-in-Chief
allistervale@npis.org
Drug-associated pulmonary arterial hypertension

Introduction

While pulmonary arterial hypertension remains an uncommon diagnosis, various therapeutic agents are recognized as important associations. These agents are typically categorized into "definite", "likely", "possible", or "unlikely" to cause pulmonary arterial hypertension, based on the strength of evidence.

Objective

This review will focus on those therapeutic agents where there is sufficient literature to adequately comment on the role of the agent in the pathogenesis of pulmonary arterial hypertension.

Methods

A systematic search was conducted using PubMed covering the period September 1970-2017. The search term utilized was "drug induced pulmonary hypertension". This resulted in the identification of 853 peer-reviewed articles including case reports. Each paper was then reviewed by the authors for its relevance. The majority of these papers (599) were excluded as they related to systemic hypertension, chronic obstructive pulmonary disease, human immunodeficiency virus, pulmonary fibrosis, alternate differential diagnosis, treatment, basic science, adverse effects of treatment, and pulmonary hypertension secondary to pulmonary embolism.

Agents affecting serotonin metabolism (and related anorexigens)

Anorexigens, such as aminorex, fenfluramine, benfluorex, phenylpropanolamine, and dexfenfluramine were the first class of medications recognized to cause pulmonary arterial hypertension. Although most of these medications have now been withdrawn worldwide, they remain important not only from a historical perspective, but because their impact on serotonin metabolism remains relevant. Selective serotonin reuptake inhibitors, tryptophan, and lithium, which affect serotonin metabolism, have also been implicated in the development of pulmonary arterial hypertension.

Interferon and related medications

Interferon alfa and sofosbuvir have been linked to the development of pulmonary arterial hypertension in patients with other risk factors, such as human immunodeficiency virus co-infection.

Antiviral therapies

Sofosbuvir has been associated with two cases of pulmonary artery hypertension in patients with multiple risk factors for its development. Its role in pathogenesis remains unclear.
Small molecule tyrosine kinase inhibitors

Small molecule tyrosine kinase inhibitors represent a relatively new class of medications. Of these, dasatinib has the strongest evidence in drug-induced pulmonary arterial hypertension, considered a recognized cause. Nilotinib, ponatinib, carfilzomib, and ruxolitinib are newer agents, which paradoxically have been linked to both cause and treatment for pulmonary arterial hypertension.

Monoclonal antibodies and immune regulating medications

Several case reports have linked some monoclonal antibodies and immune modulating therapies to pulmonary arterial hypertension. There are no large series documenting an increased prevalence of pulmonary arterial hypertension complicating these agents; nonetheless, trastuzumab emtansine, rituximab, bevacizumab, cyclosporine, and leflunomide have all been implicated in case reports.

Opioids and substances of abuse

Buprenorphine and cocaine have been identified as potential causes of pulmonary arterial hypertension. The mechanism by which this occurs is unclear. Tramadol has been demonstrated to cause severe, transient, and reversible pulmonary hypertension.

Chemotherapeutic agents

Alkylating and alkylating-like agents, such as bleomycin, cyclophosphamide, and mitomycin have increased the risk of pulmonary veno-occlusive disease, which may be clinically indistinct from pulmonary arterial hypertension. Thalidomide and paclitaxel have also been implicated as potential causes.

Miscellaneous medications

Protamine appears to be able to cause acute, reversible pulmonary hypertension when bound to heparin. Amiodarone is also capable of causing pulmonary hypertension by way of recognized side effects.

Conclusions

Pulmonary arterial hypertension remains a rare diagnosis, with drug-induced causes even more uncommon, accounting for only 10.5% of cases in large registry series. Despite several agents being implicated in the development of PAH, the supportive evidence is typically limited, based on case series and observational data. Furthermore, even in the drugs with relatively strong associations, factors that predispose an individual to PAH have yet to be elucidated.

Full text available from: https://doi.org/10.1080/15563650.2018.1447119

Interventions for paracetamol (acetaminophen) overdose

Abstract and full text available from: https://doi.org/10.1002/14651858.CD003328.pub3

Acute carbon monoxide toxicity in a paediatric cohort: analysis of 10 boys poisoned during a scuba diving lesson

Background

Recent public health strategies have contributed towards a significant reduction in the
incidence of carbon monoxide (CO) poisonings. When events do occur, symptoms can vary dramatically depending on the carboxyhaemoglobin level and individual factors. Most reports to date focus on individual cases or larger retrospective reviews of diverse cohorts. There are very few reports of CO exposure related to scuba diving activities.

Methods

We describe the clinical sequelae experienced by 10 children who were exposed to CO during a scuba diving lesson. We collate patient data in the context of a severely affected individual and employ exponential decay calculations to estimate half-life.

Results

Six of the patients exposed to CO were symptomatic. The most severely affected individual suffered multi-organ effects, including myocardial damage, and required intensive care unit admission. The remaining cohort demonstrated notable clinical variability. The half-life of carboxyhaemoglobin on high flow oxygen in this cohort was 75 min, in line with previous estimates.

Conclusion

This work described an uncommon clinical presentation, representing the largest single cohort of its kind. This work exemplifies the variable symptomatology of CO toxicity, of which clinicians should be alert to if patients fall ill after scuba diving.

Full text available from: https://doi.org/10.1080/15563650.2018.1444175

Alterations in mitochondrial respiration and reactive oxygen species in patients poisoned with carbon monoxide treated with hyperbaric oxygen

High dose insulin for beta-blocker and calcium channel-blocker poisoning: 17 years of experience from a single poison center

Abstract and full text available from: https://doi.org/10.1016/j.ajem.2018.02.004

Risks linked to accidental inoculation of humans with veterinary vaccines: a 7-year prospective study.

Aim

Accidental inoculation of humans with veterinary vaccines can lead to early and late complications. The aim of our study is to describe these complications and their risk factors.

Methods

Prospective observational study conducted from 2007 to 2014 at Angers University Hospital’s Poison Control Centre. The endpoints examined were: early and late locoregional
complications, surgical treatment, and absence from work. The statistical analysis was based on a multivariate analysis.

Discussion
The presence of mineral oil adjuvants, the injection of the vaccine under pressure and injection in joint and tendon of the hand significantly increased early locoregional complications and surgery but only the presence of mineral oil adjuvant increased significantly late locoregional complications at one month. Absence from work is significantly correlated to the site of injection and the presence of mineral oil adjuvant.

Conclusion
It is important to know about the contents of the veterinary vaccine in order to anticipate early and late complications that may arise (particularly due to the presence of mineral oil adjuvants). Special attention must also be given do the site of injection. We think that any accidental injection of veterinary vaccine into humans, especially those containing mineral oils, must lead to an early medical consultation. This must also be indicated on the product

Full text available from: https://doi.org/10.1080/15563650.2018.1445261

Lead-interacting proteins and their implication in lead poisoning
de Souza ID, de Andrade AS, Dalmolin RJS. Crit Rev Toxicol 2018; online early: doi: 10.1080/10408444.2018.1429387:

Abstract and full text available from: https://doi.org/10.1080/10408444.2018.1429387

Elemental mercury neurotoxicity and clinical recovery of function: a review of findings, and implications for occupational health

Abstract and full text available from: https://doi.org/10.1016/j.envres.2018.01.021

Teratogenicity of antiepileptic dual therapy: dose dependent, drug specific, or both?

Abstract and full text available from: https://doi.org/10.1212/WNL.0000000000005031

Neonatal outcomes after fetal exposure to methadone and buprenorphine: national registry studies from the Czech Republic and Norway

Abstract and full text available from: https://doi.org/10.1111/add.14192
TOXICOLOGY

General
Busardo FP, Pichini S.
Editorial: Analytical advances in clinical and forensic toxicology.

TOXsInGn: a cross-species repository for toxicogenomic signatures.
Bioinformatics 2018; online early; doi:10.1093/bioinformatics/bty040:

Horzmann KA, Freeman JL.
Making waves: new developments in toxicology with the zebrafish.
Toxicol Sci 2018; online early; doi: 10.1093/toxsci/kfy044:

Hurrell T, Ellero AA, Masso ZF, Cromarty AD.
Characterization and reproducibility of HepG2 hanging drop spheroids toxicology in vitro.
Toxicol In Vitro 2018; online early; doi: 10.1016/j.tiv.2018.02.013:

Hospital usage of TOXBASE in Great Britain: Temporal trends in accesses 2008 to 2015.
Hum Exp Toxicol 2018; online early; doi: 10.1177/0960327118759405:

Sant KE, Timme-Laragy AR.
Zebrafish as a model for toxicological perturbation of yolk and nutrition in the early embryo.
Curr Environ Health Rep 2018; online early; doi: 10.1007/s40572-018-0183-2:

Um J, Jung D-W, Williams DR.
The future is now: cutting edge science and understanding toxicology.
Cell Biol Toxicol 2018; online early; doi: 10.1007/s10565-018-9421-5:

Analytical toxicology
Alexander A, Abbas L, Jones M, Jones J, Lewis D, Negrusz A.
Discordant umbilical cord drug testing results in monozygotic twins.
J Anal Toxicol 2018; online early; doi: 10.1093/jat/bky009:

Ameline A, Richeval C, Gaulier JM, Raul JS, Kintz P.
Characterization of flunitrazolam, a new designer benzodiazepine, in oral fluid after a controlled single administration.
J Anal Toxicol 2018; online early; doi: 10.1093/jat/bky012:

Basiliere S, Bryant K, Kerrigan S.
Identification of five Mitragyna alkaloids in urine using liquid chromatography-quadrupole/time of flight mass spectrometry.

Coe MA, Jufer Phipps RA, Cone EJ, Walsh SL.
Bioavailability and pharmacokinetics of oral cocaine in humans.
J Anal Toxicol 2018; online early; doi: 10.1093/jat/bky007:

Cologna CT, Rodrigues RS, Santos J, De PE, Arantes EC, Quinton L.
Peptidomic investigation of Neoponera villosa venom by high-resolution mass spectrometry: seasonal and nesting habitat variations.

A high-throughput approach to identify specific neurotoxins/ developmental toxicants in human neuronal cell function assays.
ALTEX 2018; online early; doi: 10.14573/altex.1712182:

Acute recreational drug toxicity: comparison of self-reports and results of immunoassay and additional analytical methods in a multicenter European case series.
Medicine (Baltimore) 2018; 97: e9784:

Urinal specimen validity test for drug abuse testing in workplace and court settings.

Newly emerging drugs of abuse and their detection methods: an ACLPS critical review.
Am J Clin Pathol 2018; 149: 105-16.

Evaluating opportunities for advancing the use of alternative methods in risk assessment through the development of fit-for-purpose in vitro assays.
Toxicol In Vitro 2018; online early; doi: 10.1016/j.tiv.2018.01.027:

Tholkappian M, Ravisankar R, Chandrasekaran A, Jebakumar JPP, Kanagasabapathy KV, Prasad MVR, Satapathy KK.
Assessing heavy metal toxicity in sediments of Chennai Coast of Tamil Nadu using Energy Dispersive X-Ray Fluorescence Spectroscopy (EDXRF) with statistical approach.
Toxicol Rep 2018; 5: 173-82.

Wang X, Johansen SS, Nielsen MKK, Linnet K.
Hair analysis in toxicological investigation of drug-facilitated crimes in Denmark over a 8-year period.
Forensic Sci Int 2018; online early; doi: 10.1016/j.forsciint.2018.01.021:

Biomarkers
Alteration of hepatocellular antioxidant gene expression pattern and biomarkers of oxidative damage in diazinon-induced acute toxicity in Wistar rat: a time-course mechanistic study.
EXCLI J 2018; 17: 57-71.

Maharajan K, Muthulakshmi S, Nataraj B, Ramesh M, Kadivelu K.
Toxicity assessment of pyriproxyfen in vertebrate model zebrafish embryos (Danio rerio): A multi biomarker study.
The first in vivo multiparametric comparison of different radiation exposure biomarkers in human blood.

Carcinogenicity

Cardiotoxicity

Developmental toxicology

Epidemiology

Forensic toxicology

Genotoxicity
Guo X, Seo J-E, Bryce SM, Tan JA, Wu Q, Dial SL, Martha MM, Mei N.
Comparative genotoxicity of TEMPO and three of its derivatives in mouse lymphoma cells.
Toxicol Sci 2018; online early: doi: 10.1093/toxsci/kfy022:

Hemeryck LY, Rombouts C, De Paepe E, Vanhaecke L.
DNA adduct profiling of in vitro colonic meat digestos to map red vs. white meat genotoxicity.

Kahaliw W, Hellman B, Engidawork E.
Genotoxicity study of Ethiopian medicinal plant extracts on HepG2 cells.

Liu R, Printz RL, Jenkins EC, O’Brien TP, Te JA, Shiota M, Wallqvist A.
Genome-wide gene expression changes associated with exposure of rat liver, heart, and kidney cells to endosulfan.
Toxicol In Vitro 2018; online early: doi: 10.1016/j.tiv.2018.01.022:

Mikowska M, Swiergosz-Kowalewska R.
DNA damage in a liver tissue of metal exposed Clethrionomys glareolus.

Park H, Hwang Y-H, Ma JY.
Single, repeated dose toxicity and genotoxicity assessment of herb formula KIOM2012H.

Acute, subchronic oral toxicity, toxicokinetics, and genotoxicity studies of DFC-2, an antitubercular drug candidate.

Wang D, Yang H, Zhou Z, Zhao M, Chen R, Reed SH.
XPF plays an indispensable role in relieving silver nanoparticle induced DNA damage stress in human cells.
Toxicol Lett 2018; 288: 44-54.

Hepatotoxicity
Bachmann M, Pfleischfelter J, Muhl H.
A prominent role of interleukin-18 in acetaminophen-induced liver injury advocates its blockage for therapy of hepatic necroinflammation.

Bashandy SAE, Ebaid H, Abdelmottaleb Moussa SA, Alhazza IM, Hassan I, Alaaamer A, Al TJ.
Potential effects of the combination of nicotinamide, vitamin B2 and vitamin C on oxidative-mediated hepatotoxicity induced by thioacetamide.
Lipids Health Dis 2018; 17: 29.

Basu T, Panja S, Shendge AK, Das A, Mandal N.
A natural antioxidant, tannic acid mitigates iron-overload induced hepatotoxicity in Swiss albino mice through ROS regulation.
Environ Toxicol 2018; online early: doi: 10.1002/tox.22549:

Calitz C, Hamman JH, Fey SJ, Wrzesinski K, Gouws C.
Recent advances in three-dimensional cell culturing to assess liver function and dysfunction: from a drug biotransformation and toxicity perspective.

Li QZ, Sun J, Shen HT, Jia SF, Bai DS, Ma D. CdS nanoparticles of different lengths induce differential responses in some of the liver functions of mice. Bratisl Lek Listy 2018; 119: 75-80.

Inhalation toxicity

Kinetics

Handb Exp Pharmacol 2018; online early: doi: 10.1007/164_2018_102:

Shimizu M, Kondo T, Fukuoka T, Tanaka T, Yamazaki H. Dihydrocodeine overdoses in a neonate and in a 14-year-old girl who were both genotyped as cytochrome P450 2D6*1/*10-*36: comparing developmental ages and drug monitoring data with the results of pharmacokinetic modeling. Ther Drug Monit 2018; online early: doi: 10.1097/FTD.00000000000482:

Mechanisms of toxicity

Medication errors

Nephrotoxicity

Neurotoxicity

Occupational toxicology

Ocular toxicity

Paediatric toxicity

Abimannane A, Rameshkumar R, Satheesh P, Mahadevan S. Second dose of scorpion antivenom in children with Indian red scorpion (*Mesobuthus tamulus*) sting envenomation. Indian Pediatr 2018; online early: PM:29428915:

Khandare AL, Validandi V, Bairoju N. Fluoride alters serum elemental (calcium, magnesium, copper, and zinc) homeostasis along with erythrocyte carbonic anhydrase activity in fluorosis endemic villages and restores on supply of safe drinking water in school-going children of Nalgonda district. Biol Trace Elem Res 2018; online early: doi: 10.1007/ s12011-018-1271-8:

Clin Toxicol 2018; online early: doi: 10.1080/15563650.2018.1444175:

Addiction 2018; online early: doi: 10.1111/add.14192:

Ori MR, Larsen JB, Shirazi FM. Mercury poisoning in a toddler from home contamination due to skin-lightening cream.

Perera F. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist.

Shimizu M, Kondo T, Fukuoka T, Tanaka T, Yamazaki H. Dihydromorphine overdoses in a neonate and in a 14-year-old girl who were both genotyped as cytochrome P450 2E1*1/*10-36E: comparing developmental ages and drug monitoring data with the results of pharmacokinetic modeling.

Ther Drug Monit 2018; online early: doi: 10.1097/FTD.0000000000000482:

Simerson D.

What the advanced practice nNurse in the emergency department needs to know about the health risks and hazards of electronic cigarette use by youth.

Adv Emerg Nurs J 2018; 40: 36-44:

Yip L, Spyker DA. NADH-methemoglobin reductase activity: adult versus child.

Clin Toxicol 2018; online early: doi: 10.1080/15563650.2018.1444768:

Hum Exp Toxicol 2018; online early: doi: 10.1177/0960327118758150:

Poisons information and poison information centres

Hum Exp Toxicol 2018; online early: doi: 10.1177/0960327118759405:

Polymorphisms

Onco Targets Ther 2018; 11: 665-75.

Psychiatric aspects

Fantegrossi WE, Wilson CD, Berquist MD. Pro-psychotic effects of synthetic cannabinoids: interactions with central dopamine, serotonin, and glutamate systems.

Hall KE, Monte AA, Chang T, Fox J, Brevik C, Vigil DJ, Van Dyke M, James KA. Mental Health-related emergency department visits associated with cannabis in Colorado.

Acad Emerg Med 2018; online early: doi: 10.1111/acem.13393:

Reprotoxicity

AlagbonSI, Olayaki LA. Melatonin attenuates Δ⁹-tetrahydrocannabinol-induced reduction in rat sperm motility and kinematics in-vitro.

Reprod Toxicol 2018; online early: doi: 10.1016/j.reprotox.2018.02.005:

Aly HAA, Hassan MH. Potential testicular toxicity of gentamicin in adult rats.

Biochem Biophys Res Commun 2018; online early: doi: 10.1016/j.bbrc.2018.02.085:

Bautista FEA, Junior ASV, Corcini CD, Acosta IB, Caldas SS, Primel EG, Zanette J. The herbicide atrazine affects sperm quality and the expression of antioxidant and spermatogenesis genes in zebrafish testes.

Reprod Toxicol 2018; 77: 43-52.

Acute effect of bisphenol A: signaling pathways on calcium influx in immature rat testes.
Reprod Toxicol 2018; online early: doi: 10.1016/j.reprotox.2018.02.009:

Jenardhanan P, Panneerselvam M, Mathur PP.
Computational methods involved in evaluating the toxicity of the reproductive toxicants in sertoli cell.
Sertoli Cells 2018; 1748: 253-77.

Leite GAA, Sanabria M, Cavariani MM, Anselmo-Franci JA, Pinheiro PFF, Domeniconi RF, Kempinas WG.
Lower sperm quality and testicular and epididymal structural impairment in adult rats exposed to rosuvastatin during puberty.
J Appl Toxicol 2018; online early: doi: 10.1002/jat.3599:

Lead exposure reduces sperm quality and DNA integrity in mice.
Environ Toxicol 2018; online early: doi: 10.1002/tox.22545:

Long S, Woodward B, Tomlinson M.
Sperm toxicity testing: UK best practice guideline from the Association of Biomedical Andrologists.

Monsefi M, Nadi A, Alinejad Z.
The effects of Salvia officinalis L. on granulosa cells and in vitro maturation of oocytes in mice.

A common surfactant used in food packaging found to be toxic for reproduction in mammals.

Potnuri AG, Allakonda L, Lahkar M.
Crocin attenuates cyclophosphamide induced testicular toxicity by preserving glutathione redox system.

Richardson KA, Hannon PR, Johnson-Walker YJ, Myint MS, Flaws JA, Nowak RA.
Di (2-ethylhexyl) phthalate (DEHP) alters proliferation and uterine gland numbers in the uteri of adult exposed mice.
Reprod Toxicol 2018; online early: doi: 10.1016/j.reprotox.2018.01.006:

Skovmand A, Jacobsen Lauvås A, Christensen P, Vogel U, Sarig Hougaaard K, Goericke-Pesch S.
Pulmonary exposure to carbonaceous nanomaterials and sperm quality.

Vyas A, Purohit A, Ram H.
Assessment of dose-dependent reproductive toxicity of diclofenac sodium in male rats.

Multidrug resistance protein 1 deficiency promotes doxorubicin-induced ovarian toxicity in female mice.
Toxicol Sci 2018; online early: doi: 10.1093/toxsci/kfy038:

Yakubu MT, Atoyebi AR.
Bryoscarpus coccineus (Schum & Thonn) root reinstates sexual competence and testicular function in paroxetine-induced sexual dysfunction in male Wistar rats.
Andrologia 2018; online early: doi: 10.1111/and.12980:

Risk assessment
Bernatchez S, Anoop V, Saikali Z, Breton M.
A microbial identification framework for risk assessment.

Stochastic pharmacokinetic-pharmacodynamic modeling for assessing the systemic health risk of perfluorooctanoate (PFOA).
Toxicol Sci 2018; online early: doi: 10.1093/toxsci/kfy035:

Coors A, Vollmar P, Heim J, Sacher F, Kehrer A.
Environmental risk assessment of biocidal products: identification of relevant components and reliability of a component-based mixture assessment.

Cunha SC, Sá S, Fernandes JO.
Multiple mycotoxin analysis in nut products: occurrence and risk characterization.

Consumption and exposure assessment to sunscreen products: a key point for safety assessment.

Heshmati A, Ghadiri S, Mousavi KA, Barba FJ, Lorenzo JM, Nazemi F, Fakhri Y.
Risk assessment of benzene in food samples of Iran's market.

Leso V, Iavicoli I.
Palladium nanoparticles: toxicological effects and potential implications for occupational risk assessment.

Evaluating opportunities for advancing the use of alternative methods in risk assessment through the development of fit-for-purpose in vitro assays.
Toxicol In Vitro 2018; online early: doi: 10.1016/j.tiv.2018.01.027:

Mortensen HM, Chamberlin J, Joubert B, Angrish M, Sipes N, Lee JS, Euling SY.
Leveraging human genetic and adverse outcome pathway (AOP) data to inform susceptibility in human health risk assessment.
Mamm Genome 2018; online early: doi: 10.1007/s00335-018-9739-7:

Radford SA, Panuwet P, Hunter RE, Jr., Barr DB, Ryan PB.
Degradation of organophosphorus and pyrethroid insecticides in beverages: implications for risk assessment.
Toxics 2018; 6: 11.

Suicide

MANAGEMENT

General

Agarwal MA, Flatt D, Khouzam RN. The potential detrimental effects of calcium channel blockers’ overdose and current available management. Ann Transl Med 2018; 6: 16:

Al Jawder S, AlIshie E, Al-Otaibi S, Al-Shahrani MS. All guns blazing: management and survival of massive valproic acid overdose – Case report and literature review. Open Access Emerg Med 2018; 10: 31-6:

Bashandy SAE, Ebaid H, Abdelmotatleb Moussa SA, Alhazza IM, Hassan I, Alaamer A, Al TJ. Potential effects of the combination of nicotinamide, vitamin B2 and vitamin C on oxidative-mediated hepatotoxicity induced by thioacetamide. Lipids Health Dis 2018; 17: 29:

Chiew AL, Gluud C, Brok J, Buckley NA. Interventions for paracetamol (acetaminophen) overdose. Cochrane Database Syst Rev 2018; 2: CD003328:

Yoga for the management of cancer treatment-related toxicities.
Curr Oncol Rep 2018; 20: 5.

Toxins (Basel) 2018; 10: 80.

Moore KN, Mizra MR, Matulonis UA. The poly (ADP ribose) polymerase inhibitor niraparib: management of toxicities.

Myhrer T, Mariussen E, Aas P. Development of neuropathology following soman poisoning and medical countermeasures.

Ng PCY, Long BJ, Davis WT, Sessions DJ, Koyfman A. Toxic alcohol diagnosis and management: an emergency medicine review.

Nukala U, Thakkar S, Krager KJ, Breen PJ, Compadre CM, Aykin-Burns N. Antioxidant tocols as radiation countermeasures (challenges to be addressed to use tocols as radiation countermeasures in humans).
Antioxidants (Basel) 2018; 7: 33.

Ratcliffe A, Baker A, Smith D. Successful management of 70% acetic acid ingestion on the intensive care unit: a case report.

Antidotes
Rump A, Stricklin D, Lamkowski A, Eder S, Abend M, Port M. Analysis of the antidote requirements and outcomes of different radionuclide decorporation strategies for a scenario of a "dirty bomb" attack.

Acetylcysteine
Bhardwaj JK, Saraf P, Kumari P, Mittal M, Kumar V. N-Acetylcysteine mediated inhibition of spermatogonial cells apoptosis against malathion exposure in testicular tissue.
J Biochem Mol Toxicol 2018; online early: doi: 10.1002/jbt.22046:

Activated charcoal

Antivenom

Int J Dermatol 2018; online early: doi: 10.1111/ijd.13877:

Chelating agents
Schulzmeier P, Focil BA, Castillo-Tandazo W, Fociel N, Bose-O'Reilly S. Efficacy of N,N'-bis-(2-mercaptopethyl) isophthalamide on mercury intoxication: a randomized controlled trial.
Environ Health 2018; 17: 15.

Fomepizole

Hyperbaric oxygen therapy
Ann Plast Surg 2018; online early: doi: 10.1097/SAP.0000000000001351:

Lipid emulsion therapy
Aggarwal G, Robertson E, McKinlay J, Walter E. Death from kratom toxicity and the possible role of intralipid.

Turan CA, Ozturk TC, Akoglu EU, Ak R, Aygun K, Sahiner A, Sumer E, Somya A, Onur OE. The role of intralipid emulsion in the rat model of digoxin intoxication.
Cardiovasc Toxicol 2018; online early: doi: 10.1007/s12012-018-9444-4:
Oximes

Eddleston M.

Are oximes still indicated for acute organophosphorus insecticide self-poisoning?

Pyridoxine

Acamprosate

Amlodipine

Astilbin

Clonidine

Crocin

Curcumin

Cyclosporine
Conner CD, McKenzie E, Owen CE.

D-methionine
Lin M-T, Ko J-L, Liu T-C, Chao P-T, Ou C-C.

Disulfiram

Ellagic acid
Goudarzi M, Amiri S, Nesari A, Hosseinizadeh A, Mansouri E, Mehrzadi S.

Etanercept
Gavigan GM, Kanigsberg ND, Ramien ML.

Extracorporeal treatments
Caruso K, Kanter M.

Haemoperfusion
Sun L, Yan P, Zhang Y, Wei L-Q, Li G.

Fidarestat
Sonowal H, Pal P, Shukla K, Saxena A, Srivastava SK, Ramana KV.

Herbal medicines
Abd-Elhakim YM, El Bohi KM, Hassan SK, El SS, Abd-Elmotal SM.

Insulin
Cole JB, Arens AM, Laes JR, Klein LR, Bangh SA, Olives TD.

Diuretics
Hosseinian S, Hadjzadeh M-AR, Roshan NM, Khazaee M, Shahraki S, Mohebbati R, Rad AK.

Gouda AS, El-Nabarawy NA, Ibrahim SF.
Moringa oleifera extract (Lam) attenuates Aluminium phosphide-induced acute cardiac toxicity in rats. Toxicol Rep 2018; 5: 209-12.

Fidarestat
Sonowal H, Pal P, Shukla K, Saxena A, Srivastava SK, Ramana KV.

Herbal medicines
Abd-Elhakim YM, El Bohi KM, Hassan SK, El SS, Abd-Elmotal SM.
Kolaviron

Levamisole

Magnesium sulfate

Metoprolol

Nanoparticles

Opioid maintenance therapy

Quercetin

Rutin

Salbutamol
Chowdhury FR, Rahman M, Ullah P, Ruhan AM, Bari S, Alam MMJ, Uddin M, Maruf S, Patwary I, Eddieleston M.

Theanine

Thymoquinone

Varespladib

DRUGS

General

Acetaminophen (see paracetamol)

Adrenaline

Andre MC, Hammer J. Life-threatening accidental intravenous epinephrine overdose in a 12-year-old boy.
Amphetamines and MDMA (ecstasy)
Darke S, Kaye S, Duflou J, Lappin J.
Completed suicide among methamphetamine users: a national study.
Suicide Life Threat Behav 2018; online early; doi: 10.1111/sltb.12442:

Exposure to far-infrared ray attenuates methamphetamine-induced impairment in recognition memory through inhibition of protein kinase C α in male mice: comparison with the antipsychotic clozapine.
J Neurosci Res 2018; online early; doi: 10.1002/pr.24228:

Rowe C, Vittinghoff E, Colfax G, Coffin PO, Santos GM.
Correlates of validity of self-reported methamphetamine use among a sample of dependent adults.
Subst Use Misuse 2018; online early; doi: 10.1080/10826084.2018.1432649:

Wiedfeldt C, Krueger J, Skopp G, Musshoff F.
Comparison of concentrations of drugs between blood samples with and without fluoride additive-important findings for α1-tetrahydrocannabinol and amphetamine.
Int J Legal Med 2018; online early; doi: 10.1007/s12185-018-1797-5:

Anaesthetics
Anon.
Perioperative cardiac arrest: focus on local anesthetic systemic toxicity (LAST).
Anesth Analg 2018; 126: 736:

Local anesthetics’ toxicity toward human cultured chondrocytes: a comparative study between lidocaine, bupivacaine, and ropivacaine.
Cartilage 2018; online early; doi: 10.1177/1947603518758936:

Antiarrrhythmic drugs
Amiodarone
Fasler K, Traber GL, Jaggi GP, Landau K.
Amiodarone-associated optic neuropathy-A clinical criteria-based diagnosis?
Neuroophthalmology 2018; 42: 2-10:

Pecnik P, Ranftl V, Windpessl M.
High liver density on CT imaging due to amiodarone toxicity.
Wien Klin Wochenschr 2018; online early; doi: 10.1007/s00508-018-1319-y:

Dronedarone
Chen S, Ren Z, Yu D, Ding B, Guo L.
DNA damage-induced apoptosis and mitogen-activated protein kinase pathway contribute to the toxicity of dronedarone in hepatic cells.
Environ Mol Mutagen 2018; online early; doi: 10.1002/em.22173:

Karkhanis A, Leow JWH, Hagen T, Chan ECY.
Dronedarone-induced cardiac mitochondrial dysfunction and its mitigation by epoxycosatrienoic acids.
Toxicol Sci 2018; online early; doi: 10.1097/0000000000001407:

Antibiotics
QSAR prediction of additive and non-additive mixture toxicities of antibiotics and pesticide.
Chemosphere 2018; 198: 122-9:

Sullivan KJ, Jeffres MN, DellaValle RP, Valuck R, Anderson HD.
Survey of nonprescription medication and antibiotic use in patients with Stevens-Johnson syndrome, toxic epidermal necrolysis, and overlap syndrome.
Antibiotics 2018; 7: 11:

Gentamicin
Aly HAA, Hassan MH.
Potential testicular toxicity of gentamicin in adult rats.
Biochem Biophys Res Commun 2018; online early; doi: 10.1016/j.bbrc.2018.02.085:

Alteration of renal excretion pathways in gentamicin-induced renal injury in rats.
J Appl Toxicol 2018; online early; doi: 10.1002/jat.3603:

Sulfamethoxazole
Gavigan GM, Kanigisberg ND, Ramien ML.
Pediatric Stevens-Johnson Syndrome/toxic epidermal necrolysis halted by etanercept.
J Cutan Med Surg 2018; online early; doi: 10.1177/1081258018758989:

Antibody-drug conjugates
Hepatotoxicity with antibody maytansinoid conjugates: A review of preclinical and clinical findings.
J Appl Toxicol 2018; online early; doi: 10.1002/jat.3582:

Modulation of macrophagocytosis-mediated internalization decreases ocular toxicity of antibody-drug conjugates.
Cancer Res 2018; online early; doi: 10.1158/0008-5472.CAN-17-3202:

Anticoagulants
Vitamin K antagonists and emergencies.
Eur J Emerg Med 2018; online early; doi: 10.1097/MEM.0000000000000541:

Dabigatran
Caruso K, Kantor M.
Re: Dabigatran overdose: a case report of acute hepatitis.
Extracorporeal treatment.
Int J Hematol 2018; online early; doi: 10.1007/s12185-018-2418-2:

Havig SM, Lea D, Krpo M, Skari R, Gustavsen I, Heiseth G.

Rivaroxaban

Anticonvulsants
Keni RR, Jose M, Sarma PS, Thomas SV, for the Kerala Registry of Epilepsy and Pregnancy Study Group. Teratogenicity of antiepileptic dual therapy: dose dependent, drug specific, or both? Neurology 2018; online early: doi: 10.1212/WNL.0000000000005031:

Valproate

Zonisamide

Antidepressants
Bupropion

Antifungal drugs
Amphotericin B
Oliveira VM, Khalil NM, Carraro E. Black and white teas as potential agents to combine with amphotericin B and protect red blood cells from amphotericin B-mediated toxicity. Braz J Biol 2018; online early: doi: 10.1590/1519-6984.171693:

Antimalarial drugs
Chloroquine

Antituberculous drugs

Isoniazid

Linezolid

Antipsychotics
Quetiapine

Antiviral drugs
Valacyclovir
Kassam AS, Cunningham EA. Cotard syndrome resulting from valacyclovir toxicity. Prim Care Companion CNS Disord 2018; 20: 1702143.

Benzodiazepines

Beta-blockers

Buprenorphine
Bachhuber MA, Thompson C, Prybylowski A, Benitez J, Mazzella S, Barclay D.
Description and outcomes of a buprenorphine maintenance treatment program integrated within Prevention Point Philadelphia, an urban syringe exchange program.
Subst Abus. 2018; online early: doi: 10.1080/08897077.2018.1443541:

Nguyen L, Lander LR, O’Grady KE, Marshalek PJ, Schmidt A, Kelly AK, Jones HE.
Treating women with opioid use disorder during pregnancy in Appalachia: Initial neonatal outcomes following buprenorphine + naloxone exposure.
Am J Addict 2018; online early: doi: 10.1111/ajad.12687:

Caffeine
Laitsetlart P, Saguin E, Plantamura J, Lahutte B, Delacour H, Dubost C.
Severe sympathomimetic toxidrome in a French soldier: how caffeine overdose can lead to severe consequences.

Calcium channel blockers
Agarwal MA, Flatt D, Khouzam RN.
The potential detrimental effects of calcium channel blockers' overdose and current available management.

Zahed NS, Hassanian-Moghaddam H, Zamani N.
A fatal case of amlodipine toxicity following iatrogenic hypercalcemia.
Cardiovasc Toxicol 2018; online early: doi: 10.1007/s12012-018-9445-3:

Calcium gluconate
Zahed NS, Hassanian-Moghaddam H, Zamani N.
A fatal case of amlodipine toxicity following iatrogenic hypercalcemia.
Cardiovasc Toxicol 2018; online early: doi: 10.1007/s12012-018-9445-3:

Cannabis (marijuana)
Alagborsi IA, Oyakai LA.
Melatonin attenuates Δ9-tetrahydrocannabinol-induced reduction in rat sperm motility and kinematics in-vitro.
Reprod Toxicol 2018; online early: doi: 10.1016/j.reprotox.2018.02.005:

Boadu O, Gombolay GV, Caviness VS, El Saleeby CM.
Intoxication from accidental marijuana ingestion in pediatric patients: what may lie ahead.
Pediatr Emerg Care 2018; online early: doi: 10.1097/PEC.0000000000001420:

Hall KE, Monte AA, Chang T, Fox J, Brevik C, Vigil DI, Van Dyke M, James KA.
Mental Health-related emergency department visits associated with cannabis in Colorado.
Acad Emerg Med 2018; online early: doi: 10.1111/acem.13393:

Wiedfeld C, Krueger J, Skopp G, Musshoff F.
Comparison of concentrations of drugs between blood samples with and without fluoride additive-important findings for Δ9-tetrahydrocannabinol and amphetamine.
Int J Legal Med 2018; online early: doi: 10.1007/s00414-018-1797-5:

CAR-T cell therapy
Wang Z, Han W.
Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy.

Cetuximab
Rare upper gastrointestinal hemorrhage of cetuximab: a case report.
Medicine (Baltimore) 2017; 96: e9391.

Chemotherapeutic agents
Treatment toxicities and their impact on oral intake following non-surgical management for head and neck cancer: a 3-year longitudinal study.
Support Care Cancer 2018; online early: doi: 10.1007/s00520-018-4076-6:

Dong J, Chen H.
Cardiotoxicity of anticancer therapeutics.

Idelalisib-rituximab induces durable remissions in 7PS3 disrupted B-PLL but results in significant toxicity: updated results of the UK-wide compassionate use programme.
Br J Haematol 2018; online early: doi: 10.1111/bjh.15151:

Yoga for the management of cancer treatment-related toxicities.
Curr Oncol Rep 2018; 20: 5.

McCullough KB, Hobbs MA, Abeykoon JP, Kapoor P.
Common adverse effects of novel therapies for multiple myeloma (MM) and their management strategies.
Curr Hematol Malig Rep 2018; online early: doi: 10.1007/s11899-018-0443-0:

Micevic G, Perkins SH, Zubek AE.
Balanitis associated with FOLFIRI chemotherapy.
JAAD Case Rep 2018; 4: 58-60.

Different toxicity of cetuximab and panitumumab in metastatic colorectal cancer treatment: a systematic review and meta-analysis.
Oncology 2018; online early: doi: 10.1159/000486338:

\[\textbf{Bleomycin}\]

\[\textbf{Cisplatin}\]

\[\textbf{Cyclophosphamide}\]

\[\textbf{Dasatinib}\]

\[\textbf{Doxorubicin}\]

Khalil SR, Mohammed AT, Abd-Elfatah AH, Zagloul AW.

Gemcitabine

Ibrutinib

Ixazomib

Niraparib

Moore KN, Mirza MR, Matulonis UA. The poly (ADP ribose) polymerase inhibitor niraparib: management of toxicities. Gynecol Oncol 2018; online early: doi: 10.1016/j.ygyno.2018.01.011:

Clofazimine

Cocaine

Crizotinib

Digoxin

Disulfiram

Fasiglifam

Fidarestat

Gefitinib

Herbal medicines, ethnic remedies and dietary supplements

Heroin (diacetylmorphine)
Lee KH, Yen CF. The relationships between depression, neuroticism, and attitudes (NDA model) in heroin abusers in Taiwan. Am J Addict 2018; online early: doi: 10.1111/ajad.12691:

Hypnotics

Immunosuppressants

Ketamine

Kratom
Lithium
Freudenthal B.
Endocrine abnormalities in lithium toxicity.

LSD
Nichols DE, Grob CS.
Is LSD toxic?

Metformin
Krowl L, Al-Khaisy H, Kaul P.
Metformin-Induced Lactic Acidosis (MILA): A case report and review of current diagnostic paradigm.

Mirtazapine
Pombo R, Johnson E, Gamboa A, Omalu B.
Autopsy-proven mirtazapine withdrawal-induced wania/hyponatremia associated with sudden death.

Modafinil
Radüns L, Reuter H, Andresen-Streichert H.
Modafinil in forensic and clinical toxicology—Case reports, analytics and literature.
J Anal Toxicol 2018; online early: doi: 10.1093/jat/bky008:

Monoclonal antibodies
Markman M.
A cautionary note: "real-world" toxicity of checkpoint inhibitors.
Oncology 2018; online early: doi: 10.1159/000487082:

Nivolumab
Akbaraly T, Saguintaah M, Topart D, Sirvent N.
Efficacy and toxicity of fifth-line nivolumab in a 15-year-old girl with metastatic juvenile renal cell carcinoma.
J Pediatr Hematol Oncol 2018; online early: doi: 10.1097/MPH.0000000000001086:

Amin NP, Agarwal M, Zainib M, Simone CB.
Acute pancreatitis: an unexpected toxicity when combining nivolumab and stereotactic body radiation therapy.

Trastuzumab
Kowalczyk L, Bartsch R, Singer CF, Farr A.
Adverse events of trastuzumab emtansine (T-DM1) in the treatment of HER2-positive breast cancer patients.

Nicotine
Ang E, Tuthill D, Thompson J.
E-cigarette liquid ingestion: a fast growing accidental issue in children.
Arch Dis Child 2018; online early: doi: 10.1136/archdischild-2018-314886:

Simseron D.
What the advanced practice Nurse in the emergency department needs to know about the health risks and hazards of electronic cigarette use by youth.
Adv Emerg Nurs J 2018; 40: 36-44.

aChRs-ERK1/2-Egr-1 signaling participates in the developmental toxicity of nicotine by epigenetically down-regulating placental 11beta-HSD2.
Toxicol Appl Pharmacol 2018; online early: doi: 10.1016/j.taap.2018.02.017:

Novel psychoactive substances
King LA, Corkery JM.
An index of fatal toxicity for new psychoactive substances.
J Psychopharmmacol 2018; online early: doi: 10.1177/0269881118754709:

Newly emerging drugs of abuse and their detection methods: an ACLPS critical review.
Am J Clin Pathol 2018; 149: 105-16.

Meyer MR.
Handb Exp Pharmacol 2018; online early: doi: 10.1007/164_2018_102:

Shimshoni JA, Sobol E, Golan E, Ari YB, Gal O.
Toxicol Appl Pharmacol 2018; online early: doi: 10.1016/j.taap.2018.02.009:

Designer benzodiazepines
Ameline A, Richeval C, Gauiler JM, Raul JS, Kintz P.
Characterization of flunitrazolam, a new designer benzodiazepine, in oral fluid after a controlled single administration.
J Anal Toxicol 2018; online early: doi: 10.1093/jat/bky012:

Synthetic cannabinoids
Fantegrossi WE, Wilson CD, Berquist MD.
Pro-psychotic effects of synthetic cannabinoids: interactions with central dopamine, serotonin, and glutamate systems.

Synthetic cathinones
Couto RAS, Gonçalves LM, Carvalho F, Rodrigues JA, Rodrigues CMP, Quinaz MB.
The analytical challenge in the determination of cathinones, key-players in the worldwide phenomenon of novel psychoactive substances.

NSAIDs
Tai FWD, McAlindon ME.
Diclofenac

Opioids

Huhn AS, Garcia-Romeu AP, Dunn KE. Opioid overdose education for individuals prescribed opioids for pain management: randomized comparison of two computer-based interventions. Front Psychiatry 2018; 9: 34.

Ringwalt C, Sanford C, Dasgupta N, Alexandridis A, McCort A, Proescholdbell S, Sachdeva N, Mack K.
Community readiness to prevent opioid overdose.
Health Promot Pract 2018; online early: doi: 10.1177/1524839918756887

Ruhm CJ.
Addiction 2018; online early: doi: 10.1111/add.14144:

Streck JM, Heil SH, Higgins ST, Bunn JY, Sigmon SC.
Tobacco withdrawal among opioid-dependent smokers.
Exp Clin Psychopharmacol 2018; online early: doi: 10.1037/pha000185:

Taylor JL, Rapoport AB, Rowley CF, Mukamal KJ, Stead W.
An opioid overdose curriculum for medical residents: Impact on naloxone prescribing, knowledge, and attitudes.
Subst Abus 2018; online early: doi: 10.1080/08897077.2018.1439800:

Teklezgi BG, Pamreddy A, Baijnath S, Kruger HG, Naicker T, Gopal ND, Govender T.
Effects of lemongrass oil and citral on hepatic metabolizing enzymes, oxidative stress, and acetaminophen induced hepatotoxicity in rats.
Hum Exp Toxicol 2018; online early: doi: 10.1177/0960327118798362:

Fentanyl
Fentanyl and heroin contained in seized illicit drugs and overdose-related deaths in British Columbia, Canada: An observational analysis.

Risk of fentanyl-involved overdose among those with past year incarceration: findings from a recent outbreak in 2014 and 2015.
Drug Alcohol Depend 2018; 185: 189-91.

Creppage KE, Yohannan J, Williams K, Buchanich JM, Songer TJ, Wisniewski SR, Fabio A.
Public Health Rep 2018; online early: doi: 10.1177/0033354917753119:

Hydromorphone
Butler SF, McNaughton EC, Black RA, Cassidy TA.
Evaluation of the relative abuse of an OROS® extended-release hydromorphone HCI product: results from three post-market surveillance studies.
Clin J Pain 2018; online early: doi: 10.1097/AJP.0000000000000585:

Methadone
Kreye G, Masel E-K, Hackner K, Stich B, Nauck F.
Methadone as anticancer treatment: hype, hope, or hazard? A series of case reports and a short review of the current literature and recommendations of the societies.

Morphine
Salashshoor MR, Vahabi A, Roshankhah S, Darehdori AS, Jallili C.
The effects of thymoquinone against morphine-induced damages on male mice liver.

Opium
Soltaninejad K, Shadnia S.
Lead poisoning in opium abuser in Iran: a systematic review.

Paracetamol (acetaminophen)
Bachmann M, Pfelschifter J, Muhl H.
A prominent role of interleukin-18 in acetaminophen-induced liver injury advocates its blockage for therapy of hepatic necroinflammation.

Chiew AL, Gluud C, Brok J, Buckley NA.
Interventions for paracetamol (acetaminophen) overdose.

Kaya H, Polat B, Albayrak A, Mercantepe T, Buyuk B.
Protective effect of an L-type calcium channel blocker, amlodipine, on paracetamol-induced hepatotoxicity in rats.
Hum Exp Toxicol 2018; online early: doi: 10.1177/0960327118798362:

Kennon-McGill S, McGill MR.
Extrahepatic toxicity of acetaminophen: critical evaluation of the evidence and proposed mechanisms.

Effects of lemongrass oil and cibal on hepatic drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in rats.

Pant A, Kopec AK, Baker KS, Cline-Fedewa H, Lawrence DA, Luyendyk JP.
Plasminogen activator inhibitor-1 reduces tPA-dependent fibrinolysis and intrathepatic hemorrhage in experimental acetaminophen overdose.
Am J Pathol 2018; online early: doi: 10.1016/j.ajpath.2018.01.010:

Roh T, De U, Lim SK, Kim MK, Choi SM, Lim DS, Yoon S, Kacew S, Kim HS, Lee B-M.

Dihydrocodeine
Shimizu M, Kondo T, Fukuoka T, Tanaka T, Yamazaki T.
Dihydrocodeine overdoses in a newborn and a 14-year-old girl who were both genotyped as cytochrome P450 2D6*1/*10-*36: comparing developmental ages and drug monitoring data with the results of pharmacokinetic modeling.
Ther Drug Monit 2018; online early: doi: 10.1097/FTD.0000000000002713:

Naloxone for opioid overdose and the role of the pharmacist.
Consultant Pharmacist 2018; 33: 98-104.

Vu JV, Lin LA.
Opioid overdose-the surgeon's role.
Ann Surg 2018; online early: doi: 10.1097/SLA.S0000000000002713:

Vadivelu N, Kai AM, Kodumudi V, Sramick J, Kaye AD.
The opioid crisis: a comprehensive overview.

Toderika Y, Williams S.
Naloxone for opioid overdose and the role of the pharmacist.
Consultant Pharmacist 2018; 33: 98-104.
Detoxifying effect of pyridoxine on acetaminophen-induced hepatotoxicity via suppressing oxidative stress injury.

Anaphylactoid reactions to intravenous N-acetylcysteine during treatment for acetaminophen poisoning.

Zhang C, Song F.
Knockout of ULK1/2 protects against acetaminophen-induced acute liver injury independent of autophagy?

PARP inhibitors

PARP inhibition combined with thoracic irradiation exacerbates esophageal and skin toxicity in C57BL6 mice.
Int J Radiation Oncology Biol Phys 2018; 100: 767-75.

Phenazopyridine

Yip L, Spyker DA.
NADH-methemoglobin reductase activity: adult versus child.

Physostigmine

Mulins ME, Schwarz ES.
Safety and effectiveness of physostigmine: seeing the trees for the forest plot.

Proton pump inhibitors

Rudler M, Isnard BC, Rudler H.
Proton pump inhibitors and chronic kidney disease: is it related to the accumulation of toxic breakdown products spontaneously formed in the enteric-protected tablets?

Scopolamine

Neuroprotective effects of 20(S)-protopanaxatriol (PPT) on scopolamine-induced cognitive deficits in mice.

SSRIs and SNRIs

Hutchinson SM, Måsse LC, Pawluski JL, Oberlander TF.
Perinatal selective serotonin reuptake inhibitor (SSRI) effects on body weight at birth and beyond: a review of animal and human studies.

Desvenlafaxine

Goyal SK, Gera C, Singla M, Kumar N.
Desvenlafaxine overdose-induced toxic cardiomyopathy and acute left ventricular failure: a case report.

Paroxetine

Yakubu MT, Atoyebi AR.
Bryoscarpus coccinus (Schum & Thonn) root reinstates sexual competence and testicular function in paroxetine-induced sexual dysfunction in male Wistar rats.

Statins

Pattern of risks of rheumatoid arthritis among patients using statins: a cohort study with the clinical practice research datalink.

Wooten JM.
A brief drug class review: considerations for statin use, toxicity, and drug interactions.

Rosuvastatin

Leite GAA, Sanabria M, Cavariani MM, Anselmo-Franci JA, Pinheiro PFF, Domeniconi RF, Kempinas WG.
Lower sperm quality and testicular and epididymal structural impairment in adult rats exposed to rosuvastatin during prepuberty.

Steroids

Kemper MJ, Neuhaus TJ.
Levamisole in relapsing steroid-sensitive nephrotic syndrome: where do we stand?

Substance abuse

Bachhuber MA, Thompson C, Prybylowski A, Benitez J, Mazzella S, Barclay D.
Description and outcomes of a buprenorphine maintenance treatment program integrated within Prevention Point Philadelphia, an urban syringe exchange program.

Butler SF, McNaughton EC, Black RA, Cassidy TA.
Evaluation of the relative abuse of an OROS® extended-release hydromorphone HCl product: results from three post-market surveillance studies.

Gaeta JM, Racine M.
New strategies are needed to stop overdose fatalities: the case for supervised injection facilities.

Hall MT, Ball D, Bears J, Higgins GE, Logan TK, Golder S.
Past-year nonmedical use of prescription drugs among women on probation and parole: a cross-sectional study.

Willingness to use drug checking within future supervised injection services among people who inject drugs in a mid-sized Canadian city.

Kouyoundjian FG, Patel A, To MJ, Kiefer L, Regenstreif L.
Physician prescribing of opioid agonist treatments in provincial correctional facilities in Ontario, Canada: a survey.

Tyrosine kinase inhibitors

Bosutinib

Pazopanib

Unoprostone

Vaccines

Veterinary products

CHEMICAL INCIDENTS AND POLLUTION

Air pollution

Exhaust fumes

Chemical incidents

Pollution and hazardous waste

CHEMICALS

General

3'-sialyllactose sodium salt

Kim D, Gurung RB, Seo W, Lee AW, Woo J.
Toxicological evaluation of 3'-sialyllactose sodium salt.

Acetic acid

Ratcliffe A, Baker A, Smith D.
Successful management of 70% acetic acid ingestion on the intensive care unit: a case report.

Acrolein

Park JH, Ku HJ, Lee JH, Park JW.
Idh2 deficiency exacerbates acrolein-induced lung injury through mitochondrial redox environment deterioration.

Acrylamide

Chepelev NL, Gagne R, Maynor T, Kuo H, Hobbs CA, Recio L, Yauk CL.
Transcriptional profiling of male CD-1 mouse lungs and hardener glands supports the involvement of calcium signaling in acrylamide-induced tumors.
Regul Toxicol Pharmacol 2018; online early: doi: 10.1016/j.yrtph.2018.02.005:

Hogervorst JGF, Van den Brandt PA, Godschalck RWL, van Schooten F-J, Schouten LJ.
Interaction between dietary acrylamide intake and genetic variants for estrogen receptor-positive breast cancer risk.
Eur J Nutr 2018; online early: doi: 10.1007/s00394-018-1619-z:

Learning, memory deficits, and impaired neuronal maturation attributed to acrylamide.

Stošić M, Matavulj M, Markovic J.
Subchronic exposure to acrylamide leads to pancreatic islet remodeling determined by alpha cell expansion and beta cell mass reduction in adult rats.

Alcohol (ethanol)

Adhikari KM.
One ‘poison’ leads to the other: Snake bite while under the influence of alcohol.

A social media-based acute alcohol consumption behavior (NekNomination): case series in Italian emergency departments.

Impact of a mass gathering alcohol sobering facility on emergency resources.
Prehosp Emerg Care 2018; online early: doi: 10.1080/10903127.2017.1380093:

Cho Y-E, Yu L-R, Abdelmegeed MA, Yoo S-H, Song B-J.
Apoptosis of enterocytes and nitration of junctional complex proteins promote alcohol-induced gut leakage and liver injury.
J Hepatol 2018; online early: doi: 10.1016/j.jhep.2018.02.005:

Davis BT, Voigt RM, Shaikh M, Forsyth CB, Keshavarzian A.
Circadian mechanisms in alcohol use disorder and tissue injury.

Doggett TM, Tur JJ, Alves NG, Yuan SY, Tipparaju SM, Breslin JW.
Assessment of cardiovascular function and microvascular permeability in a conscious rat model of alcohol intoxication combined with hemorrhagic shock and resuscitation.
Trauma Ischamic Inj 2018; 1717: 61-81.

Elkomy NMIM, Ibrahim IAAEH, Elbashyryy SM, El-Fayyumi HM.
Ameliorative effects of clonidine on ethanol induced kidney injury in rats: potential role for imidazoline-1 receptor.

Enstad F, Pedersen W, Nilsen W, von ST.
Predicting early onset of intoxication versus drinking–A population-based prospective study of Norwegian adolescents.

Pharmacoproteomics profile in response to acamprosate treatment of an alcoholism animal model.
Proteomics 2018; online early: doi: 10.1002/pmic.201700417:

Green A, Neff D, Giuliano G, Lee N, Turchin R, Kunkel EJS.
Surrogate alcohol or nonbeverage alcohol consumption: the Surrogate Alcohol Questionnaire (SAQ).
Psychosomatics 2018; online early: doi: 10.1016/j.psym.2018.01.001:

Jahn A, Bodreau C, Farthing K, Elbarbry F.
Assessing propylene glycol toxicity in alcohol withdrawal patients receiving intravenous benzodiazepines: a one-compartment pharmacokinetic model.
Eur J Drug Metab Pharmacokinet 2018; online early: doi: 10.1007/s13318-018-0462-1:

Kuitunen E, Paul S, Obst E, Schmidt R, Sommer C, Kuitunen PT, Wittchen HU, Zimmermann US.
Effects of alcohol intoxication on self-reported drinking patterns, expectancies, motives and personality: a randomized controlled experimental study.
Addict Biol 2018; online early: doi: 10.1111/adb.12604:

Liuzzi JP, Narayanan V, Doan H, Yoo C.
Effect of zinc intake on hepatic autophagy during acute alcohol intoxication.
BioMetals 2018; online early: doi: 10.1007/s10534-018-0077-7:

Melkonian AJ, Ham LS.
The effects of alcohol intoxication on young adult women's identification of risk for sexual assault: a systematic review.
Psychol Addict Behav 2018; online early: doi: 10.1037/adb0000349:
Benzo[a]pyrene
The impact of chemotherapeutic drugs on the CYP1A1-catalysed metabolism of the environmental carcinogen benzo[a]pyrene: effects in human colorectal HCT116 TP53(+/+) and TP53(-/-) cells.
Toxicology 2018; online early: doi: 10.1016/j.tox.2018.02.006:

Biocides
Coors A, Vollmar P, Heim J, Sacher F, Kehrer A.
Environmental risk assessment of biocidal products: identification of relevant components and reliability of a component-based mixture assessment.

Bisphenol A
Bisphenol A alters oocyte maturation by prematurely closing gap junctions in the cumulus cell-oocyte complex.

Chronic exposure to low dose of bisphenol A impacts on the first round of spermatogenesis via SIRT1 modulation.

Conroy-Ben O, Garcia I, Teske SS.
In silico binding of 4,4’-bisphenols predicts in vitro estrogenic and antiandrogenic activity.
Environ Toxicol 2018; online early: doi: 10.1002/tox.22539:

Environmental risk assessment of biocidal products: identification of relevant components and reliability of a component-based mixture assessment.

Kanwal Q, Qadir A, Amina, Asmatullah, Iqbal HH, Munir B.
Healing potential of Adiantum capillus-veneris L. plant extract on bisphenol A-induced hepatic toxicity in male albino rats.

Li Y, Perera L, Coons LA, Burns KA, Tyler RJ, Pelch KE, Houtman R, van BR, Teng CT, Korach KS.
Differential in vitro biological action, coregulator interactions, and molecular dynamic analysis of bisphenol A (BPA), BPAF, and BPS ligand-ERalpha complexes.
Environ Health Perspect 2018; 126: 017012.

Phillips DH, Stiborova M, Arlt VM.
The impact of chemotherapeutic drugs on the CYP1A1-catalysed metabolism of the environmental carcinogen benzo[a]pyrene: effects in human colorectal HCT116 TP53(+/+) and TP53(-/-) cells.
Toxicology 2018; online early: doi: 10.1016/j.tox.2018.02.006:

Penfold CM, Thomas SJ, Waylen A, Ness AR.
Change in alcohol and tobacco consumption after a diagnosis of head and neck cancer: findings from head and neck 5000.
Head & Neck 2018; online early: doi: 10.1002/hed.25116:

Schulte J, Kleinschmidt KC, Domanski K, Smith EA, Haynes A, Roth B.
Differences between snakebites with concomitant use of alcohol or drugs and single snakebites.

Tran BX, Nguyen HLT, Le QNH, Mai HT, Ngo C, Hoang CD, Nguyen HH, Le HQ, Van NH, Le HT, Tran TD, Zary N, Latkin CA, Vu TMT, Ho RCM, Zhang MWB.
Alcohol and tobacco use among methadone maintenance patients in Vietnamese rural mountainside areas.
Addict Behav Rep 2018; 7: 19-25.

Embryonic exposure to ethanol increases the susceptibility of larval zebrafish to chemically induced seizures.

Gut microbiota modulates alcohol withdrawal-induced anxiety in mice.

SNX10 mediates alcohol-induced liver injury and steatosis via regulating chaperone-mediated autophagy activation.
J Hepatol 2018; online early: doi: 10.1016/j.jhep.2018.01.038:

Alkyl bromides
Potential impurities in drug substances: compound-specific toxicology limits for 20 synthetic reagents and by-products, and a class-specific toxicology limit for alkyl bromides.
Regul Toxicol Pharmacol 2018; 94: 172-82.

Ammonium chloride
Bjerring PN, Bjerrum EJ, Larsen FS.
Impaired cerebral microcirculation induced by ammonium chloride in rats is due to cortical adenosine release.
J Hepatol 2018; online early: doi: 10.1016/j.jhep.2018.01.034:

Asbestos
Barlow CA, Grespin M, Best EA.
Asbestos fiber length and its relation to disease risk.
Inhal Toxicol 2017; 29: 541-54.

Benzene
Heshmati A, Ghadimi S, Mousavi KA, Barba FJ, Lorenzo JM, Nazemi F, Fakhrizadeh Y.
Risk assessment of benzene in food samples of Iran’s market.
Carbon tetrachloride
Anadozie SO, Akinyemi JA, Agunbiade S, Ajiboye BO, Adewale OB.

Zarezade V, Moludi J, Mostafazadeh M, Mohammadi M, Veisi A.

Zhang Y, Miao H, Yan H, Sheng Y, Ji L.

Chocolate
Kunchok A, Spring PJ, Hayes MW.

Cleaning products
Wang Z, Scott WC, Williams ES, Ciarno M, DeLeo PC, Brooks BW.

Contrast media

Copper sulphate
Kadamattil AV, Sajankila SP, Prabhun S, Rao BN, Rao BSS.

Corrosives
Chibshev A, Daveceva N, Shikole E, Bozinovska C.

Cosmetics
Chen X, Sullivan DA, Sullivan AG, Kam WR, Liu Y.

Oni MR, Larsen JB, Shinnazi FM.

Cyanide
Culnan DM, Craft-Coffman B, Blitz GH, Capek KD, Tu Y, Lineaweaver WC, Kuhlmann-Capek MJ.

Kaita Y, Tarui T, Shoji T, Miyauchi H, Yamaguchi Y.

Rice NC, Rauscher NA, Langston JL, Myers TM.

Cyanotoxins
Oxidative imbalance in mice intoxicated by microcystin-LR can be minimized. Toxicol 2018; online early: doi: 10.1016/j.toxicon.2018.02.008:

Dichloroethane
Disruption of intracellular ATP generation and tight junction protein expression during the course of brain edema induced by subacute poisoning of 1,2-dichloroethane. Front Neurosci 2018; 12: 12.

Dioxins
Csanaky IL, Lickteig AJ, Klaassen CD.
Aryl hydrocarbon receptor (AhR) mediated short-term effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on bile acid homeostasis in wild-type and AhR-null mice. Toxicol Appl Pharmacol 2018; online early: doi: 10.1016/j.taap.2018.02.005:

Kabir A, Zendehdel R, Tayefeh-Rahimian R.

Disinfectants
Hostetler K.
Comments on “ambient and dosed exposure to quaternary ammonium disinfectants causes neural tube defects in rodents”. Birth Defects Res 2018; online early: doi: 10.1002/bdr.21194:

Disinfection byproducts
Hassoun EA, Zeng X.

Dust
Zha Y, Zhang Y, Ma Z, Tang J, Sun K.

E-cigarettes and e-liquids
Ang E, Tuthill D, Thompson J.

Simerson D.
What the advanced practice nurse in the emergency department needs to know about the health risks and hazards of electronic cigarette use by youth. Adv Emerg Nurs J 2018; 40: 36-44.

Endocrine disrupting chemicals

Endotoxins
Endotoxin airflow rate modulates toxicant profiles and can lead to concerning levels of solvent consumption. ACS Omega 2018; 3: 30-6.

Ethylene glycol
Giner T, Ojinaga V, Neu N, Koessler M, Cortina G.

Song CH, Bae HJ, Ham YR, Na KR, Lee KW, Choi DE.
A case of ethylene glycol intoxication with acute renal injury: successful recovery by fomepizole and renal replacement therapy.

Fluoride
Dionizio AS, Melo CGS, Sabino-Arias IT, Ventura TMS, Leite AL, Souza SRG, Santos EX, Heubel AD, Souza JG, Perles JVC, Zanoni JN, Buzalaf MAR.
Chronic treatment with fluoride affects the jejunum: insights from proteomics and enteric innervation analysis.

Khandare AL, Validani V, Boiroju N.
Fluoride alters serum elemental (calcium, magnesium, copper, and zinc) homeostasis along with erythrocyte carbonic anhydrase activity in fluorosis endemic villages and restores on supply of safe drinking water in school-going children of Nalgonda district.

Toxic effects of fluoride on organisms.
Life Sci 2018; online early: doi: 10.1016/j.lfs.2018.02.001:

Formaldehyde
Goldstein BD.
Mundt et al. paper: "Does occupational exposure to formaldehyde cause hematotoxicity and leukemia-specific chromosome changes in cultured myeloid progenitor cells?".

Fragrance chemicals
RIFM fragrance ingredient safety assessment 2-Benzylohexitol, CAS Registry Number 92368-90-6.
Food Chem Toxicol 2018; online early: doi: 10.1016/j.fct.2018.01.040:

Furoside
Li HY, Xing L, Wang J-Q, Zheng N.
Toxicology of related studies of furoside in vitro/in vivo and exploration of the related mechanism.
Toxicol Lett 2018; online early: doi: 10.1016/j.toxlet.2018.02.018:

Graphene
Manjunatha B, Park SH, Kim K, Kundapur RR, Lee SJ.
In vivo toxicity evaluation of pristine graphene in developing zebrafish (Danio rerio) embryos.

Helium
Borowska-Solonyk A, Dabkowska A.
Gas embolism as a potential cause of death by helium poisoning – Postmortem computed tomography changes in two cases of suicidal helium inhalation.

Household products
Tayabali AF, Zhang Y, Fine JH, Caldwell D, Navarro M.
Acellular filtrate of a microbial-based cleaning product potentiates house dust mite allergic lung inflammation.

Hydrogen peroxide
Cytoprotective and antioxidant effects of the red alga Al dives corallinum against hydrogen peroxide-induced toxicity in rat cardiomyocytes.
Arch Physiol Biochem 2018; online early: doi: 10.1080/13813455.2018.1437184:

Hydrogen sulphide
Jensen B, Fago A.
Reactions of ferric hemoglobin and myoglobin with hydrogen sulfide under physiological conditions.

Hydroxyethyl starch
Vassal O, Del Carmine P, Desgranges FP, Bouvet L, Lilot M, Gadot N, Timour-Chaï, Q, Chassard D.
Assessment of neurological toxicity of hydroxyethyl starch 130/0.4 injected in the intrathecal space in rats.
Pain Med 2018; online early: doi: 10.1093/pm/pny005:

Indium oxide
Bomhard EM.
The toxicology of indium oxide.

Iodine
Duan J, Kang J, Deng T, Yang X, Chen M.
Exposure to DBP and high iodine aggravates autoimmune thyroid disease through increasing the levels of IL-17 and thyroid binding globulin in Wistar rats.
Toxicol Sci 2018; online early: doi: 10.1093/toxsci/kfy019:

Kanto loam powder
Kobayashi Y, Shimada A, Morita T, Inoue K, Takano H.
A pathological study of acute pulmonary toxicity induced by inhaled kanto loam powder.

Lipopolysaccharide
Frühau-Perez PK, Temp FR, Pillat MM, Signor C, Lorena WA, Ulrich H, Mello CF, Rubin MA.
Spermine protects from LPS-induced memory deficit via BDNF and TrkB activation.

Melamine
Abd-Elhakim YM, El Bohi KM, Hassan SK, El SS, Abd-Elmotal SM.
Palliative effects of Moringa ollfera ethanolic extract on hemato-immunologic impacts of melamine in rats.

Myco toxins
Cunha SC, Sá S, Fernandes JO.
Multiple myco toxin analysis in nut products: occurrence and risk characterization.
Nanocellulose

Adewuyi A, Oteuchere CA, Adebayo OL, Anazodo C, Pereira FV.

Nanoparticles

Cao Y.

De Matteis V, Rinaldi R.

Dwivedi S, Saqib Q, Ahmad B, Ansari SM, Azam A, Musarrat J.

Ermolin MS, Fedotov PS, Malik NA, Karandashev VK.

Feng Q, Liu Y, Huang J, Chen K, Huang J, Xiao K.

Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep 2018; 8: 2082.

Girigoswami K.

Ha MK, Trinh TX, Choi JS, Maulina D, Byun HG, Yoon TH.

He X, Fu P, Aker WG, Hwang H-M.

Ihrie MD, Bonner JC.

Kadammatil AV, Sajankila SP, Prabhu S, Rao BN, Rao BSS.

Leso V, Iavicoli I.

Li QZ, Sun J, Shen HT, Jia SF, Bai DS, Ma D.

CdS nanoparticles of different lengths induce differential responses in some of the liver functions of mice. Bratisl Lek Listy 2018; 119: 75-80.

Li Y, Ju D.

Naha PC, Mukherjee SP, Byrne HJ.

Pappus SA, Mishra M.

Pietroiusti A, Stockmann-Juvala H, Lucaroni F, Savolainen K.

Pesch S.

Characterization of the toxicity of engineered nanoparticles by a 3D culture model to decipher the toxicity of nanoparticles taken through oral routes. Cell Mol Toxicol Nanoparticles 2018; 1048: 311.

Pesch S.

Pesch S.

Pesch S.

Nitrooxides

Ochratoxin A

Oxygen

Ozone

Perfluorinated compounds

Perfluoroocanoatoe

Petrol (gasoline) and petroleum oils
Ramesh S, Bhattacharya D, Majrashi M, Morgan M, Prabhakar CT, Dhanasekaran M.
Evaluation of behavioral parameters, hematological markers, liver and kidney functions in rodents exposed to Deepwater Horizon crude oil and Corexit.

Redman AD, Butler JD, Letinski DJ, Di Toro DM, Leon PM, Parkerton TF.
Technical basis for using passive sampling as a biomimetic extraction procedure to assess bioavailability and predict toxicity of petroleum substances.
Chemosphere 2018; 199: 585-94.

Phthalates
Di(2-ethylhexyl) phthalate (DEHP) influences follicular development in mice between the weaning period and maturity by interfering with ovarian development factors and microRNAs.
Environ Toxicol 2018; online early: doi: 10.1002/tox.22540:

Placent IncRNA expression is associated with prenatal phthalate exposure.
Toxicol Sci 2018; online early: doi: 10.1093/toxsci/kfy013:

Rattan S, Brehm E, Gao L, Flaws JA.
Di(2-ethylhexyl) phthalate exposure during prenatal development causes adverse transgenerational effects on female fertility in mice.
Toxicol Sci 2018; online early: doi: 10.1093/toxsci/kfy042:

Richardson KA, Hannon PR, Johnson-Walker YJ, Myint MS, Flaws JA, Nowak RA.
Di (2-ethylhexyl) phthalate (DEHP) alters proliferation and uterine gland numbers in the uteri of adult exposed mice.
Reprod Toxicol 2018; online early: doi: 10.1016/j.reprotox.2018.01.006:

Polybrominated diphenyl ethers
Li N, Chen X-W, Deng W-J, Giesy JP, Zheng H-L.
Chemosphere 2018; 199: 603-11:

Zhang B, Xu T, Huang G, Yin D, Zhang Q, Yang X.
Neurobehavioral effects of two metabolites of BDE-47 (6-OH-BDE-47 and 6-MeO-BDE-47) on zebrafish larvae.
Chemosphere 2018; 200: 30-5:

Polychlorinated biphenyls
Mennigen JA, Thompson LM, Bell M, Tellez SM, Gore AC.
Environ Health 2018; 17: 18:

Zho X, Wang X-L, Li Y.
Relationship between the binding free energy and PCBs' migration, persistence, toxicity and bioaccumulation using a combination of the molecular docking method and 3D-QSAR.

Polycyclic aromatic hydrocarbons
Miao Y, Kong X, Li C.
Distribution, sources, and toxicity assessment of polycyclic aromatic hydrocarbons in surface soils of a heavy industrial city, Liuzhou, China.
Environ Monit Assess 2018; 190: 164:

Pushparajah D, Ioannides C.
Antagonistic and synergistic interactions during the binding of binary mixtures of polycyclic aromatic hydrocarbons to the aryl hydrocarbon receptor.
Toxicol In Vitro 2018; online early: doi: 10.1016/j.tiv.2018.02.011:

Zha Y, Zhang Y, Ma Z, Tang J, Sun K.
Distribution, seasonal variations and ecological risk assessment of polycyclic aromatic hydrocarbons in foliar dust of Nanjing, China.
Bull Environ Contam Toxicol 2018; online early: doi: 10.1007/s00128-018-2287-7:

Polyvinyl chloride
Hou L, Fan C, Liu C, Qu Q, Wang C, Shi Y.
Evaluation of repeated exposure systemic toxicity test of PVC with new plasticizer on rats via dual parenteral routes.
Regen Biomater 2018; 5: 9-14.

Propylene glycol
Jahn A, Bodreau C, FartHING K, Elbarbry F.
Assessing propylene glycol toxicity in alcohol withdrawal patients receiving intravenous benzodiazepines: a one-compartment pharmacokinetic model.
Eur J Drug Metab Pharmacokinet 2018; online early: doi: 10.1007/s13318-018-0462-1:

Zipursky JS, Austin E, Thompson M.
A colonoscopy preparation gone wrong: propylene glycol mistaken for polyethylene glycol.
Clin Toxicol 2018; online early: doi: 10.1080/15563650.2018.1442008:

Pyrrolizidine alkaloids
Forsch K, Schoning V, Disch L, Stewert B, Unger M, Drewe J.
Development of an in vitro screening method of acute cytotoxicity of the pyrrolizidine alkaloid lasiocarpine in human and rodent hepatic cell lines by increasing susceptibility.
J Ethnopharmacol 2018; online early: doi: 10.1016/j.jep.2018.02.018:

Radiation
Amin NP, Agarwal M, Zainib M, Simone CB.
Acute pancreatitis: an unexpected toxicity when combining nivolumab and stereotactic body radiation therapy.

Baum RP, Langbein T, Singh A, Shahinfar M, Schuchardt C, Volk GF, Kulkarni H.
Injection of butulinum toxin for preventing salivary gland toxicity after PSMA radioligand therapy: an empirical proof of a promising concept.
Nucl Med Mol Imaging 2018; 52: 80-1:

Interest of supportive and barrier protective skin care products in the daily prevention and treatment of cutaneous toxicity during radiotherapy for breast cancer.

Silica

Skin whitening agents

Sodium arsenite
Solvents
E-cigarette airflow rate modulates toxicant profiles and can lead to concerning levels of solvent consumption.
ACS Omega 2018; 3: 30-6.
Malloul H, Bennis M, Bonzano S, Gambarotta G, Perroteau I, De Marchis S, Ba-Mhamed S.
Decreased Hippocampal Neuroplasticity and Behavioral Impairment in an Animal Model of Inhalant Abuse.
Front Neurosci 2018; 12: 35.

Sunscreen products
Consumption and exposure assessment to sunscreen products: a key point for safety assessment.

Surfactants
A common surfactant used in food packaging found to be toxic for reproduction in mammals.

Tetrabromobisphenol A
Han Q, Dong W, Wang H, Liu T, Tian Y, Song X.
Degradation of tetrabromobisphenol A by ferrate(VI) oxidation: performance, inorganic and organic products, pathway and toxicity control.
Pecquet AM, Martinez JM, Vincent M, Erraguntla N, Dourson M.
Derivation of a no-significant-risk-level for tetrabromobisphenol A based on a threshold non-mutagenic cancer mode of action.
J Appl Toxicol 2018; online early: doi: 10.1002/jat.3594:
Zhu B, Zhao G, Yang L, Zhou B.
Tetrabromobisphenol A caused neurodevelopmental toxicity via disrupting thyroid hormones in zebrafish larvae.
Chemosphere 2018; 197: 353-61.

Thioacetamide
Bashandy SAE, Ebaid H, Abdelmottaleb Moussa SA, Alhazza JM, Hassan I, Alaaamer A, Al TJ.
Potential effects of the combination of nicotineamide, vitamin B2 and vitamin C on oxidative-mediated hepatotoxicity induced by thioacetamide.
Lipids Health Dis 2018; 17: 29.

Titanium dioxide
Kawasaki H.
A mechanistic review of particle overload by titanium dioxide.
Inhal Toxicol 2017; 29: 530-40.

Tobacco
Gac P, Poreba M, Pawlas K, Sobieszczanska M, Poreba R.
Influence of environmental tobacco smoke on morphology and functions of cardiovascular system assessed using diagnostic imaging.
In vitro RNA-seq-based toxicogenomics assessment shows reduced biological effect of tobacco heating products when compared to cigarette smoke.
Khan NA, Sundar IK, Rahman I.
Strain- and sex-dependent pulmonary toxicity of waterpipe smoke in mouse.
Physiol Rep 2018; 6: e13579.
Matt GE, Quintana PJE, Hoh E, Zakarian JM, Chowdhury Z, Hovell MF, Jacob P, Watanabe K, Thewery TS, Flores V, Nguyen A, Dhalilval N, Hayward G.
A Casino goes smoke free: a longitudinal study of secondhand and thirdhand smoke pollution and exposure.
Tob Control 2018; online early: doi: 10.1136/tobaccocontrol-2017-054052:
Penfold CM, Thomas SJ, Waylen A, Ness AR.
Change in alcohol and tobacco consumption after a diagnosis of head and neck cancer: findings from head and neck 5000.
Head & Neck 2018; online early: doi: 10.1002/hed.25116:
Quercetin protects against cigarette smoke extract-induced apoptosis in epithelial cells by inhibiting mitophagy.
Toxicol In Vitro 2018; online early: doi: 10.1016/j.tiv.2018.01.011:
Streck JM, Heil SH, Higgins ST, Bunn JY, Sigmon SC.
Tobacco withdrawal among opioid-dependent smokers.
Exp Clin Psychopharmacol 2018; online early: doi: 10.1037/pha0000185:
Tran BX, Nguyen HLT, Le QNH, Mai HT, Ngo C, Hoang CD, Nguyen HH, Le HQ, Van NH, Le HT, Tran TD, Zary N, Latkin CA, Vu TMT, Ho RCM, Zhang MWB.
Alcohol and tobacco use among methadone maintenance patients in Vietnamese rural mountainside areas.
Addict Behav Rep 2018; 7: 19-25.
Veile A, Zimmermann H, Lorenz E, Becher H.
Is smoking a risk factor for tinnitus? A systematic review, meta-analysis and estimation of the population attributable risk in Germany.
BMJ Open 2018; 8: e016589.

Toxic alcohols
Ng PCY, Long BJ, Davis WT, Sessions DJ, Koyfman A.
Toxic alcohol diagnosis and management: an emergency medicine review.

Triclosan
Molecular interaction of triclosan with superoxide dismutase (SOD) reveals a potentially toxic mechanism of the antimicrobial agent.

Vegetable oils
Potential interference of oil vehicles on genital tubercle development during the fetal period in ICR mice.
Volcanic ash

METALS
General

Aluminium
Dudev T, Cheshmedzheva D, Doudeva L. Competition between abiogenic Al³⁺ and native Mg²⁺, Fe²⁺ and Zn²⁺ ions in protein binding sites: implications for aluminum toxicity. J Mol Model 2018; 24: 55.

Arsenic
Gusso-Choueri PK, de Araújo GS, Cruz ACF, Stremel TRO, de Campos SX, Abessa DMS, de Oliveira Ribeiro CA, Choueri RB. Metals and arsenic in fish from a Ramsar site under past and present human pressures: Consumption risk factors to the local population.
Cadmium
Alkharashi NAO, Periasamy VS, Athinarayanan J, Aalashwiti AA. Assessment of sulforaphane-induced protective mechanisms against cadmium toxicity in human mesenchymal stem cells. Environ Sci Pollut Res 2018; online early: doi: 10.1007/s11356-018-1228-7:

Chromium

Copper

Iron

Lead

Lithium

Manganese

Mercury
Quantitative estimation of mercury intake by toxicokinetic modelling based on total mercury levels in humans.

Calabrese EJ, Iavicoli I, Calabrese V, Cory-Slechta DA, Giordano J.
Elemental mercury neurotoxicity and clinical recovery of function: a review of findings, and implications for occupational health.

PM origin or exposure duration? Health hazards from PM-bound mercury and PM-bound PAHs among students and lecturers.

Ori MR, Larsen JB, Shirazi FM.
Mercury poisoning in a toddler from home contamination due to skin-lightening cream.

Ruyani A, Putri RZE, Jundara P, Gresinta E, Ansori I, Sundaryono A.
Protective effect of leaf ethanolic extract Etlingera hemisphaerica dume against mercuric chloride toxicity in blood of mice.

Schutzmeier P, Focil BA, Castillo-Tandazo W, Focil N, Bose-O'Reilly S.
Efficacy of N,N'-bis-(2-mercaptoethyl) isophthalamid on mercury intoxication: a randomized controlled trial.
Environ Health 2018; 17: 15.

Selin H, Keane SE, Wang S, Selin NE, Davis K, Bally D.
Linking science and policy to support the implementation of the Minamata Convention on Mercury.
Ambio 2018; 47: 198-215.

Zefferino R, Piccoli C, Ricciardi N, Scrima R, Capitanio N.
Possible mechanisms of mercury toxicity and cancer promotion: involvement of gap junction intercellular communications and inflammatory cytokines.

Nickel

PESTICIDES General
Differences among Thai agricultural workers’ health, working conditions, and pesticide use by farm type.

Lekei E, Ngowi AV, London L.
Acute pesticide poisoning in children: hospital review in selected hospitals of Tanzania.

Mesnage R, Antoniou MN.
Ignoring adjuvant toxicity falsifies the safety profile of commercial pesticides.
Front Public Health 2018; 5: 361.

Negatu B, Vermeulen R, Mekonnen Y, Kromhout H.
Neurobehavioural symptoms and acute pesticide poisoning: a cross-sectional study among male pesticide applicators selected from three commercial farming systems in Ethiopia.
Occup Environ Med 2018; online early: doi: 10.1136/oemed-2017-104538:

QSR prediction of additive and non-additive mixture toxicities of antibiotics and pesticide.

Sapbamrer R.
Pesticide use, poisoning, and knowledge and unsafe occupational practices in Thailand.
New Solut 2018; online early: doi: 10.1177/1042911118759311:

Pesticides and cancer
Huang F, Chen Z, Chen H, Lu W, Xie S, Meng QH, Wu Y, Xia D.
Toxicol Sci 2018; online early: doi: 10.1093/toxsci/kfy039:

Kabir A, Zendehdel R, Tayefeh-Rahimian R.
Dioxin exposure in the manufacture of pesticide production as a risk factor for death from prostate cancer: a meta-analysis.

Aluminium phosphide
Gouda AS, El-Nabarawy NA, Ibrahim SF.
Moringa oleifera extract (Lam) attenuates Aluminium phosphide-induced acute cardiac toxicity in rats.

Ametryn
Lin HD, Hsu LS, Chien CC, Chen SC.
Proteomic analysis of ametryn toxicity in zebrafish embryos.
Environ Toxicol 2018; online early: doi: 10.1002/tox.22546:

Bipyridyl herbicides
Paraquat
Janeela MA, Oommen A, Misra AK, Ramya I.
Paraquat poisoning: case report of a survivor.
J Family Med Prim Care 2017; 6: 672-3.

Hypoxia-inducible factor-1α regulates epithelial-to-mesenchymal transition in paraquat-induced pulmonary fibrosis by activating lysyl oxidase.
Fungicides

Imazalil
Jin C, Luo T, Fu Z, Jin Y.
Chronic exposure of mice to low doses of imazalil induces hepatotoxicity at the physiological, biochemical, and transcriptomic levels.
Environ Toxicol 2018; online early: doi: 10.1002/tox.22550:

Penconazole
Icoglu AF, Ciltas A.
Developmental toxicity of penconazole in zebrafish (Danio rerio) embryos.

Herbicides

Atrazine
Bautista FEA, Junior AV, Corcini CD, Acosta IB, Caldas SS, Primel EG, Wanette J.
The herbicide atrazine affects sperm quality and the expression of antioxidant and spermatogenesis genes in zebrafish testes.

Insecticides

Liu X, Zhang Q, Li S, Mi P, Chen D, Zhao X, Feng X.
Developmental toxicity and neurotoxicity of synthetic organic insecticides in zebrafish (Danio rerio): a comparative study of deltamethrin, acephate, and thiamethoxam.
Chemosphere 2018; 199: 16-25.

Amitraz
Basetty S, Mishra AK, Sathyendra S.
Neurological effects of an unusual insecticide poison: amitraz.

Pyriflloxin
Maharajan K, Muthulakshmi S, Nataraj B, Ramesh M, Kadirvelu K.
Toxicity assessment of pyriflloxin in vertebrate model zebrafish embryos (Danio rerio): a multi biomarker study.

Rotenone
Bai XX, Gu L, Yang HM, Xi SS, Xia N, Zhang S, Zhang H.
Downregulation of metabotropic glutamate receptor 5 inhibits hepatoma development in a neurotoxin rotenone-induced Parkinson’s disease model.

Neonicotinoids

Imidacloprid
Bizarra PFV, Guimarães ARJS, Maioli MA, Mingatlo FE.
Imidacloprid affects rat liver mitochondrial bioenergetics by inhibiting FoF1-ATP synthase activity.

Organochlorine pesticides

General
Fish consumption from urban impoundments: what are the health risks associated with DDTs and other organochlorine pesticides in fish to township residents of a major inland city.

Endosulfan
Liu R, Printz RL, Jenkins EC, O’Brien TP, Te JA, Shio I, Wallqvist A.
Genome-wide gene expression changes associated with exposure of rat liver, heart, and kidney cells to endosulfan.
Toxicol In Vitro 2018; online early: doi: 10.1016/j.tiv.2018.01.022:

Organophosphorus insecticides

General
Clin Toxicol 2018; online early: doi: 10.1080/15563650.2018.1440587:

Eddleston M.
Are oximes still indicated for acute organophosphorus insecticide self-poisoning?

Koo Y, Hawkins BT, Yun Y.
Three-dimensional (3D) tetra-culture brain on chip platform for organophosphate toxicity screening.

Radford SA, Panuwet P, Hunter RE, Jr., Barr DB, Ryan PB.
Degradation of organophosphorus and pyrethroid insecticides in beverages: implications for risk assessment.
Toxics 2018; 6: 11.

Wang N, Wang J, Jiang R.
Effects of IL-10 on OX62, MHC-II and CD86 in bone marrow DCs in rats with organophosphate poisoning.

Chlorpyrifos
Cunha AF, Filippe ISA, Ferreira-Junior NC, Resstel LBM, Guimarães DAM, Beijamini V, Paton JFR, Sampaio KN.
Neuroreflex control of cardiovascular function is impaired after acute poisoning with chlorpyrifos, an organophosphorus insecticide: possible short and long term clinical implications.
Toxicology 2018; online early: doi: 10.1016/j.tox.2018.02.005:
Deltamethrin
Shabnam KR, Philip GH.
Developmental toxicity of deltamethrin and 3-phenoxycarboxybenzoic acid in embryo-larval stages of Zebrafish (Danio rerio).

Permethrin
Yuh EL, Keir I.
Hypertriglyceridemia and transient corneal lipidosis in a cat following intravenous lipid therapy for permethrin toxicosis.

CHEMICAL WARFARE, BIOLOGICAL WARFARE AND RIOT CONTROL AGENTS

Chemical warfare

General
Carniato F, Bisio C, Evangelisti C, Psaro R, Dal S, V, Costenaro D, Marchese L, Guidotti M.
Iron-montmorillonite clays as active sorbents for the decontamination of hazardous chemical warfare agents.
Dalton Trans 2018; online early: doi: 10.1039/c7dt03859c:

Rump A, Stricklin D, Lamkowski A, Eder S, Abend M, Port M.
Analysis of the antidote requirements and outcomes of different radionuclide decontamination strategies for a scenario of a "dirty bomb" attack.

Nerve agents

Soman
Myhrer T, Mariussen E, Aas P.
Development of neuropathology following soman poisoning and medical countermeasures.
Neurotoxicology 2018; online early: doi: 10.1016/j.neuro.2018.02.009:

Tabun
A newly developed oxime K203 is the most effective reactivator of tabun-inhibited acetylcholinesterase.

PLANTS

General
Senedes-Lopes TF, Lópex JA, do Amaral VS, Brandão-Neto J, de Rezende AA, da Luz JRD, Guterres ZDR, Almeida MDG.
Genotoxicity of Turnera subulata and Spondias mombin x Spondias tuberosa extracts from Brazilian caatinga biome.

Abrus precatorius (Jequitirry)
Mechaly A, Alcalay R, Noy-Porat T, Epstein E, Gal Y, Mazor O.
Novel phage display-derived anti-abrin antibodies confer post-exposure protection against abrin intoxication.
Toxins (Basel) 2018; 10: 80.

Areca catechu (Betel palm)
Evaluation of 13-week repeated oral dose toxicity of Areca catechu in F344/N rats.

Mitragyna speciosa (Kratom)
Aggarwal G, Robertson E, McKinlay J, Walter E. Death from kratom toxicity and the possible role of intralipid.

Mushrooms
Fung SY, Tan NH, Kong BH, Lee SS, Tan YS, Sabaratnam V. Acute toxicity study and the in vitro cytotoxicity of a black lingzhi medicinal mushroom, Amauroderma rugosum (Agaricomycetes), from Malaysia.

Salvia officinalis (Common sage)

Strychnos nux-vomica (Strychnine tree)
Ponraj L, Mishra AK, Koshy M, Carey RAB. A rare case report of Strychnos nux-vomica poisoning with bradycardia.

Toxicodendron spp. (Poison ivy)
Chastain LR, Davis T, Libow L. Black-spot poison ivy, a report of 3 cases with clinicopathologic correlation.
JAAD Case Rep 2018; 4: 140-2.

Veratrum parviflorum (Appalachian bunchflower)
Clin Toxicol 2018; online early: doi: 10.1080/15563650.2018.1442007:

ANIMALS

Arthropods
Clin Toxicol 2018; online early: doi: 10.1080/15563650.2018.1447120:

Hymenoptera
Clin Toxicol 2018; online early: doi: 10.1080/15563650.2018.1447121:

Bufo Bufo (Common toad)
Comp Biochem Physiol C Toxicol Pharmacol 2018; online early: doi: 10.1016/j.cbpc.2018.01.004:

Fish/marine poisoning
Mar Drugs 2018; 16: 46.

Ciguatera

Cone snails
Vijayasarithy M, Balaram P. Mass spectrometric identification of bromotryptophan containing conotoxin sequences from the venom of C. aranidus.
Toxicon 2018; 144: 68-74.

Jellyfish
J Sci Food Agric 2018; online early: doi: 10.1002/jsfa.8921:

Paralytic shellfish poisoning
JMIR Public Health Surveill 2018; 4: e17.

Micro-organisms

Toxicon 2018; 143: 74-80.
Botulinum

Cyanobacteria

Toxins (Basel) 2018; 10: 60.

Neoponera villosa (Neoponera ants)
Cologna CT, Rodrigues RS, Santos J, De PE, Arantes EC, Quinton L.

Scorpions
Abimannane A, Ramesh Kumar R, Satheesh P, Mahadevan S.

Two second dose of scorpion antivenom in children with Indian red scorpion (Mesobuthus tamulus) sting envenomation. Indian Pediatr 2018; online early: PM:29428915:

Schaffrath S, Prendini L, Predel R.

Intraspecific venom variation in southern African scorpion species of the genera Parabuthus, Uroplectes and Opistophthalmus (Scorpiones: Buthidae, Scorpionidae). Toxicon 2018; online early: doi: 10.1016/j.toxicon.2018.02.004:

Snake bites
Adhikari KM.

One ‘poison’ leads to the other: Snake bite while under the influence of alcohol! Med J Armed Forces India 2018; 74: 96-7.

Holla SK, Rao HA, Shenoy D, Boloor A, Boyanagari M.

The role of fresh frozen plasma in reducing the volume of anti-snake venom in snakebite envenomation. Trop Doct 2018; online early: doi: 10.1177/0049475518756083:

Schulte J, Kleinschmidt KC, Domanski K, Smith EA, Haynes A, Roth B.

Exploration of the inhibitory potential of varespladib for snakebite envenomation. Molecules 2018; 23: 391.

Willhite LA, Willenbring BA, Orozco BS, Cole JB.

Xiong S, Huang C.

Crotalinae (Pit vipers)

Smiley-Walters SA, Farrell TM, Gibbs HL.

The importance of species: pygmy rattlesnake venom toxicity differs between native prey and related non-native species. Toxicon 2018; 144: 42-7.

Elapidae

Identification of immunoreactive peptides of toxins to simultaneously assess the neutralization potency of antivenoms against neurotoxicity and cytotoxicity of Naja atra venom. Toxins (Basel) 2017; 10: 10.

Makdisi JR, Kim DP, Klein PA, Klein JA.

Viperinae (True vipers)
Sasidaran MN, Samuel SP, Chinnaraju S, Antonyasm S, Bulfone TC, Levin MR.

INDEX

3'-sialyllactose sodium salt ... 37
Abrus precatorius .. 51
Acamprosate ... 21
Acetaminophen ... 33
Acetic acid .. 37
Acetylcysteine ... 20
Acrolein ... 37
Acrylamide .. 37
Activated charcoal ... 20
Adrenaline .. 24
Air pollution .. 35
Alcohol ... 37
Alkyl bromides .. 38
Aluminium .. 47
Aluminium phosphide .. 49
Ametryn .. 49
Amfetamines .. 25
Amiodarone .. 25
Amitraz ... 50
Amlodipine .. 21, 27
Ammonium chloride ... 38
Amphotericin B .. 38
Anaesthetic .. 25
Analytical toxicology .. 6
Animals, general .. 52
Antiarrhythmic drugs .. 25
Antibiotics ... 25
Antibody-drug conjugates .. 25
Anticoagulants .. 25
Anticonvulsants .. 26
Antidepressants ... 26
Antidotes .. 20
Antifungal drugs .. 26
Antimalarial drugs ... 26
Antipsychotics ... 26
Antituberculous drugs .. 26
Antivenom .. 20
Antiviral drugs ... 26
Appalachian bunchflower .. 52
Areca catechu ... 51
Arsenic .. 47
Arthropods .. 52
Asbestos ... 38
Astibin .. 21
Atrazine ... 50
Benzene .. 38
Benzo[a]pyrene .. 38
Benzo[a]pyrene-7-epoxide ... 38
Benzo[a]pyrene-3,4-oxide .. 38
Benzodiazipines .. 26
Betal-blockers ... 26
Betal palm .. 51
Biocides .. 38
Biological warfare ... 51
Biomarkers ... 6
Bipyradyl herbicides ... 49
Bispheion A .. 38
Bleomycin .. 28
Bosutinib .. 35
Botulinum ... 53
Bufo Bufo ... 52
Buprenorphine ... 27
Bupropion .. 27
Cadmium ... 39
Cadmium chloride ... 39
Caffeine .. 27
Calcium channel blockers ... 27
Calcium gluconate ... 27
Cannabis .. 27
Carbon monoxide ... 39
Carbon tetrachloride .. 39
Carcinogenicity ... 7
Cardiotoxicity .. 7
CAR-T cell therapy .. 27
Cetuximab .. 27
Chelating agents .. 20
Chemical incidents .. 36
Chemical warfare, general ... 51
Chemicals, general ... 36
Chemotherapeutic agents ... 27
Chloroquine .. 26
Chlorpyrifos .. 50
Choline ... 21
Chromate ... 29
Chromium .. 48
Ciguatera .. 52
Cisplatin .. 28
Cleaning products .. 39
Clofazimine .. 29
Clonidine .. 21
Cocaine .. 29
Common sage .. 52
Common toad .. 52
Cone snails ... 52
Contrast media ... 39
Copper .. 48
Copper sulphate ... 39
Corrosives .. 39
Cosmetics .. 39
Crizotinib ... 29
Crocin .. 21
Crotalinae ... 53
Curcumin ... 21
Cyanide .. 40
Cyanobacteria ... 53
Cyanotoxins ... 40
Cyclophosphamide .. 28
Cyclosporine ... 22
Cypermethrin ... 51
Dabigatran .. 25
Dasatinib .. 28
Dermal toxicity ... 8
Designer benzodiazepines .. 35
Desvenlafaxine ... 34
Developmental toxicology ... 9
Diacetylmorphine .. 30
Diazinon ... 51
Dichloroethane ... 40
Diclofenac ... 32
Dietary supplements .. 30
Digoxin .. 29
Dihydrocatechol ... 33
Dioxins .. 40
Disinfectant ... 40
Disinfection byproducts .. 40
Disulfiram ... 22, 29
D-methionine ... 22
Doxorubicin ... 28
Dronedareno ... 25
Drugs, general ... 24
Dust ... 40
E-cigarettes and e-liquids .. 40
Ecstasy .. 53
Elapidae .. 53
Ellagic acid ... 22
Endocrine disrupting chemicals 40
Endosulfan .. 50
Endotoxins .. 40
Epidemiology ... 10
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychiatric aspects</td>
<td>17</td>
</tr>
<tr>
<td>Pyrethroid insecticides, general</td>
<td>51</td>
</tr>
<tr>
<td>Pyridoxine</td>
<td>21</td>
</tr>
<tr>
<td>Pyrrolizidine alkaloids</td>
<td>44</td>
</tr>
<tr>
<td>Quercetin</td>
<td>23</td>
</tr>
<tr>
<td>Quetiapine</td>
<td>26</td>
</tr>
<tr>
<td>Radiation</td>
<td>44</td>
</tr>
<tr>
<td>Reprotoxicity</td>
<td>17</td>
</tr>
<tr>
<td>Risk assessment</td>
<td>18</td>
</tr>
<tr>
<td>Rivaroxaban</td>
<td>26</td>
</tr>
<tr>
<td>Rosuvastatin</td>
<td>34</td>
</tr>
<tr>
<td>Rotenone</td>
<td>50</td>
</tr>
<tr>
<td>Rutin</td>
<td>23</td>
</tr>
<tr>
<td>Salbutamol</td>
<td>23</td>
</tr>
<tr>
<td>Salvia officinalis</td>
<td>52</td>
</tr>
<tr>
<td>Scopolamine</td>
<td>34</td>
</tr>
<tr>
<td>Scorpions</td>
<td>53</td>
</tr>
<tr>
<td>Silica</td>
<td>45</td>
</tr>
<tr>
<td>Snake bites</td>
<td>45</td>
</tr>
<tr>
<td>Sodium arsenite</td>
<td>45</td>
</tr>
<tr>
<td>Solvents</td>
<td>46</td>
</tr>
<tr>
<td>Soman</td>
<td>51</td>
</tr>
<tr>
<td>SSRIs and SNRIs</td>
<td>34</td>
</tr>
<tr>
<td>Statins</td>
<td>34</td>
</tr>
<tr>
<td>Steroids</td>
<td>34</td>
</tr>
<tr>
<td>Strychnine tree</td>
<td>52</td>
</tr>
<tr>
<td>Strychnos nux vomica</td>
<td>52</td>
</tr>
<tr>
<td>Substance abuse</td>
<td>34</td>
</tr>
<tr>
<td>Suicide</td>
<td>19</td>
</tr>
<tr>
<td>Sulfamethoxazole</td>
<td>25</td>
</tr>
<tr>
<td>Sunscreen products</td>
<td>46</td>
</tr>
<tr>
<td>Surfactants</td>
<td>46</td>
</tr>
<tr>
<td>Synthetic cannabinoids</td>
<td>31</td>
</tr>
<tr>
<td>Synthetic cathinones</td>
<td>31</td>
</tr>
<tr>
<td>Synthetic opioids</td>
<td>31</td>
</tr>
<tr>
<td>Tabun</td>
<td>51</td>
</tr>
<tr>
<td>Tetramethylbisphenol A</td>
<td>46</td>
</tr>
<tr>
<td>Theanine</td>
<td>24</td>
</tr>
<tr>
<td>Thioacetamide</td>
<td>46</td>
</tr>
<tr>
<td>Thymoquinone</td>
<td>24</td>
</tr>
<tr>
<td>Titanium dioxide</td>
<td>46</td>
</tr>
<tr>
<td>Tobacco</td>
<td>46</td>
</tr>
<tr>
<td>Toxic alcohols</td>
<td>46</td>
</tr>
<tr>
<td>Toxicodendron spp</td>
<td>52</td>
</tr>
<tr>
<td>Toxicology, general</td>
<td>6</td>
</tr>
<tr>
<td>Trastuzumab</td>
<td>31</td>
</tr>
<tr>
<td>Tricosan</td>
<td>46</td>
</tr>
<tr>
<td>True vipers</td>
<td>53</td>
</tr>
<tr>
<td>Tyrosine kinase inhibitors</td>
<td>35</td>
</tr>
<tr>
<td>Unoprostone</td>
<td>35</td>
</tr>
<tr>
<td>Vaccines</td>
<td>35</td>
</tr>
<tr>
<td>Valacyclovir</td>
<td>26</td>
</tr>
<tr>
<td>Valproate</td>
<td>26</td>
</tr>
<tr>
<td>Varespladib</td>
<td>24</td>
</tr>
<tr>
<td>Vegetable oils</td>
<td>46</td>
</tr>
<tr>
<td>Veratrum parviforum</td>
<td>52</td>
</tr>
<tr>
<td>Veterinary products</td>
<td>35</td>
</tr>
<tr>
<td>Viperinae</td>
<td>53</td>
</tr>
<tr>
<td>Volcanic ash</td>
<td>47</td>
</tr>
<tr>
<td>Zonisamide</td>
<td>26</td>
</tr>
</tbody>
</table>