The management of ventricular dysrhythmia in aconite poisoning

Introduction
Aconite poisoning is relatively rare but is frequently complicated by ventricular dysrhythmias, which may be fatal.

Molecular basis of aconite alkaloid ventricular arrhythmogenicity
Aconite exerts its toxic effects due to the presence of an admixture of alkaloids present in all parts of the plant. The major target of these aconite alkaloids is the fast voltage-gates sodium channel, where they cause persistent activation. This blockade of the channel in the activated state promotes automaticity within the ventricular myocardium and the generation of ventricular arrhythmias.

Aconitine-induced arrhythmias
Aconite alkaloids are known to cause many different types of disturbance of heart rhythm. However, this focused review specifically looks at ventricular rhythm disturbances, namely ventricular ectopy, ventricular tachycardia, torsades des pointes and ventricular fibrillation.
Objective

The objective of this review was to identify the outcome of anti-dysrhythmic strategies from animal studies and case reports in humans in order to guide the management of ventricular dysrhythmias in aconite poisoning in humans.

Methods

A review of the literature in English was conducted in PubMed and Google Scholar from 1966 to July 2016 using the search terms "aconite/aconitine"; "aconite/aconitine"+ "poisoning" and "aconite/aconitine"+"dysrhythmia". 168 human case-reports and case-series were identified by these searches, of which 103 were rejected if exposure to aconite did not result in ventricular dysrhythmias, if it was uncertain as to whether aconite had been ingested, if other agents were co-ingested, if there was insufficient information to determine the type of treatments administered or if there was insufficient information to determine outcome. Thus, 65 case reports of probable aconite poisoning that resulted in ventricular dysrhythmias were identified.

Toxicokinetic data in aconite poisoning

Data were only available in three papers; the presence of ventricular rhythm disturbances directly correlated with the concentration of aconite alkaloids in the plasma.

Management

54 of 65 cases developed ventricular tachycardia, six developed torsades des pointes, 15 patients developed ventricular fibrillation, 10 developed ventricular ectopics and one developed a broad complex tachycardia not otherwise specified; each dysrhythmia was regarded as separate and patients may have had more than one dysrhythmia. 10 patients died, giving a mortality of 15%. In total, 147 treatments were administered to 65 patients. 46 of the interventions were assessed by the authors as having been associated with successful restoration of sinus rhythm. Flecainide administration was accompanied by dysrhythmia termination in six of seven cases. Mexiletine was connected with correcting dysrhythmias in 3 of 3 cases. Procainamide administration was associated with return to sinus rhythm in 2 of 2 cases. Prolonged cardiopulmonary resuscitation was administered to 15 patients where it was associated with a return to sinus rhythm in nine of these. Amiodarone was linked to success in correcting dysrhythmias in 11 of 20 cases. Cardiopulmonary bypass use was associated with a return to sinus rhythm in four out of six cases. Epinephrine was documented as being employed on four occasions, and was associated with a restoration of sinus rhythm on two of these. Magnesium sulphate administration was accompanied by dysrhythmia termination in two of nine cases. Direct cardioversion was associated with a return of sinus rhythm in 5 of 30 cases. However, it is not certain whether the drug treatment influenced the course of the dysrhythmia.

Conclusions

Based on the evidence available from human case reports, flecainaide or amiodarone appear to be more associated with a return to sinus rhythm than lidocaine and/or cardioversion, although it is not established whether the administration of treatment caused reversion to normal sinus rhythm. The potential beneficial effects of amiodarone were not observed in animal studies. This may be due to intra-species differences between ion channels or relate to the wider cardiovascular toxicity of aconite that extends beyond arrhythmias. Prolonged cardiopulmonary resuscitation and cardiopulmonary bypass should be considered as an integral part of good clinical care as "time-buying" strategies to allow the body to excrete the toxic alkaloids. There may also be a role for mexiletine, procainamide and magnesium sulphate.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1291944
A systematic review of the evidence for acute tolerance to alcohol – the "Mellanby effect"

Holland MG, Ferner RE. Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1296576:

Objective
To review the evidence for "the Mellanby effect", that is, whether the response to a given blood alcohol concentration (BAC) is more marked when BAC is rising than at the same concentration when BAC is falling.

Methods
We systematically searched the databases EMBASE, Medline, and Scopus up to and including December 2016 using text words "tolerance", "ascending", "descending" or "Mellanby" with Medline term "exp *alcohol/" or "exp *drinking behavior/" or equivalent. Articles were identified for further examination by title or abstract; full text articles were retained for analysis if they dealt with acute (within dose) alcohol tolerance in human subjects and provided quantitative data on both the ascending and descending parts of the BAC–time curve. Reference lists of identified works were scanned for other potentially relevant material. We extracted and analyzed data on the subjective and objective assessment of alcohol effects.

Results
We identified and screened 386 unique articles, of which 127 full-text articles were assessed; one provided no qualitative results, 62 involved no human study, 25 did not consider acute tolerance within dose, and 13 failed to provide data on both ascending and descending BAC. We extracted data from the 26 remaining articles. The studies were highly heterogeneous. Most were small, examining a total of 770 subjects, of whom 564 received alcohol and were analyzed in groups of median size 10 (range 5–38), sometimes subdivided on the basis of drinking or family history. Subjects were often young white men. Doses of alcohol and rates of administration differed. Performance was assessed by at least 26 different methods, some of which measured many variables. We examined only results of studies which compared results for a given alcohol concentration (C) measured on the ascending limb (C\textsubscript{up}) and the descending limb (C\textsubscript{down}) of the BAC-time curve, whether in paired or parallel-group studies. When subjects were given alcohol in more than one session, we considered results from the first session only. Rating at C\textsubscript{down} was better than at C\textsubscript{up} for some measures, as expected if the Mellanby effect were operating. For example, subjects rated themselves less intoxicated on the descending limb than at the same concentration on the ascending limb in 12/13 trials including 229 subjects that gave statistically significant results. In 9 trials with a total of 139 subjects, mean difference could be calculated; weighted for study size, it was 29% [range 24–74%]. Willingness to drive was significantly greater in 4 of 6 studies including a total of 105 subjects; weighted mean difference increased by 207% [range 79–300%]. By contrast, measure of driving ability in three groups of a total of 200 trials in 57 subjects showed worse performance by a weighted mean of 96% [range 3–566%]. In three trials that tested inhibitory control (cued go or no-go response times), weighted mean performance was 30% [range 14–65%] worse on the descending limb.

Conclusions
The "Mellanby effect" has been demonstrated for subjective intoxication and willingness to drive, both of which are more affected at a stated ethanol concentration when BAC is rising than at the same concentration when BAC is falling. By contrast, objective measures of skills necessary for safe driving, such as response to inhibitory cues and skills measured on driving simulators, were generally worse on the descending part of the BAC-time curve for the same BAC.
Analytical confirmation of synthetic cannabinoids in a cohort of 179 presentations with acute recreational drug toxicity to an Emergency Department in London, UK in the first half of 2015

Context
Synthetic cannabinoid receptor agonists are the largest group of new psychoactive substances reported in the last decade; in this study we investigated how commonly these drugs are found in patients presenting to the Emergency Department with acute recreational drug toxicity.

Methods
We conducted an observational cohort study enrolling consecutive adult patients presenting to an Emergency Department (ED) in London (UK) January–July 2015 (6 months) with acute recreational drug toxicity. Residual serum obtained from a serum sample taken as part of routine clinical care was analyzed using high-resolution accurate mass-spectrometry with liquid-chromatography (HRAM-LCMSMS). Minimum clinical data were obtained from ED medical records.

Results
18 (10%) of the 179 patient samples were positive for synthetic cannabinoid receptor agonists. The most common was 5F AKB-48 (13 samples, concentration 50–7600 pg/ml), followed by 5F PB-22 (7, 30–400 pg/ml), MDMB-CHMICA (7, 80–8000 pg/ml), AB-CHMINACA (3, 50–1800 pg/ml), Cumyl 5F-PINACA (1, 800 pg/ml) and BB-22 (1, 60 pg/ml). Only 9/18 (50%) in whom synthetic cannabinoid receptor agonists were detected self-reported synthetic cannabinoid receptor agonist use. The most common clinical features were seizures and agitation, both recorded in four (22%) individuals. Fourteen patients (78%) were discharged from the ED, one of the four admitted to hospital was admitted to critical care.

Conclusions
Synthetic cannabinoid receptor agonists were found in 10% of this cohort with acute recreational drug toxicity but self-reported in only half of these. This suggests that presentations to the ED with acute synthetic cannabinoid receptor agonist toxicity may be more common than reported.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1287373

Self-reported cocaine use is not associated with elevations in high-sensitivity troponin I

Objective
High-sensitivity troponin (hsTn) assays detect 10 times lower concentrations of cardiac troponin than conventional assays. We examined the effects of self-reported cocaine use to determine whether those with acute cocaine use being evaluated for ACS are more likely to have elevated hsTnI than those nonusers being evaluated for ACS.
Methods

We conducted a sub-analysis of a prospective cohort of ED patients evaluated for acute coronary syndrome. Recent cocaine use was determined by structured patient interviews. High-sensitivity troponin (Abbott) and conventional troponin I (Abbott, cTnI) were measured on samples drawn at presentation. Urine toxicology screen for cocaine metabolite was obtained at the discretion of treating clinicians.

Results

Of 1862 patients enrolled, 444 reported prior cocaine use and 99 reported cocaine use within the preceding month. Median hsTn in patients with last cocaine use within 24 h, 2–7 days, 1 week–1 month, >1 month, and no prior cocaine use were: 9 (IQR: 3–17) ng/L, 6 (IQR: 3–24.3) ng/L, 6 (IQR: 3–89.5) ng/L, 3 (IQR: 3–18.5) ng/L and 3 (IQR: 3–17) ng/L, respectively. Urine toxicology assays (UTox) for cocaine were performed in 640 (34.4%) patients. The median hsTn for those who were UTox+, UTox – and those without a UTox were: 9 ng/L (IQR: 3–48.5), 9ng/L (IQR: 3–40) and 3 ng/L (IQR: 3–12), respectively. There were no differences in the prevalence of new troponin elevations (hsTn >99th percentile but cTnI <99th percentile) in those with recent cocaine use compared to those without recent cocaine use.

Conclusions

In this first investigation of hsTn in patients with self-reported recent cocaine use, we have determined that hsTn does not lead to an increase in the prevalence of troponin elevation in cocaine users.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1285404

Pediatric ingestion of vilazodone compared to other selective serotonin reuptake inhibitor medications

Background

Unintentional ingestion of selective serotonin reuptake inhibitor (SSRI) medications is common amongst children <6 years of age. Current evidence-based management guidelines are based on a low incidence of significant medical outcomes in these children.

Objective

To describe and compare outcomes of pediatric exposures to vilazodone with other SSRIs.

Methods

A retrospective observational case series analysis of both single and polysubstance SSRI exposures amongst children <6 years old reported to the National Poison Data System (NPDS).

Results

11,384 SSRI exposures in children <6 years of age reported to NPDS between January 2012 and June 2016 were assessed. Vilazodone only accounted for 5.9% of all exposures, but resulted in the highest proportion of health care facility admission compared to other SSRIs, both in single substance (165 of 531 (31.1%); OR 9.0 [7.3–11.2]) and polysubstance (57 of 107 (53.3%); OR 4.1 [2.7–6.2]) exposures. Children exposed to vilazodone also have higher odds of experiencing a major or moderate outcome in single (134 of 531 (25.2%); OR 20.5 [15.5–27.1]) and polysubstance (37 of 107 (35.6%); OR 5.9 [3.7–9.0]) exposures compared to other SSRIs. Several severe clinical outcomes, such as seizure and coma, were more common among the vilazodone exposures.
Conclusions
Exposure to vilazodone in this age group results in an increased rate of hospitalization as well as more severe clinical effects as compared to other SSRIs. Current evidence-based SSRIs, vilazodone ingestion in this age group.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1287375

Lipid emulsion improves survival in animal models of local anesthetic toxicity: a meta-analysis

Fettiplace MR, McCabe DJ. Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1288911:

Introduction
The Lipid Emulsion Therapy workgroup, organized by the American Academy of Clinical Toxicology, recently conducted a systematic review, which subjectively evaluated lipid emulsion as a treatment for local anesthetic toxicity. We re-extracted data and conducted a meta-analysis of survival in animal models.

Methods
We extracted survival data from 26 publications and conducted a random-effect meta-analysis based on odds ratio weighted by inverse variance. We assessed the benefit of lipid emulsion as an independent variable in resuscitative models (16 studies). We measured Cochran’s Q for heterogeneity and I^2 to determine variance contributed by heterogeneity. Finally, we conducted a funnel plot analysis and Egger's test to assess for publication bias in studies.

Results
Lipid emulsion reduced the odds of death in resuscitative models (OR =0.24; 95%CI: 0.1–0.56, $p = .0012$). Heterogeneity analysis indicated a homogenous distribution. Funnel plot analysis did not indicate publication bias in experimental models.

Discussion
Meta-analysis of animal data supports the use of lipid emulsion (in combination with other resuscitative measures) for the treatment of local anesthetic toxicity, specifically from bupivacaine. Our conclusion differed from the original review. Analysis of outliers reinforced the need for good life support measures (securement of airway and chest compressions) along with prompt treatment with lipid.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.128911

Accuracy of the paracetamol-aminotransferase multiplication product to predict hepatotoxicity in modified-release paracetamol overdose

Context
The paracetamol-aminotransferase multiplication product (APAP x ALT) is a risk predictor of hepatotoxicity that is somewhat independent of time and type of ingestion. However, its accuracy following ingestion of modified-release formulations is not known, as the product has been derived and validated after immediate-release paracetamol overdoses.
Objective
The aim of this retrospective cohort study was to evaluate the accuracy of the multiplication product to predict hepatotoxicity in a cohort of patients with modified-release paracetamol overdose.

Methods
We assessed all patients with modified-release paracetamol overdose presenting to our hospital network from October 2009 to July 2016. Ingestion of a modified-release formulation was identified by patient self-report or retrieval of the original container. Hepatotoxicity was defined as peak alanine aminotransferase ≥ 1000 IU/L, and acute liver injury (ALI) as a doubling of baseline ALT to more than 50 IU/L.

Results
Of 1989 paracetamol overdose presentations, we identified 73 modified-release paracetamol exposures treated with acetylcysteine. Five patients developed hepatotoxicity, including one who received acetylcysteine within eight hours of an acute ingestion. No patient with an initial multiplication product < 10,000 mg/L × IU/L developed hepatotoxicity (sensitivity 100% [95%CI 48%, 100%], specificity 97% [90%, 100%]). Specificity fell to 54% (95%CI: 34, 59%) at a product cut-off point < 1500 mg/L × IU/L. When calculated within eight hours of ingestion, mild elevations of the multiplication product fell quickly on repeat testing in patients without ALI or hepatotoxicity.

Conclusions
In modified-release paracetamol overdose treated with acetylcysteine, the paracetamol-aminotransferase multiplication product demonstrated similar accuracy and temporal profile to previous reports involving mostly immediate-release formulations. Above a cut-point of 10,000 mg/L × IU/L, it was very strongly associated with the development of acute liver injury and hepatotoxicity, especially when calculated more than eight hours post-ingestion. When below 1500 mg/L × IU/L the likelihood of developing hepatotoxicity was very low. Persistently high serial multiplication product calculations were associated with the greatest risk of hepatotoxicity.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1290253

Estimating the impact of adopting the revised United Kingdom acetaminophen treatment nomogram in the U.S. population

Background
Acetaminophen toxicity is common in clinical practice. In recent years, several European countries have lowered the treatment threshold, which has resulted in increased number of patients being treated at a questionable clinical benefit.

Objective
The primary objective of this study is to estimate the cost and associated burden to the United States (U.S.) healthcare system, if such a change were adopted in the U.S.

Methods
This study is a retrospective review of all patients age 14 years or older who were admitted to one of eight different hospitals located throughout the U.S. with acetaminophen exposures during a five and a half year span, encompassing from 1 January 2008 to 30 June 2013. Those patients who would be treated with the revised nomogram, but not the current nomogram were included. The cost of such treatment was extrapolated to a national level.
Results
139 subjects were identified who would be treated with the revised nomogram, but not the current nomogram. Extrapolating these numbers nationally, an additional 4507 (95%CI 3641–8751) Americans would be treated annually for acetaminophen toxicity. The cost of lowering the treatment threshold is estimated to be $45 million (95%CI 36,400,000–87,500,000) annually.

Conclusions
Adopting the revised treatment threshold in the U.S. would result in a significant cost, yet provide an unclear clinical benefit.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1291945

A preliminary study in the alterations of mitochondrial respiration in patients with carbon monoxide poisoning measured in blood cells

Objectives
Carbon monoxide (CO) is a colorless and odorless gas responsible for poisoning mortality and morbidity in the United States. At this time, there is no reliable method to predict the severity of poisoning or clinical prognosis following CO exposure. Whole blood cells, such as peripheral blood mononuclear cells (PBMCs) and platelets, have been explored for their potential use to act as sensitive biomarkers for mitochondrial dysfunction which may have a role in CO poisoning.

Design
The objective of this study was to measure mitochondrial respiration using intact cells obtained from patients exposed to CO as a potential biomarker for mitochondrial inhibition with results that can be obtained in a time frame useful for guiding clinical care. This was a prospective, observational pilot study performed from July 2015 to July 2016 at a single academic tertiary care center that is the location of the region's only multi chamber hyperbaric.

Measurements
Clinical characteristics, patient demographics, mitochondrial respiration and outcomes were recorded.

Main results
There were 7 patients enrolled with a mean COHb level 26.8 ± 10 and with a mean lactate of 1.1 ± 0.4 mmol/L. All 7 CO exposures were related to heat generators used during winter months with two deaths. There was a positive correlation between maximal respiration and COHb levels with both high maximal respiration and high spare respiratory capacity correlating with a high COHb level. There was a subset of PBMCs \(n = 4 \) that were analyzed for Complex IV (cytochrome c oxidase) activity.

Conclusions
In this pilot study, measurements can be performed in an appropriate timeline for clinical care with potential to serve as a prognostic marker. Further work is necessary to develop high-resolution respirometry as a clinical tool for assessing the severity of illness and guiding therapy.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1288912
Carbamate insecticides target human melatonin receptors
Abstract and full text available from: http://dx.doi.org/10.1021/acs.chemrestox.6b00301

Amitraz, an underrecognized poison: a systematic review
Abstract and full text available from: http://dx.doi.org/10.4103/0971-5916.198723

Validation of the prognostic utility of the electrocardiogram for acute drug overdose
Abstract and full text available from: http://dx.doi.org/10.1161/JAHA.116.004320

Morbidity and mortality associated with medications used in the treatment of depression: an analysis of cases reported to U.S. Poison Control Centers, 2000–2014
Abstract and full text available from: http://dx.doi.org/10.1176/appi.ajp.2016.16050523

Characterizing the toxicity and dose-effect profile of tramadol ingestions in children
Abstract and full text available from: http://dx.doi.org/10.1097/PEC.0000000000001084

Comparison of poisonings managed at military and Veterans Administration hospitals reported to Texas poison centers
Forrester MB. Public Health 2017; 142: 50-5.
Abstract and full text available from: http://dx.doi.org/10.1016/j.puhe.2016.10.015

Maternal buprenorphine treatment and fetal neurobehavioral development
The relationship between maternal corticosteroid use and orofacial clefts—a meta-analysis
Abstract and full text available from: http://dx.doi.org/10.1016/j.reprotox.2017.02.006

Management of patients on non–vitamin K antagonist oral anticoagulants in the acute care and periprocedural setting: a scientific statement from the American Heart Association
Abstract and full text available from: http://dx.doi.org/10.1161/CIR.0000000000000477
TOXICOLOGY

General
Ashauer R, O’Connor I, Escher BI. Toxic mixtures in time - the sequence makes the poison.
Environ Sci Technol 2017; online early: doi: 10.1021/acs.est.6b06163:

Analytical toxicology
Analytical confirmation of synthetic cannabinoids in a cohort of 179 presentations with acute recreational drug toxicity to an Emergency Department in London, UK in the first half of 2015.
Clin Toxicol 2017; online early: doi: 10.1080/00365513.2016.1278261:

Hahn RZ, Antunes MV, Costa AP, Andriguetti NB, Verza SG, Linden R.
Determination of topiramate in dried blood spots using single-quadrupole gas chromatography-mass spectrometry after flash methylation with trimethylsilanilinium hydroxide.

Lin Z, Li J, Zhang X, Qiu M, Huang Z, Rao Y.
Ultrasound-assisted dispersive liquid-liquid microextraction for the determination of seven recreational drugs in human whole blood using gas chromatography-mass spectrometry.

Mbughuni MM, Jannetto PJ, Langman LJ.
Mass spectrometry applications for toxicology.

Meier SJ, Koelzer SC, Schubert-Zsilavecz M, Toennes SW.
Analysis of drugs of abuse in cerumen - correlation of postmortem analysis results with those for blood, urine and hair.
Drug Test Anal 2017; online early: doi: 10.1002/dta.2177:

Growth-based bacterial viability assay for interference-free and high-throughput toxicity screening of nanomaterials.
Anal Chem 2017; 89: 2057-64.

Rey V, Botana AM, Botana LM.
Quantification of PSP toxins in toxic shellfish matrices using post-column oxidation liquid chromatography and pre-column oxidation liquid chromatography methods suggests post-column oxidation liquid chromatography as a good monitoring method of choice.
Toxicon 2017; 129: 28-35.

Tittarelli R, Pichini S, Pedersen DS, Pacifici R, Moresco M, Piza F, Busardó FP, Plazzi G.

Biomarkers
Morgan M, Jones P, Sobus J, Barr DB.
Predictors of urinary 3-phenoxycbenzoic acid levels in 50 North Carolina adults.

Body packers
Burgos García A, Froilán Torres C, Tavecchia M.
Endoscopic removal of a hashish packet.

Carcinogenicity
Van den Brink W, Emerenciana A, Bellanti F, Della PO, van der Laan JW.
Prediction of thyroid C-cell carcinogenicity after chronic administration of GLP1-R agonists in rodents.

Cardiotoxicity
Akhgari M, Mobaraki H, Etemadi-Aleagha A.
Histopathological study of cardiac lesions in methamphetamine poisoning-related deaths.
Daru 2017; 25: 5.

Amiri H, Zamani N, Hassanian-Moghaddam H, Shadnia S.
Cardiotoxicity of tricyclic antidepressant treated by 2650 mEq sodium bicarbonate: A case report. JRSM Cardiovasc Dis 2016; 5: 204800416682178.

Dermal toxicity

Meysman T, Goossens A. Occupational allergic contact dermatitis caused by benzisothiazolinone in printing ink and soap. Contact Derm 2016; 76: 51-3.

Developmental toxicology

Epidemiology

Forrester MB. Comparison of poisonings managed at military and Veterans Administration hospitals reported to Texas poison centers. Public Health 2017; 142: 50-5.

Roy MP, Gupta R, Bhatt M, Aggarwal KC. Profile of children hospitalized with acute poisoning in New Delhi. Indian Pediatr 2017; online early: PMID:28159952:

Forensic toxicology

Hepatotoxicity

Avula B, Sagi S, Wang YH, Wang M, Navarro VJ, Khan IA. Chemical analysis of dietary supplements that have been implicated in hepatotoxicity. Planta Med 2016; 82: PA8:

1H NMR-based serum metabolomics reveals erythromycin-induced liver toxicity in albino Wistar rats.
J Pharm Bioallied Sci 2016; 8: 327-34.

Reshi MS, Shrivastava S, Jaswal A, Sinha N, Uthra C, Shukla S.
Gold nanoparticles ameliorate acetaminophen induced hepatorenal injury in rats.
Exp Toxicol Pathol 2017; online early: doi: 10.1016/j.etp.2017.01.009:

Global transcriptional response of human liver cells to ethanol stress of different strength reveals hormetric behavior.

Telles-Correa D, Barbosa A, Cortez-Pinto H, Campos C, Rocha NBF, Machado S.
Psychotrophic drugs and liver disease: a critical review of pharmacokinetics and liver toxicity.
World J Gastrointest Pharmacol Ther 2017; 8: 26-38.

A comparative analysis of drug-induced hepatotoxicity in clinically relevant situations.

Insights into the molecular mechanisms of Polygonum multiflorum Thumb-induced liver injury: a computational systems toxicology approach.
Acta Pharmacol Sin 2017; online early: doi: 10.1038/aps.2016.147:

Wong A, Siviotti MLA, Graudins A.
Accuracy of the paracetamol-aminotransferase multiplication product to predict hepatotoxicity in modified-release paracetamol overdose.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1290253:

Wong LL, Lacar L, Roytman M, Orloff SL.
Urgent liver transplantation for dietary supplements: an under-recognized problem.

Multicenter study of skin rashes and hepatotoxicity in antiretroviral-naive HIV-positive patients receiving non-nucleoside reverse-transcriptase inhibitor plus nucleoside reverse-transcriptase inhibitors in Taiwan.

Inhalation toxicity

Chen H, Carter KE.
Modeling potential occupational inhalation exposures and associated risks of toxic organics from chemical storage tanks used in hydraulic fracturing using AERMOD.
Environ Pollut 2017; online early: doi: 10.1016/j.envpol.2017.02.008:

Juntarawijit C, Juntarawijit Y.
Cooking smoke and respiratory symptoms of restaurant workers in Thailand.
BMC Pulm Med 2017; 17: 41.

Wood combustion particles induce adverse effects to normal and diseased airway epithelia.

Kinetics

Alves IL, Várez García D, Parente A, Doorduin J, Dierckx R, Marques da Silva AM, Koole M, Willemsen A, Boellaard R.

Fernando I.
Predicting serum drug level using the principles of pharmacokinetics after an overdose: a case of lithium overdose.
Australas Psychiatry 2017; online early: doi: 10.1177/1039856217692642:

Lab Anim 2017; online early: doi: 10.1177/0023677217692372:

Henstra M, Wong L, Chahbouni A, Swart N, Allaert C, Sombogaard F.
Toxicokinetics of ibogaine and noribogaine in a patient with prolonged multiple cardiac arrhythmias after ingestion of internet purchased ibogaine.

Jawien W, Willmowska J, Klys M, Piekoszewski W.
Population pharmacokinetic modelling of valproic acid and its selected metabolites in acute VPA poisoning.

Mooij MG, van Duijn E, Knibbe CA, Allegaert K, Windhorst AD, van Rosmalen J, Hendrikse NH, Tibboel D, Vos WH, de Wildt SN.
Successful use of [14C]paracetamol microdosing to elucidate developmental changes in drug metabolism.
Clin Pharmacokinet 2017; online early: doi: 10.1007/s40262-017-0508-6:

Newmeyer MN, Swortwood MJ, Andersson M, Abulseoud OA, Scheidweiler KB, Huestis MA.
Cannabis edibles: blood and oral fluid cannabinoid pharmacokinetics and evaluation of oral fluid screening devices for predicting delta9-tetrahydrocannabinol in blood and oral fluid following cannabis brownie administration.

Tylleskar I, Skulberg AK, Nilsen T, Skarra S, Jansook P, Dale O.
Pharmacokinetics of a new, nasal formulation of naloxone.

Mechanisms of toxicity
Huang D, Wu S, Hou X, Jia L, Meng Q, Chu H, Jiang J, Shang L, Hao W.
The skeletal developmental toxicity of chloroethanol chloride and its underlying mechanisms.

Zeeshan M, Murugadas A, Ghaskadbi S, Rasamwamy BR, Akbarsha MA.
Ecotoxicological assessment of cobalt using Hydra model: ROS, oxidative stress, DNA damage, cell cycle arrest, and apoptosis as mechanisms of toxicity.
Environ Pollut 2017; online early: doi:

Zheng J, Zhao W, Xu K, Chen Q, Chen Y, Shen Y, Xiao L, Jiang L, Chen Y.
Interaction among hERG channel blockers is a potential mechanism of death in caffeine overdose.

Medication errors
Al-Amary MA, Al-Abdan N, Al-Othaimeen SA.
Toxic keratitis after use of wrongly labeled non-opthalmic medication.

Dhawan I, Tewari A, Sehgal S, Sinha AC.
Medication errors in anesthesia: unacceptably or unavoidable?

Goonasekera C, Bedford J, Harpreet S, Giombini M, Sheikh A.
Emergency anesthesia for evacuating a traumatic acute subdural hemorrhage in a child overdosed with hypertonic saline.

Querques L, Misericocci E, Moderati G, Querques G, Bandello F.
Hemorrhagic occlusive retinal vasculitis after inadvertent intraocular perforation with gentamicin injection.

Nephrotoxicity
Liver and kidney toxicity induced by Afzal smokeless tobacco product in Oman.
Tissue Cell 2017; online early: doi: 10.1016/j.tice.2017.01.008:

Ansari MA, Raish M, Ahmad A, Alkharfy KM, Ahmad SF, Attia SM, Ablaad AM, Bakheet SA.
Snacipic acid ameliorate cadmium-induced nephrotoxicity: In vivo possible involvement of oxidative stress, apoptosis, and inflammation via NF-kappaB downregulation.
Environ Toxicol Pharmacol 2017; online early: doi: 10.1016/j.etap.2017.02.014:

Duberkar DR, Jawale R, Aghor N.
Manganese in patients with chronic renal failure on long term hemodialysis.
Ann Indian Acad Neurol 2016; 19: MP28-77.

Girardi A, Raschi E, Galletti S, Allegaert K, Poluzzi E, De Ponti F.
Expert Opin Drug Metab Toxicol 2017; online early: doi: 10.1080/17425255.2017.1290081:

Havenith T, Burger D, Visschers M, Schippers J, Lashof AO.
Acute kidney injury following efavirenz/tenofovir disoproxil fumarate/emtricitabine (Atripla®) overdose.
Ther Drug Monit 2017; online early: doi: 10.1097/FTD.0000000000000386:

Jalalzadeh M, Ghadiani MH.
Kidney failure due to abdominal compartment syndrome following snakebite.

Protective effects of diallyl disulfide against acetaminophen-induced nephrotoxicity: A possible role of CYP2E1 and NF-kappaB.

Lower blood pressure and risk of cisplatin nephrotoxicity: a retrospective cohort study.
BMC Cancer 2017; 17: 144.

Liu Z, Wang X, Wang Y, Zhao M.
NLRP3 inflammasome activation regulated by NF-kappaB and DAPK contributed to paraquat-induced acute kidney injury.
Immunol Res 2017; online early: doi: 10.1007/s12026-017-8901-7:

Regoliili G, Antoniotti R, Fani F, Greco P, Fiaccadori E.

Reshi MS, Shrivastava S, Jaswal A, Sinha N, Uthra C, Shukla S.
Gold nanoparticles ameliorate acetaminophen induced hepato-renal injury in rats.
Exp Toxicol Pathol 2017; online early: doi: 10.1016/j.etp.2017.01.009:

Shoaei SD, Sistanizad M, Mozafari N, Alinea T, Talaei H.
The overestimation of vancomycin-associated nephrotoxicity: the effect of rhabdomyolysis and nephrotoxicants at a referral poison center, Tehran, Iran.

Vikrant S, Parashar A.

Neurotoxicity
Dose-dependent cochlear and vestibular toxicity of trans-tympanic cisplatin in the rat.
Occupational toxicology
Chen H, Carter KE.
Modeling potential occupational inhalation exposures and associated risks of toxic organics from chemical storage tanks used in hydraulic fracturing using AERMOD.
Environ Pollut 2017; online early: doi: 10.1016/j.envpol.2017.02.008:
Chernyak YI, Merinova AP.
HSP70 (HSPA1) polymorphisms in former workers with chronic mercury vapor exposure.

Ekneryong CE, Asuquo AE.
Recent advances in occupational and environmental health hazards of workers exposed to gasoline compounds.

Folleti I, Siracusa A, Paolocci G.
Update on asthma and cleaning agents.
Curr Opin Allergy Clin Immunol 2017; online early: doi: 10.1097/ACI.0000000000000349:

Mazumdar I, Goswami K, Ali MS.
Status of serum calcium, vitamin D and parathyroid hormone and hematological indices among lead exposed jewelry workers in Dhaka, Bangladesh.

Meysman T, Goossens A.
Occupational allergic contact dermatitis caused by benzisothiazolinone in printing ink and soap.
Contact Derm 2016; 76: 51-3.

Thetkathuek A, Yenpai P, Jaidee W, Jaidee P, Srirapat P.
Pesticide exposure and cholinesterase levels in migrant farm workers in Thailand.
J Agromed 2017; online early: doi: 10.1080/1059924X.2017.1283276:

Voorhees JR, Rohliman DS, Lein PJ, Pieper AA.
Neurotoxicity in preclinical models of occupational exposure to organophosphorus compounds.
Front Neurosci 2016; 10: 590.

Oxidative stress and genetic damage among workers exposed primarily to organophosphate and pyrethroid pesticides.
Environ Toxicol 2017; online early: doi: 10.1002/tox.22398:

Oculair toxicity
Al-Amry MA, Al-Abdan N, Al-Othaimen SA.
Toxic keratitis after use of wrongly labeled non-ophthalmic medication.

Eltony SA, Abdelhameed SY.
Effect of chronic administration of sildenafil citrate (Viagra) on the histology of the retina and optic nerve of adult male rat.

The acute exposure of tetrachloro-p-benzoquinone (a.k.a. chloranil) triggers inflammation and neurological dysfunction via Toll-like receptor 4 signaling: the protective role of melatonin preconditioning.
Toxicology 2017; online early: doi: 10.1016/j.tox.2017.02.015:

George AK, Behera J, Kelly KE, Zhai Y, Tyagi N.
Hydrogen sulfide, endoplasmic reticulum stress and alcohol mediated neurotoxicity.

Hussain SA, Tsao J, Li M, Schwarz MD, Zhou R, Wu JY, Salamon N, Sarkar R.
Risk of vigabatrin-associated brain abnormalities on MRI in the treatment of infantile spasms is dose-dependent.
Epilepsia 2017; online early: doi: 10.1111/epi.13712:

Ismail AA, Bonner MR, Hendy O, Abdel RG, Wang K, Olson JR, Rohlman DS.
Comparison of neurological health outcomes between two adolescent cohorts exposed to pesticides in Egypt.

Liu X, Yang J, Lu C, Jiang S, Nie X, Han J, Yin L, Jiang J.
Downregulation of Mnfn2 participates in manganese-induced neuronal apoptosis in rat striatum and PC12 cells.
Neurochem Int 2017; online early: doi: 10.1016/j.neuint.2017.02.008:

Nirupama K, Renuka S.
Hypertropic and exotropic strabismus fixus following neurotoxic snake bite.
Neurol India 2016; 64: 1309-10.

Oruch R, Pryme IF, Engelsen BA, Lund A.
Neuroleptic malignant syndrome: an easily overlooked neurologic emergency.

Pope K, So YT, Crane J, Bates MN.
Ambient geothermal hydrogen sulfide exposure and peripheral neuropathy.
Neurotoxicology 2017; 60: 10-5.

Tsai PH, Chou MC, Chiang SW, Chung HW, Liu HS, Kao HW, Chen CY.
Early white matter injuries in patients with acute carbon monoxide intoxication: a tract specific diffusion kurtosis imaging study and STROBE compliant article.
Medicine (Baltimore) 2017; 96: e5982.

Van Hooste WL.
Myoclonic seizure prior to diagnosis of chronic toxic encephalopathy: a case report.
J Med Case Rep 2017; 11: 36.

Voorhees JR, Rohlman DS, Lein PJ, Pieper AA.
Neurotoxicity in preclinical models of occupational exposure to organophosphorus compounds.
Front Neurosci 2016; 10: 590.

MRI and clinical manifestations of delayed encephalopathy after carbon monoxide poisoning.

The acute exposure of tetrachloro-p-benzoquinone (a.k.a. chloranil) triggers inflammation and neurological dysfunction via Toll-like receptor 4 signaling: the protective role of melatonin preconditioning.
Toxicology 2017; online early: doi: 10.1016/j.tox.2017.02.015:

George AK, Behera J, Kelly KE, Zhai Y, Tyagi N.
Hydrogen sulfide, endoplasmic reticulum stress and alcohol mediated neurotoxicity.

Hussain SA, Tsao J, Li M, Schwarz MD, Zhou R, Wu JY, Salamon N, Sarkar R.
Risk of vigabatrin-associated brain abnormalities on MRI in the treatment of infantile spasms is dose-dependent.
Epilepsia 2017; online early: doi: 10.1111/epi.13712:

Ismail AA, Bonner MR, Hendy O, Abdel RG, Wang K, Olson JR, Rohlman DS.
Comparison of neurological health outcomes between two adolescent cohorts exposed to pesticides in Egypt.

Liu X, Yang J, Lu C, Jiang S, Nie X, Han J, Yin L, Jiang J.
Downregulation of Mnfn2 participates in manganese-induced neuronal apoptosis in rat striatum and PC12 cells.
Neurochem Int 2017; online early: doi: 10.1016/j.neuint.2017.02.008:

Nirupama K, Renuka S.
Hypertropic and exotropic strabismus fixus following neurotoxic snake bite.
Neurol India 2016; 64: 1309-10.

Oruch R, Pryme IF, Engelsen BA, Lund A.
Neuroleptic malignant syndrome: an easily overlooked neurologic emergency.

Pope K, So YT, Crane J, Bates MN.
Ambient geothermal hydrogen sulfide exposure and peripheral neuropathy.
Neurotoxicology 2017; 60: 10-5.

Tsai PH, Chou MC, Chiang SW, Chung HW, Liu HS, Kao HW, Chen CY.
Early white matter injuries in patients with acute carbon monoxide intoxication: a tract-specific diffusion kurtosis imaging study and STROBE compliant article.
Medicine (Baltimore) 2017; 96: e5982.

Van Hooste WL.
Myoclonic seizure prior to diagnosis of chronic toxic encephalopathy: a case report.
J Med Case Rep 2017; 11: 36.

Voorhees JR, Rohlman DS, Lein PJ, Pieper AA.
Neurotoxicity in preclinical models of occupational exposure to organophosphorus compounds.
Front Neurosci 2016; 10: 590.

MRI and clinical manifestations of delayed encephalopathy after carbon monoxide poisoning.

Paediatric toxicology

Roy MP, Gupta R, Bhatt M, Aggarwal KC. Profile of children hospitalized with acute poisoning in New Delhi. Indian Pediatr 2017; online early: PMID:28159952:

Ruiz NM, Shapiro SE. Caring for young children exposed to marijuana. Adv Emerg Nurs J 2017; 39: 3-9:

Polymorphisms

Psychiatric aspects

Reprotoxicity

Risk assessment

Suicide

MANAGEMENT
General

DMSA

Flumazenil

Hyperbaric oxygen therapy

Lipid emulsion therapy

Antidotes
Acetylcysteine

Antivenom

Chelating agents
Actived prothrombin concentrate

Alpha-ketoglutarate

Baclofen

Cromolyn sodium

Curcumin

Diallyl disulfide

Dimethyl sulfoxide
Altan S, Ogurtan Z. Dimethyl sulfoxide but not indomethacin is efficient for healing in hydrofluoric acid eye burns. Burns 2017; 43: 232-44.

Ellagic acid

Extracorporeal treatments
Haemodialysis

Pajoumand A, Zamani N, Hassanian-Moghaddam H, Shadnia S. Duration of hemodialysis be estimated based on the on-arrival laboratory tests and clinical manifestations in methanol-poisoned patients?
Int Urol Nephrol 2017; online early: doi: 10.1007/s11255-017-1521-2:

Formononetin

Glutathione

Hydroxytyrosol

Metformin

Naltrexone

Opioid maintenance therapy

Buprenorphine

Methadone

Sinapic acid

Thioacetamide

Yohimbine

DRUGS

General
Almario EEN, Borlak J, Suzuki A, Chen M.
Drug-induced liver injury.

Bigi C, Tuccori M, Bocci G.
Healthcare professionals and pharmacovigilance of pediatric adverse drug reactions: a 5-year analysis of Adverse Events Reporting System database of the Food and Drug Administration.
Minerva Pediatr 2017; online early: doi: 10.23736/S0026-4946.17.04733-8:

Bunchornvawal C, Reddy KR.
Drug Hepatotoxicity: newer agents.

Machine learning-based prediction of adverse drug effects: an example of seizure-inducing compounds.

Repetitive urine and blood sampling in neonatal and weaned piglets for pharmacokinetic and pharmacodynamic modeling in drug discovery: a pilot study.
Lab Anim 2017; online early: doi: 10.1177/0023677217692372:

Girardi A, Raschi E, Galletti S, Allegaert K, Poluzzi E, De Ponti F.
Expert Opin Drug Metab Toxicol 2017; online early: doi: 10.1080/15563650.2017.1290061:

Habib S, Shaikh OS.
Drug-induced acute liver failure.

Hirashima R, Itoh T, Tukey RH, Fujitwara R.
Prediction of drug-induced liver injury using keratinocytes.
J Appli Toxicol 2017; online early: doi: 10.1002/jat.3435:

CSAHi study: detection of drug-induced ion channel/receptor responses, QT prolongation, and arrhythmia using multi-electrode arrays in combination with human induced pluripotent stem cell-derived cardiomyocytes.

Lin Z, Li J, Zhang X, Qiu M, Huang Z, Rao Y.
Ultrasound-assisted dispersive liquid-liquid microextraction for the determination of seven recreational drugs in human whole blood using gas chromatography-mass spectrometry.

Manini AF, Nair AP, Vedanthan R, Vlahov D, Hoffman RS.
Validation of the prognostic utility of the electrocardiogram for acute drug overdose.
J Am Heart Assoc 2017; 6: e004320.

A comparative analysis of drug-induced hepatotoxicity in clinically relevant situations.

Zoorob MJ, Salemi JL.
Bowling alone, dying together: the role of social capital in mitigating the drug overdose epidemic in the United States.

Acetaminophen (see paracetamol)

Amfetamines and MDMA (ecstasy)
Akhgari M, Mobaraki H, Etemadi-Aleagha A.
Histopathological study of cardiac lesions in methamphetamine poisoning-related deaths.
Daru 2017; 25: 5.

Gouran OE, Shabani A, Alavi K, Najjarzadegan MR, Mirfazeli F.
A comparison of pattern of psychiatric symptoms in inpatients with bipolar disorder type one with & without methamphetamine use.

Johnson K, Stollings JL, Ely EW.
Breaking bad delirium: methamphetamine and boric acid toxicity with hallucinations and pseudoepis.

Mostafaazadeh B, Shadnia S, Tavakkoli MA, Khoddami Vistbehr HR.
Evaluation of blood lead level in methamphetamine users in Tehran.

Anabolic steroids
Fabresse N, Grassin-Delyle S, Etting I, Alvarez JC.
Detection and quantification of 12 anabolic steroids and analogs in human whole blood and 20 in hair using LC-HRMS/MS: application to real cases.
Int J Legal Med 2017; online early: doi: 10.1007/s00414-017-1552-3:

Anaesthetics
Corwin DJ, Topjian A, Banwell BL, Osterhoudt K.
Adverse events associated with a large dose of intravenous lipid emulsion for suspected local anesthetic toxicity.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1294693:

Dhawan I, Tewari A, Sehgal S, Sinha AC.
Medication errors in anesthesia: unacceptable or un-avoidable?

Fettiplace MR, McCabe DJ.
Lipid emulsion improves survival in animal models of local anesthetic toxicity: a meta-analysis.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1288911:

Bupivacaine
A lipid emulsion reverses toxic-dose bupivacaine-induced vasodilation during tyrosine phosphorylation-evoked contraction in isolated rat aortae.
Ketamine

Antibiotics
Clindamycin

Erythromycin

Gentamycin

Metronidazole

Pyrolobenzodiazepines

Vancomycin

Anticoagulants

Dabigatran

Anticonvulsants

Gabapentin

Lamotrigine

Levetiracetam

Topiramate
Valproate
Jawien W, Willimowska J, Klys M, Piekoszewski W.
Population pharmacokinetic modelling of valproic acid and its selected metabolites in acute VPA poisoning.

Vigabatrin
Hussain SA, Tsao J, Li M, Schwarz MD, Zhou R, Wu JY, Salamon N, Sankar R.
Risk of vigabatrin-associated brain abnormalities on MRI in the treatment of infantile spasms is dose-dependent.
Epilepsia 2017; online early: doi: 10.1111/epi.13712:

Antidepressants
Nelson JC, Spyker DA.

Monoamine oxidase inhibitors
Bartlett D.
Drug-induced serotonin syndrome.
Crit Care Nurs 2017; 37: 49-54.

Tranylcypromine
Kennedy D, Webster WS, Hill M, Ritchie HE.
Abnormal pregnancy outcome associated with high-dose maternal tranylcypromine therapy: case report and literature review.
Repord Toxicol 2017; online early: doi: 10.1016/j.reprotox.2017.02.012:

Antihistamines
Diphenhydramine
Johnson J, Williams K, Banner W, Jr.
Adolescent with prolonged toxidrome.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1287912:

Intravenous lipid-emulsion therapy in a patient with cardiac arrest after overdose of diphenhydramine.

Antimalarial drugs
Hydroxychloroquine
Hydroxychloroquine retinopathy: an emerging problem.
Eye (Lond) 2017; online early: doi: 10.1038.eye.2016.297:

Antineoplastic drugs
Anon.
Childhood cancer treatment can affect psychosexual development.
Nurs Stand 2017; 31: 17.

5-azacytidine
Misra SC, Gabriel L, Nacoumla E, Dine G, Guarino V.
How to diagnose early 5-azacytidine-induced pneumonitis: a case report.

Cisplatin
Callejo A, Durochat A, Bressieux S, Saleur A, Chabbert C, Domènech Juan I, Llorens J, Gaboray-Niay S.
Dose-dependent cochlear and vestibular toxicity of trans-typanmic cisplatin in the rat.

Lower blood pressure and risk of cisplatin nephrotoxicity: a retrospective cohort study.
BMC Cancer 2017; 17: 144.

Cyclophosphamide
Avci H, Epikmen ET, Ipek E, Tunca R, Birincioglu SS, Aksit H, Sekkin S, Akkoc AN, Boyacioglu M.
Protective effects of silymarin and curcumin on cyclophosphamide-induced cardiotoxicity.

Docetaxel
Doleschal B, Petzer A, Alchberger KJ.
Taxan-associated nail toxicity.
BMJ Case Rep 2017; doi:10.1136/bcr-2016-218980:

Doxorubicin
Cabeza L, Ortiz R, Prados J, Delgado ÁV, Martín-Villena MJ, Clares B, Perazzoli G, Entrena JM, Melguizo C, Arias JL.

Zhang T, He WH, Feng LJ, Huang HG.
Effect of doxorubicin-induced ovarian toxicity on mouse ovarian granulosa cells.

Everolimus
Prediction of everolimus toxicity and prognostic value of skeletal muscle index in patients with metastatic renal cell carcinoma.

Gemcitabine
Mohabadi D, Matos J, Chang JD.
Gemcitabine induced cardiomyopathy: a case of multiple hit cardiotoxicity.
ESC Heart Fail 2017; 4: 71-4.

Methotrexate
Kivity S, Zafrir Y, Loebstein R, Mouallem M, Mayan H.
Methotrexate toxicity - Response.

Mazaud C, Fardet L.
Relative risk of and determinants for adverse events of methotrexate prescribed at a low dose: a systematic review and meta-analysis of randomized, placebo-controlled trials.
Mitomycin C
Abel ML, Kokosis G, Blazer DG.
Pulmonary toxicity after intraperitoneal mitomycin C: a case report of a rare complication of HIPEC.

Temozolomide
Aygun C, Altinok AY, Çakır A, Agan AF, Balaban Y.
Acute temozolomide induced liver injury: mixed type hepatocellular and cholestatic toxicity.

Vemurafenib
Kilic S, Özkaya E, Baykal C, Vatansever S.
Vemurafenib-induced toxic epidermal necrolysis: is it an emerging side effect of the drug?

Antipsychotics
Oruch R, Pryme IF, Engelsa BA, Lund A.
Neuroleptic malignant syndrome: an easily overlooked neurologic emergency.

Quetiapine
Klein L, Bangh S, Cole JB.
Intentional recreational abuse of quetiapine compared to other second-generation antipsychotics.

Antiviral drugs
Havenith T, Burger D, Visschers M, Schippers J, Lashof AO.
Acute kidney injury following efavirenz/tenofovir disoproxil fumarate/emtricitabine (Atripla®) overdose.
Ther Drug Monit 2017; online early: doi: 10.1097/FTD.0000000000000386:

multicenter study of skin rashes and hepatotoxicity in antiretroviral-naive HIV-positive patients receiving non-nucleoside reverse-transcriptase inhibitor plus nucleoside reverse-transcriptase inhibitors in Taiwan.

Barbiturates
Pentobarbital
Cantrell FL, McIntyre IM.
An alarming increase in local pentobarbital-related suicides.

Caffeine
Jain S, Srivastava AS, Verma RP, Maggu G.
Caffeine addiction: need for awareness and research and regulatory measures.

Zheng J, Zhao W, Xu K, Chen Q, Chen Y, Shen Y, Xiao L, Jiang L, Chen Y.
Interaction among hERG channel blockers is a potential mechanism of death in caffeine overdose.

Calcium channel blockers
Diltiazem
Ragot C, Gerbaud E, Boyer A.
Terlipressin in refractory shock induced by diltiazem poisoning.

Cannabinoids
Cannabis (marijuana)
Burgos García A, Froilán Torres C, Tavecchia M.
Endoscopic removal of a hashish packet.

Caulkins JP.
Recognizing and regulating cannabis as a temptation good.

Claudet I, Le Breton M, Brehin C, Franchitto N.
A 10-year review of cannabis exposure in children under 3-years of age: do we need a more global approach?
Eur J Pediatr 2017; online early: doi: 10.1007/s00431-017-2872-5:

Khadrawy YA, Sawie HG, Abdel-Salam OME, Hosny EN.
Cannabis exacerbates depressive symptoms in rat model induced by reserpine.

Kilmer B.
Recreational cannabis – Minimizing the health risks from legalization.

Assessment of tobacco, alcohol and cannabinoid metabolites in 645 meconium samples of newborns compared to maternal self-reports.

Mudge EM, Murch SJ, Brown PN.
Leaner and greener analysis of cannabinoids.
Anal Bioanal Chem 2017; online early: doi: 10.1007/s00216-017-0256-3:

Newmeyer MN, Swortwood MJ, Andersson M, Abulseoud OA, Scheidweiler KB, Huestis MA.
Cannabis edibles: blood and oral fluid cannabinoid pharmacokinetics and evaluation of oral fluid screening devices for predicting delta9-tetrahydrocannabinol in blood and oral fluid following cannabis brownie administration.

Newmeyer MN, Swortwood MJ, Taylor ME, Abulseoud OA, Woodward TH, Huestis MA.
Evaluation of divided attention psychophysical task performance and effects on pupil sizes following smoked, vaporized and oral cannabis administration.
J Appl Toxicol 2017; online early: doi: 10.1002/jat.3440:

Pizzorno J.
What should we tell our patients about marijuana (Cannabis indica and Cannabis sativa)?

Ruiz NM, Shapiro SE.
Caring for young children exposed to marijuana.
Subritsky T, Pettigrew S, Lenton S.
Into the void: regulating pesticide use in Colorado's commercial cannabis markets.

Wolff V, Jouanny E.
Strokes are possible complications of cannabinoids use.
Epilepsy Behav 2017; online early: doi: 10.1016/j.yebeh.2017.01.031:

Cocaine
Jordan CD, Korley FK, Stolbach AI.
Self-reported cocaine use is not associated with elevations in high-sensitivity troponin I.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1285404:

McCall Jones C, Baldwin GT, Compton WM.
Recent increases in cocaine-related overdose deaths and the role of opioids.

Nocito Echevarria MA, Andrade RT, Ruffo CG, Siciliano S, V, da Silveira DX, Fidalgo TM.
N-acetylcySTEine for treating cocaine addiction – A systematic review.
Psychiatry Res 2017; 251: 197-203.

Roncero C, Grau-López L, Palma-Álvarez RF, Rodríguez-Cintas L, Ros-Cucurull E, Esojo A, Daireg C.
Higher severity of cocaine addiction is associated with tactile and somatic hallucinations.

Zyoud SH, Waring WS, Al-Jabi SW, Sweileh WM.

Corticosteroids
The relationship between maternal corticosteroid use and orofacial clefts-a meta-analysis.

Gamma hydroxybutyrate
Tittarelli R, Pichini S, Pedersen DS, Pacifici R, Moresco M, Pizza F, Busardo FP, Plazzi G.

Hallucinogens
Two cases of non-fatal intoxication with a novel street hallucinogen: 3-methoxy-phencyclidine.
J Anal Toxicol 2017; online early: doi: 10.1093/jat/bkx009:

Herbal medicines, ethnic remedies and dietary supplements
Chemical analysis of dietary supplements that have been implicated in hepatotoxicity.

Bressman M, Repplinger D, Slater W, Patt M.
Electrophysiologic similarities of overdose between digoxin and bufadienolides found in a Chinese aphrodisiac.

Byard RW, Musgrave I, Maker G, Bunce M.
What risks do herbal products pose to the Australian community?

Gutíerrez-Rebolledo GA, Pérez-González MZ, Zamilpa A, Jiménez-Arellanes MA.
Anti-inflammatory evaluation and acute toxicity of three food supplements that contain Moussonia deppeana.

Navarro V.
Liver injury due to herbs, botanicals, and other dietary supplements.

Insights into the molecular mechanisms of Polygonum multiflorum Thunb-induced liver injury: a computational systems toxicology approach.
Acta Pharmacol Sin 2017; online early: doi: 10.1038/aps.2016.147:

Wong LL, Lacar L, Roytman M, Orloff SL.
Urgent liver transplantation for dietary supplements: an under-recognized problem.

5-hydroxytryptophan
Hopkins J, Pardo M, Bischoff K.
Serotonin syndrome from 5-hydroxytryptophan supplement ingestion in a 9-month-old labrador retriever.
J Med Toxicol 2017; online early: doi: 10.1007/s13181-017-0600-1:

Heroin (diacetylmorphine)
Arens A, Olives T, Laes JA, Cole J.
It's not just heroin anymore.

Rodda LN, Pilgrim JL, Di Rago M, Crump K, Gerostamoulos D, Drummer OH.
A cluster of fentanyl-laced heroin deaths in 2015 in Melbourne, Australia.
J Anal Toxicol 2017; online early: 10.1093/jat/bkx013:

Hypoglycaemic drugs
Van den Brink W, Emerenciana A, Bellanti F, Della PO, van der Laan JW.
Prediction of thyroid C-cell carcinogenicity after chronic administration of GLP1-R agonists in rodents.

Metformin
Ebrahim I, Blockman M.
Metabolic acidosis in a patient with metformin overdose.

Ibogaine
Henstra M, Wong L, Chahbouni A, Swart N, Allart C, Sombogaard F.
Toxicokinetics of ibogaine and noribogaine in a patient with prolonged multiple cardiac arrhythmias after ingestion of internet purchased ibogaine.

Immunosuppressants

Lenalidomide
Karaman A, Omeroglu M, Emet M, Kerget B, Subasi ID, Alper F.
Lenalidomide induced late-onset acute respiratory distress syndrome.

Insulin
Toxicological effects during and following persistent insulin-induced hypoglycaemia in healthy euglycaemic rats.
Basic Clin Pharmacol Toxicol 2017; online early: doi: 10.1111/bcpt.12769:

Levothyroxine
Al-Mendalawi MD.
Diffuse scalp hair loss due to levothyroxine overdose.
Indian Dermatol Online J 2017; 8: 55-6.

Lithium
Fernando I.
Predicting serum drug level using the principles of pharmacokinetics after an overdose: a case of lithium overdose.
Australas Psychiatry 2017; online early: doi: 10.1177/1039856216689624:

Monoclonal antibodies
Wang DY, Okoye GD, Nellan TG, Johnson DB, Moslehi JJ.
Cardiovascular toxicities associated with cancer immunotherapies.

Bevacizumab
Geltzeiler M, Steele TO.
Nasal septal perforation secondary to systemic bevacizumab.

Neoadjuvant chemotherapy
Encouraging outcomes with manageable toxicity using neoadjuvant chemotherapy and intensity-modulated radiotherapy in advanced pediatric nasopharyngeal carcinoma: single-center experience from a developing country.
J Pediatr Hematol Oncol 2017; online early: doi: 10.1097/MPH.0000000000000794:

Nicotine
Anon.
E-cigarettes are less toxic and safer than smoking.
Nurs Stand 2017; 31: 16.

E-cigarettes and "dripping" among high-school youth.
Pediatrics 2017; online early: doi: 10.1542/peds.2016-3224:

Marques Gomes ACN, Nabhani-Gebara S, Kayyali R, Buonocore F, Calabrese G.
Survey of community pharmacists’ perception of electronic cigarettes in London.

Nikitin D, Timberlake DS, Williams RS.

Development/verification of methods for measurement of exhaled breath and environmental e-vapor product aerosol.

Novel psychoactive substances

Designer benzodiazepines
Characterization and identification of eight designer benzodiazepine metabolites by incubation with human liver microsomes and analysis by a triple quadrupole mass spectrometer.
Int J Legal Med 2017; online early: doi: 10.1007/s00414-017-1541-6:

Synthetic cannabinoids
Analytical confirmation of synthetic cannabinoids in a cohort of 179 presentations with acute recreational drug toxicity to an Emergency Department in London, UK in the first half of 2015.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1287373:

Andonian DO, Seaman SR, Josephson EB.
Profound hypotension and bradycardia in the setting of synthetic cannabinoid intoxication — A case series.

Ford BM, Tai S, Fantegrossi WE, Prather PL.
Synthetic pot: not your grandfather’s marijuana.

Manseau MW, Rajpria A, Joseph A, Azarchi S, Goff D, Satodiya R, Lewis CF.
Clinical characteristics of synthetic cannabinoid use in a large urban psychiatric emergency setting.
Subst Use Misuse 2017; online early: doi: 10.1080/10826084.2016.1263663:

Phillips J, Lim F, Hsu R.
Synthetic cannabinoid poisoning: a growing health concern.
Synthetic cathinones
Grapp M, Kaufmann C, Ebbecke M.
Toxicological investigation of forensic cases related to the designer drug 3,4-methylenedioxyprovalerone (MDPV): detection, quantification and studies on human metabolism by GC-MS.

Vitacoxib
Safety assessment of vitacoxib: acute and 90-day sub-chronic oral toxicity studies.

Opioids
Arens A, Olives T, Laes JA, Cole J.
The safety of continuos intranasal oxycodone (OR) for management of breakthrough pain in patients with severe chronic pain on high doses of opioids: a double-blind, placebo-controlled, randomized non-inferiority trial.

Overdose risk in young children of women prescribed opioids.

Freeman PR, Goodin A, Troske S, Strahl A, Fallin A, Green TC.
Pharmacists' role in opioid overdose: Kentucky pharmacists' willingness to participate in naloxone dispensing.

Friedmann PD, Wilson D, Nunes EV, Hoskinson R Jr., Lee JD, Gordon M, Murphy SM, Bonnie RJ, Chen DT, Boney TY, O'Brien CP.
Do patient characteristics moderate the effect of extended-release naltrexone (XR-NTX) for opioid use disorder?

Gowing L, Ali R, White JM, Mbewe D.
Buprenorphine for managing opioid withdrawal.

Hand DJ, Short VL, Abatemarco DJ.
Substance use, treatment, and demographic characteristics of pregnant women entering treatment for opioid use disorder differ by United States census region.

Pain Phys 2017; 20: S111-S133.

Kelly JF, Fallah-Sohy N, Cristello J, Bergman B.
Coping with the enduring unpredictability of opioid addiction: an investigation of a novel family-focused peer-support organization.

Keough L, Fantasia HC.
Pharmacologic treatment of opioid addiction during pregnancy.
Nurs Womens Health 2017; 21: 34-44.

Knezevic NN, Khan OM, Beiranvand A, Candido KD.
Repeated quantitative urine toxicology analysis may improve chronic pain patient compliance with opioid therapy.

Kobayashi L, Green TC, Bowman SE, Ray MC, McKenzie MS, Rich JD.
Patient simulation for assessment of layperson management of opioid overdose with intranasal naloxone in a recently released prisoner cohort.

Fentanyl

Methadone

Tramadol

Paracetamol (acetaminophen)

Pharmacobezoars

Johnson J, Williams K, Banner W, Jr. Adolescents with prolonged toxicidrome.
Vilazodone
Pediatric ingestion of vilazodone compared to other selective serotonin reuptake inhibitor medications.

Steroids
'Jamaican Stone': a potentially lethal remedy for delaying ejaculation.
Rev Port Cardiol 2017; 36: 143.e1-143.e4.

Substance abuse
Bouvier BA, Elston B, Hadland SE, Green TC, Marshall BD.
Willingness to use a supervised injection facility among young adults who use prescription opioids non-medically: a cross-sectional study.

Hand DJ, Short VL, Abatemarco DJ.
Substance use, treatment, and demographic characteristics of pregnant women entering treatment for opioid use disorder differ by United States census region.

Pain Phys 2017; 20: S111-S133.

Klein L, Bangh S, Cole JB.
Intentional recreational abuse of quetiapine compared to other second-generation antipsychotics.

Klingemann J.
The rights of drug treatment patients: experience of addiction treatment in Poland from a human rights perspective.

High concomitant misuse of fentanyl in subjects on opioid maintenance treatment.
Subst Use Misuse 2017; online early: doi: 10.1080/10826084.2016.1246571:

Lin Z, Li J, Zhang X, Qiu M, Huang Z, Rao Y.
Ultrasound-assisted dispersive liquid-liquid microextraction for the determination of seven recreational drugs in human whole blood using gas chromatography-mass spectrometry.

Meier SJ, Koelzer SC, Schubert-Zsilavecz M, Toennes SW.
Analysis of drugs of abuse in cerumen - correlation of postmortem analysis results with those for blood, urine and hair.
Drug Test Anal 2017; online early: doi: 10.1002/dta.2177:

Quintero GC.
Review about gabapentin misuse, interactions, contraindications and side effects.

Prevalence of illicit drug use at the end of pregnancy: a cross-sectional study at the time of birth.
Minerva Pediatr 2017; online early: doi: 10.23736/S0026-4946.17.04664-3:

Tricyclic antidepressants
Amiri H, Zaman N, Hassanian-Moghaddam H, Shadnia S.
Cardiotoxicity of tricyclic antidepressant treated with 2650 mEq sodium bicarbonate: A case report.

Veterinary products
Tomasi S, Roberts KJ, Stull J, Spiller HA, McKenzie LB.
Pediatric exposures to veterinary pharmaceuticals.
Pediatrics 2017; online early: doi: 10.1542/peds.2016-1496:

CHEMICAL INCIDENTS AND POLLUTION
Air pollution
Sidhu MK, Ravindra K, Mor S, John S.
Household air pollution from various types of rural kitchens and its exposure assessment.
Sci Total Environ 2017; online early: doi: 10.1016/j.scitotenv.2017.01.051:

Mortality and air pollution in Beijing: the long-term relationship.
Atmos Environ 2017; 150: 238-43.

Chemical incidents
Characterization of emissions and residues from simulations of the Deepwater Horizon surface oil burns.

Palaszewska-Tkacz A, Czerczak S, Konieczko K.
Chemical incidents resulted in hazardous substances releases in the context of human health hazards.

Pollution and hazardous waste
Gibson J, Adlard B, Olafsdottir K, Sandanger TM, Odland JØ.
Levels and trends of contaminants in humans of the Arctic.
Int J Circumpolar Health 2016; 75: 33804.

Megna M, Napolitano M, Costa C, Balato N, Patrano C.
Waste exposure and skin diseases.
G Ital Dermatol Venereol 2017; online early: doi: 10.23736/S0392-0488.17.05505-S:

Zabbe N, Sam K, Onyebuchi AT.

Water pollution

CHEMICALS

General

Chen H, Carter KE. Modeling potential occupational inhalation exposures and associated risks of toxic organics from chemical storage tanks used in hydraulic fracturing using AERMOD. Environ Pollut 2017; online early: doi: 10.1016/j.envpol.2017.02.008:

Acrylamide

Alcohol (ethanol)

Holland MG, Ferner RE. A systematic review of the evidence for acute tolerance to alcohol – the “Mellanby effect”. Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1296576:

Aldehydes

Khlystov A, Samburova V.
Response to comment on "Flavoring compounds dominate toxic aldehyde production during e cigarette vaping". Environ Sci Technol 2017; 51: 2493-4.

Asbestos

Benzisothiazolinone
Meysman T, Goossens A. Occupational allergic contact dermatitis caused by benzisothiazolinone in printing ink and soap. Contact Derm 2016; 76: 51-3.

Benz[a]pyrene

Bisphenol A

Boric acid

Cantharidine

Carbon monoxide

Carbon tetrachloride
McCracken JM, Chalise P, Briley SM, Dennis KL, Jiang L, Duncan FE, Pritchard MT. C57BL/6 substrains exhibit different responses to acute carbon tetrachloride exposure: Implications for work involving transgenic mice. Gene Expression 2017; online early: doi: 10.3727/105221617X695050:

Chloranil

Chloromequat
Corrosives
Chang JQ, Choi JW, Hwang Y.
A case of severe corrosive esophagitis, gastritis, and liver necrosis caused by ingestion of methyl ethyl ketone peroxide.

Radenkova-Saeva J, Loukova A, Tsekov C.
Caustic injury in adults – A study for 3 year period.

Cosmetics
Gomez-Berrada MP, Ficheux AS, Dahmoul Z, Roudot AC, Ferret PJ.
Exposure assessment of family cosmetic products dedicated to babies, children and adults.

Detergents
Settimi L, Giordano F, Lauria L, Celentano E, Sesana F, Davanzo F.
Surveillance of paediatric exposures to liquid laundry detergent pods in Italy.
Injury Prev 2017; online early: doi: 10.1136/injuryprev-2016-042263:

Diacetyl
Brass DM, Palmer SM.
Models of toxicity of diacetyl and alternative diones.
Toxicology 2017; online early: doi: 10.1016/j.tox.2017.02.011:

Dichlorobenzenes
Weil Y, Zhu J.
Para-dichlorobenzene exposure is associated with thyroid dysfunction in US adolescents.

Dioxins
Nault R, Fader KA, Lydic TA, Zacharewski TR.
Lipidomic evaluation of aryl hydrocarbon receptor-mediated hepatic steatosis in male and female mice by 2,3,7,8-tetrachlorodibenzo-p-dioxin.
Chem Res Toxicol 2017; online early: doi: 10.1021/acs.chemrestox.6b00430:

Disinfectants
Follett I, Siracusa A, Paolocci G.
Update on asthma and cleaning agents.
Curr Opin Allergy Clin Immunol 2017; online early: doi: 10.1097/ACI.0000000000000349:

Disinfection byproducts
Manafsi T, Coulomb B, Boudenne J-L.
Occurrence, origin, and toxicity of disinfection byproducts in chlorinated swimming pools: an overview.
Int J Hyg Environ Health 2017; online early: doi: 10.1016/j.ijheh.2017.01.005:

E-cigarettes and e-liquids
Anon.
E-cigarettes are less toxic and safer than smoking.
Nurs Stand 2017; 31: 16.

Farsalinos K, Gillman G, Kistler K, Yannovits N.
Comment on "Flavoring compounds dominate toxic aldehyde production during e cigarette vaping".

Endocrine disrupting chemicals
Benigni R, Battistelli CL, Bossa C, Giuliani A, Tcheremenskaia O.
Endocrine disruptors: data-based survey of in vivo tests, predictive models and the Adverse Outcome Pathway.

Endotoxins
Yates D.
Glia: a toxic reaction.
Nat Rev Neurosci 2017; 18: 130.

Fragrance compounds
Hydrocarbons

Hydrofluoric acid
Altan S, Ogurtan Z. Dimethyl sulfoxide but not indomethacin is efficient for healing in hydrofluoric acid eye burns. Burns 2017; 43: 232-44.

Hydrogen peroxide

Hydrogen sulphide

Insect repellents

Methanol

Methyl ethyl ketone peroxide

Mycotoxins
Dellaflora L, Galaverna G, Dall'asta C. In silico analysis sheds light on the structural basis underlying the ribotoxicity of trichothecenes—A tool for supporting the hazard identification process. Toxicol Lett 2017; 270: 80-7.

Household products

Nanoparticles

Methanol

Methyl ethyl ketone peroxide

Mycotoxins
Dellaflora L, Galaverna G, Dall'asta C. In silico analysis sheds light on the structural basis underlying the ribotoxicity of trichothecenes—A tool for supporting the hazard identification process. Toxicol Lett 2017; 270: 80-7.

Household products

Nanoparticles

Nitroaromatic compounds

Ochratoxin A

Perfluorinated compounds

Peroxide

Petrol (gasoline) and petroleum oils

Benzene

Kerosene

Phenols

Polycyclic aromatic hydrocarbons

Wang IJ, Karmaus WJ, Yang C-C. Polycyclic aromatic hydrocarbons exposure, oxidative stress, and asthma in children. Int Arch Occup Environ Health 2017; online early: doi: 10.1007/s00420-017-1198-y:

Polyethylene glycol

Polyethyleneimine

Polyphenylene dendrimers

Radiation

Silica

Smoke

Sodium chloride

Tobacco

Triclosan

UV filters

Water

METALS

General

Aluminium

Arsenic

Cadmium

Left ventricular structure and function in relation to environmental exposure to lead and cadmium.
J Am Heart Assoc 2017; 6: e004692.

Chromium
Belapurkar P, Goyal P, Kar A.
In vitro evaluation of bioremediation capacity of a commercial probiotic, Bacillus coagulans, for chromium (VI) and lead (II) toxicity.

Cobalt
Zeeshan M, Murugadas A, Ghaskadbi S, Ramaswamy BR, Akbarsha MA.
Ecotoxicological assessment of cobalt using Hydra model: ROS, oxidative stress, DNA damage, cell cycle arrest, and apoptosis as mechanisms of toxicity.

Lead
Babay F, Akbari SA, Dabirioskoei A, Nasiri M, Mellati A.
The relationship between blood lead level and preeclampsia.
Belapurkar P, Goyal P, Kar A.
In vitro evaluation of bioremediation capacity of a commercial probiotic, Bacillus coagulans, for chromium (VI) and lead (II) toxicity.

Low-level environmental metals and metalloids and incident pregnancy loss.
Exome-wide association study identifies genetic polymorphisms of C12orf51, MYL2, and ALDH2 associated with blood lead levels in the general Korean population.
Environ Health 2017; 16: 11.
Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites and metabolic pathways.
Chem Res Toxicol 2017; online early: doi: 10.1021/acs.chemrestox.6b00401:
Haboush-Delye A, Marquez ER, Gerstenberger SL.
Determining childhood blood lead level screening compliance among physicians.
J Community Health 2017; online early: doi: 10.1007/s10900-017-0317-8:
Jouhadi Z, Bensababah D, Chafiq F, Oukkache B, Guebessi NB, Abdelah EA, Najib J.
Lead poisoning in children: a case report.
Mary Forska T, McKinley GP, Kennedy SH.
Is tetraethyl lead poisoning affecting contemporary indigenous suicides in Ontario, Canada?
Mazumdar I, Goswami K, Ali MS.
Status of serum calcium, vitamin D and parathyroid hormone and hematological indices among lead exposed jewelry workers in Dhaka, Bangladesh.
Mielke HW, Gonzales CR, Powell ET, Mielke PW.
Spatiotemporal exposome dynamics of soil lead and children's blood lead pre- and ten years post-Hurricane Katrina: Lead and other metals on public and private properties in the city of New Orleans, Louisiana, U.S.A.
Mostafazadeh B, Shadnia S, Tavakkoli MA, Khoddami Vishleb HR.
Evaluation of blood lead level in methamphetamine users in Tehran.
Olympio KP, Gonçalves CG, Salles FJ, da Silva Ferreira APS, Soares AS, Buzalaf MAR, Cardoso MRA, Bechara EJH.
What are the blood lead levels of children living in Latin America and the Caribbean?
Sergeyev O, Burns JS, Williams PL, Korrick SA, Lee MM, Revich B, Hauser R.
The association of peripubertal serum concentrations of organochlorine chemicals and blood lead with growth and pubertal development in a longitudinal cohort of boys: a review of published results from the Russian Children's Study.
Rev Environ Health 2017; online early: doi: 10.1515/reveh-2016-0052:
Shao L, Zhang Z, Zhen Z.
Interrupted time series analysis of children’s blood lead levels: a case study of lead hazard control program in Syracuse, New York.
Weiss D, Tomasallo CD, Meiman JG, Alarcon W, Graber NM, Bisgard KM, Anderson HA.
Elevated blood lead levels associated with retained bullet fragments — United States, 2003-2012.
Xie Y, Zhou G.
Effects of meso-2,3-dimercaptosuccinic acid, potassium iodide and chlorophyll on lead accumulation in male mice.
Left ventricular structure and function in relation to environmental exposure to lead and cadmium.
J Am Heart Assoc 2017; 6: e004692.

Lithium
Fernando I.
Predicting serum drug level using the principles of pharmacokinetics after an overdose: a case of lithium overdose.
Australas Psychiatry 2017; online early: doi: 10.1177/1039856216689624:

Manganese
Dubkar DR, Jawale R, Aghor N.
Manganism in patients with chronic renal failure on long term hemodialysis.
Ann Indian Acad Neurol 2016; 19: MP28-77.

Mercury

Silver

Tungsten

Zinc

PESTICIDES

General

Aluminium phosphide

Amitraz

Bipyridyl herbicides

Carbamate insecticides

Chloralose

Chlorantraniliprole

Fungicides
Hexachlorobenzene

Glyphosate

Neonicotinoids

Organochlorine pesticides
DDT

Organophosphorus insecticides
General

Chlorpyrifos

Pyrethroid insecticides
General

CHEMICAL WARFARE,
BIOLOGICAL WARFARE AND
RIOT CONTROL AGENTS

Chemical warfare
General

Nerve agents
Reed BA, Sabourin CL, Lenz DE.
Human butyrylcholinesterase efficacy against nerve agent exposure.
J Biochem Mol Toxicol 2017; online early:
doi: 10.1002/jbt.21886:

VX

RSDL decontamination of human skin contaminated with the nerve agent VX.
Toxicol Lett 2017; 269: 47-54.

PLANTS

Aconitum spp. (Monkshood)

Couison JM, Caparrotta TM, Thompson JP.
The management of ventricular dysrhythmia in aconite poisoning.
Clin Toxicol 2017; online early:
doi: 10.1080/15563650.2017.1291944:

Conium maculatum (Poison hemlock)

Bralik D, Stoprya J, Hannum J.
Intravenous poison hemlock injection resulting in prolonged respiratory failure and encephalopathy.
J Med Toxicol 2017; online early: doi: 10.1007/s13181-017-0601-0:

Mushrooms

ANIMALS

Fish/marine poisoning

Ferreiro SF, Villarino N, Carrera C, Louzao MC, Santamarina G, Cantalapiedra AG, Cifuentes JM, Vieira AC, Botana LM.
Subacute immunotoxicity of the marine phycotoxin yessotoxin in rats.
Toxicon 2017; 129: 28-80.

Rey V, Botana AM, Botana LM.
Quantification of PSP toxins in toxic shellfish matrices using post-column oxidation liquid chromatography and pre-column oxidation liquid chromatography methods suggests post-column oxidation liquid chromatography as a good monitoring method of choice.
Toxicol 2017; 129: 28-35.

Algae

Watson SB, Zastepa A, Boyer GL, Matthews E.
Algal bloom response and risk management: on-site response tools.
Toxicon 2017; 129: 144-52.

Conus ermineus (Sea snail)

Echterbille J, Gilles N, Araoz R, Mourier G, Amar M, Servent D, De Pauw E, Quinton L.
Discovery and characterization of EIIa, a new alpha-conotoxin from *Conus ermineus* venom by nAChRs affinity capture monitored by MALDI-TOF/TOF mass spectrometry.
Toxicol 2017; 130: 1-10.

Micro-organisms

Kavalauskienė S, Dyve Lingelem AB, Skotland T, Sandvig K.
Protection against Shiga toxins.
Toxins (Basel) 2017; 9: 44.

Scorpions

Estrada-Gómez S, Gomez-Rave L, Vargas-Muñoz L, van der Meijden A.
Characterizing the biological and biochemical profile of six different scorpion venoms from the Buthidae and Scorpionidae family.
Toxicon 2017; online early: doi: 10.1016/j.toxicon.2017.02.007:

Snake bites

Jalalzadeh M, Ghadiani MH.
Kidney failure due to abdominal compartment syndrome following snakebite.

Laustsen AH, Johansen KH, Engmark M, Andersen MR.
Recombinant snakebite antivenoms: a cost-competitive solution to a neglected tropical disease?

Nirupama K, Renuka S.
Hypertropic and exotropic strabismus fixus follows neurotoxic snake bite.
Neurul India 2016; 64: 1309-10.

Slagboom J, Kool J, Harrison RA, Casewell NR.
Haemotoxic snake venoms: their functional activity, impact on snakebite victims and pharmaceutical promise.
Br J Haematol 2017; online early: doi: 10.1111/bjh.14591:

Sotelo-Cruz N, Gómez-Rivera N.
A retrospective review of rattlesnake bites in 100 children.

Vikrant S, Parashar A.

Challenges in diagnosing and treating snakebites in a rural population of Tamil Nadu, India: the views of clinicians.
Toxicon 2017; online early: doi: 10.1016/j.toxicon.2017.02.025:

Elapidae

Bites by the Monocled Cobra, *Naja kaouthia*, in Chittagong division, Bangladesh: epidemiology, clinical features of envenoming and management of 70 identified cases.

Crotalinae (Pit vipers)

Fuchs J, Casado Díaz JJ, Jud Schaefer R, Rauber-Lüthy C.
Expired antivenom: good efficacy in a severely envenomed cat bitten by *Sistrurus miliarius miliarius* (Carolina Pigmy Rattlesnake).
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1294694:

Plants

Discovery and characterization of EIIa, a new alpha-conotoxin from *Conus ermineus* venom by nAChRs affinity capture monitored by MALDI-TOF/TOF mass spectrometry.
Toxicol 2017; 130: 1-10.
Namal Rathnayaka RMMK, Kularatne SAM, Nishanthi Ranathunga PEAN.
Coagulopathy and extensive local swelling following Green pit viper (Trimeresurus trigonocephalus) envenoming in Sri Lanka.

Rencher L, Schwartz J, Wilson A.
An anaphylactoid reaction to rattlesnake envenomation in a pediatric patient.
Pediatr Emerg Care 2016; online early: doi: 10.1097/PEC.0000000000000977:

Proteomic, toxicological and immunogenic characterization of Mexican west-coast rattlesnake (Crotalus basiliscus) venom and its immunological relatedness with the venom of Central American rattlesnake (Crotalus simus).
J Proteomics 2017; online early: doi: 10.1016/j.jprot.2017.02.015:

Sotelo-Cruz N, Gómez-Rivera N.
A retrospective review of rattlesnake bites in 100 children.

Viperinae (True vipers)
Ratnayake I, Shihana F, Dissanayake DM, Buckley NA, Maduwage K, Isbister GK.
Performance of the 20-minute whole blood clotting test in detecting venom induced consumption coagulopathy from Russell's viper (Daboia russellii) bites.
Thromb Haemost 2017; online early: doi: 10.1160/TH16-10-0769:

Spiders
Ravelli KG, Ramos ADT, Gonçalves LB, Magnoli FC, Troncone LRP.
Phoneutria nigriventer spider toxin Tx2-6 induces priapism in mice even after cavernosal denervation.
Toxicon 2017; online early: doi: 10.1016/j.toxicon.2017.02.026:

Sood SB, Banner W, Barton RP.
Extracorporeal cardiopulmonary resuscitation after brown recluse envenomation.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1287913:

INDEX

5-azaacytidine ... 26
5-hydroxytryptophan .. 28
Acetaminophen .. 31
Acetylcysteine .. 21
Acetyl-L-carnitine .. 22
Aconitum spp. ... 22
Acrylamide .. 34
Activated prothrombin concentrate 22
Air pollution .. 33
Alcohol .. 34
Aldehydes .. 34
Algae .. 43
Alpha-ketoglutarate .. 22
Aluminium .. 39
Aluminium phosphide ... 41
Amfetamines ... 24
Amitraz .. 41
Anabolic steroids ... 24
Anaesthetics .. 24
Analytical toxicology ... 11
Animals, general ... 43
Anthracyclines .. 25
Antibiotics .. 25
Anticoagulants ... 25
Anticonvulsants .. 25
Antidepressants .. 26
Antidotes ... 21
Antihistamines .. 26
Antimalarial drugs ... 26
Antineoplastic drugs .. 26
Antipsychotics ... 27
Antivenom .. 21
Antiviral drugs .. 27
Arsenic .. 39
Asbestos .. 35
Baclofen ... 22
Barbiturates ... 27
Benzene ... 38
Benzisothiazolinone ... 35
Benz[a]pyrene ... 35
Bevacizumab ... 29
Biological warfare ... 42
Biomarkers .. 11
Bipyridyl herbicides ... 41
Bisphenol A ... 35
Body packers .. 11
Boric acid .. 35
Bupivacaine ... 24
Buprenorphine ... 23
Cadmium .. 39
Caffeine .. 27
Calcium channel blockers .. 27
Cannabis ... 27
Canthanidine ... 35
Carbamate insecticides ... 42
Carbon monoxide ... 35
Carbon tetrachloride .. 35
Carcinogenicity .. 11
Cassiodototoxicity .. 11
Chelating agents ... 21
Chemical incidents .. 33
Chemical warfare, general .. 42
Chemicals, general ... 34
Chloralose .. 42
Chloranil .. 35
Chlorantraniliprole .. 40
Chloromequat ... 35
Chlorpyrifos ... 42
Chromium .. 40
Cisplatin ... 26
Clindamycin ... 25
Cobalt ... 40
Cocaine .. 28
Conium maculatum .. 43
Conus ermineus .. 43
Corrosives .. 36
Corticosteroids ... 28
Cosmetics .. 36
Cromolyn sodium ... 22
Crotalinae .. 43
Curcumin ... 22
Cyclophosphamide .. 26
<table>
<thead>
<tr>
<th>Substance</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprotoxicity</td>
<td>20</td>
</tr>
<tr>
<td>Risk assessment</td>
<td>20</td>
</tr>
<tr>
<td>Salicylate</td>
<td>32</td>
</tr>
<tr>
<td>Scopolamine</td>
<td>32</td>
</tr>
<tr>
<td>Scorpions</td>
<td>43</td>
</tr>
<tr>
<td>Sea snail</td>
<td>43</td>
</tr>
<tr>
<td>Sedatives</td>
<td>32</td>
</tr>
<tr>
<td>Sildenafil</td>
<td>32</td>
</tr>
<tr>
<td>Silica</td>
<td>38</td>
</tr>
<tr>
<td>Silver</td>
<td>41</td>
</tr>
<tr>
<td>Silymarin</td>
<td>22</td>
</tr>
<tr>
<td>Sinapic acid</td>
<td>23</td>
</tr>
<tr>
<td>Smoke</td>
<td>38</td>
</tr>
<tr>
<td>Snake bites</td>
<td>43</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>38</td>
</tr>
<tr>
<td>Spiders</td>
<td>44</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>32</td>
</tr>
<tr>
<td>SSRIs</td>
<td>32</td>
</tr>
<tr>
<td>Steroids</td>
<td>33</td>
</tr>
<tr>
<td>Substance abuse</td>
<td>33</td>
</tr>
<tr>
<td>Suicide</td>
<td>20</td>
</tr>
<tr>
<td>Synthetic cannabinoids</td>
<td>29</td>
</tr>
<tr>
<td>Synthetic cathinones</td>
<td>30</td>
</tr>
<tr>
<td>Temozolomide</td>
<td>27</td>
</tr>
<tr>
<td>Thioacetamide</td>
<td>23</td>
</tr>
<tr>
<td>Tobacco</td>
<td>38</td>
</tr>
<tr>
<td>Topiramate</td>
<td>25</td>
</tr>
<tr>
<td>Toxicology, general</td>
<td>11</td>
</tr>
<tr>
<td>Tramadol</td>
<td>31</td>
</tr>
<tr>
<td>Tranlycpromine</td>
<td>26</td>
</tr>
<tr>
<td>Triclosan</td>
<td>39</td>
</tr>
<tr>
<td>Tricyclic antidepressants</td>
<td>33</td>
</tr>
<tr>
<td>True vipers</td>
<td>44</td>
</tr>
<tr>
<td>Tungsten</td>
<td>41</td>
</tr>
<tr>
<td>UV filters</td>
<td>39</td>
</tr>
<tr>
<td>Valproate</td>
<td>26</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>25</td>
</tr>
<tr>
<td>Vemurafenib</td>
<td>27</td>
</tr>
<tr>
<td>Veterinary products</td>
<td>33</td>
</tr>
<tr>
<td>Vigabatrin</td>
<td>26</td>
</tr>
<tr>
<td>Vilazodone</td>
<td>33</td>
</tr>
<tr>
<td>Viperinae</td>
<td>44</td>
</tr>
<tr>
<td>Vetectoxib</td>
<td>30</td>
</tr>
<tr>
<td>VX</td>
<td>43</td>
</tr>
<tr>
<td>Water</td>
<td>39</td>
</tr>
<tr>
<td>Water pollution</td>
<td>34</td>
</tr>
<tr>
<td>Xylazine</td>
<td>32</td>
</tr>
<tr>
<td>Yohimbine</td>
<td>23</td>
</tr>
<tr>
<td>Zinc</td>
<td>41</td>
</tr>
</tbody>
</table>