CURRENT AWARENESS PAPERS OF THE MONTH

The implementation of medical monitoring programs following potentially hazardous exposures: a medico-legal perspective

Context
Clinical toxicologists may be called upon to determine the appropriateness of medical monitoring following documented or purported exposures to toxicants in the occupational, environmental, and medical settings.

Methods
We searched the MEDLINE database using the Ovid® search engine for the following terms cross-referenced to the MeSH database: ("occupational exposures" OR "environmental exposures") AND ("physiologic monitoring" OR "population surveillance"). The titles and abstracts of the resulted articles were reviewed for relevance. We expanded our search to include non-peer-reviewed publications and gray literature and resources using the same terms as utilized in the MEDLINE search. There were a total of 48 relevant peer-reviewed and non-peer-reviewed publications. Publications excluded contained no information relevant to medical monitoring following potentially harmful toxicologic exposures, discussed only worker screening/surveillance and/or population biomonitoring, contained redundant
information, or were superseded by more recent information.

Approaches to medical monitoring
A consensus exists in the peer-reviewed medical literature, legal literature, and government publications that for medical monitoring to be a beneficial public health activity, careful consideration must be given to potential benefits and harms of the program. Characteristics of the exposure, the adverse human health effect, the screening test, and the natural history of the disease are important in determining whether an exposed population will reap a net benefit or harm from a proposed monitoring program.

Broader interpretations of medical monitoring
Some have argued that medical monitoring programs should not be limited to exposure-related outcomes but should duplicate general preventive medicine efforts to improve public health outcomes although an overall reduction of morbidity, mortality and disability by modifying correctable risk factors and disease conditions. This broader approach is inconsistent with the targeted approach advocated by the Agency for Toxic Substances and Disease Registry and the United States Preventive Services Task Force and the bulk of the peer-reviewed medical literature.

Medical monitoring in legal contexts
Numerous medical monitoring actions have been litigated. Legal rationales for allowing medical monitoring claims often incorporate some of the scientific criteria for the appropriateness of monitoring programs. In the majority of cases in which plaintiffs were awarded medical monitoring relief, plaintiffs were required to demonstrate both that the condition for which medical monitoring was sought could be detected early, and that early detection and treatment will improve morbidity and mortality. However, the treatment of medical monitoring claims varies significantly depending upon jurisdiction.

Examples of large-scale, comprehensive medical monitoring programs
Large-scale, comprehensive medical monitoring programs have been implemented, such as the Fernald Medical Monitoring Program and the World Trade Center Health Program, both of which exceeded the scope of medical monitoring typically recommended in the peer-reviewed medical literature and the courts. The Fernald program sought to prevent death and disability due to non-exposure-related conditions in a manner similar to general preventive medicine. The World Trade Center Health Program provides comprehensive medical care for World Trade Center responders and may be viewed as a large-scale, federally--funded research effort, which distinguishes it from medical monitoring in a medico-legal context.

Synthesis of public health approaches to medical monitoring
Medical monitoring may be indicated following a hazardous exposure in limited circumstances. General causation for a specific adverse health effect must be either established by scientific consensus through a formal causal analysis using a framework such as the Bradford-Hill criteria. The exposure must be characterized and must be of sufficient severity that the exposed population has a significantly elevated risk of an adverse health effect. Monitoring must result in earlier detection of the condition than would otherwise occur and must confer a benefit in the form of primary, secondary or tertiary prevention. Outcome tables may be of use in describing the potential benefits and harms of a proposed monitoring program.

Conclusions
In the context of litigation, plaintiffs may seek medical monitoring programs after documented or putative exposures. The role of the clinical toxicologist, in this setting, is to evaluate the scientific justifications and medical risks and assist the courts in determining whether monitoring would be expected to result in a net public health benefit.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1334913
Massive paracetamol overdose: an observational study of the effect of activated charcoal and increased acetylcysteine dose (ATOM-2)

Context
Paracetamol is commonly taken in overdose, with increasing concerns that those taking "massive" overdoses have higher rates of hepatotoxicity and may require higher doses of acetylcysteine. The objective was to describe the clinical characteristics and outcomes of "massive" (≥ 40 g) paracetamol overdoses.

Methods
Patients were identified through the Australian Paracetamol Project, a prospective observational study through Poisons Information Centres in NSW and Queensland, over 3 and 1.5 years, respectively, and retrospectively from three clinical toxicology unit databases (over 2.5 to 20 years). Included were immediate-release paracetamol overdoses ≥ 40 g ingested over ≤ 8 h. Outcomes measured included paracetamol ratio [defined as the ratio of the first paracetamol concentration taken 4–16 h post-ingestion to the standard (150 mg/L at 4 h) nomogram line at that time] and hepatotoxicity (ALT >1000 U/L).

Results
Two hundred paracetamol overdoses were analysed, reported median dose ingested was 50 g (interquartile range (IQR): 45–60 g) and median paracetamol ratio 1.9 (IQR: 1.4–2.9, n = 173). One hundred and ninety-three received acetylcysteine at median time of 6.3 h (IQR: 4–9.3 h) post-ingestion. Twenty-eight (14%) developed hepatotoxicity, including six treated within 8 h of ingestion. Activated charcoal was administered to 49(25%), at median of 2 h post-ingestion (IQR:1.5–5 h). Those receiving activated charcoal (within 4 h of ingestion), had significantly lower paracetamol ratio versus those who did not: 1.4 (n = 33, IQR: 1.1–1.6) versus 2.2 (n = 140, IQR: 1.5–3.0) (p < .0001) (paracetamol concentration measured ≥ 1 h after charcoal). Furthermore, they had lower rates of hepatotoxicity [unadjusted OR: 0.12 (95% CI: <0.001–0.91); adjusted for time to acetylcysteine OR: 0.20 (95%CI: 0.002–1.74)].

Seventy-nine had a paracetamol ratio ≥2, 43 received an increased dose of acetylcysteine in the first 21 h; most commonly a double dose in the last bag (100 to 200 mg/kg/16 h). Those receiving increased acetylcysteine had a significant decrease risk of hepatotoxicity [OR:0.27 (95% CI: 0.08–0.94)]. The OR remained similar after adjustment for time to acetylcysteine and paracetamol ratio.

Conclusion
Massive paracetamol overdose can result in hepatotoxicity despite early treatment. Paracetamol concentrations were markedly reduced in those receiving activated charcoal within 4 h. In those with high paracetamol concentrations, treatment with increased acetylcysteine dose within 21 h was associated with a significant reduction in hepatotoxicity.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1334915
The standard treatment protocol for paracetamol poisoning may be inadequate following overdose with modified release formulation: a pharmacokinetic and clinical analysis of 53 cases

Objective
The use of the standard procedure for managing overdoses with immediate release (IR) paracetamol is questionable when applied to overdoses with modified release (MR) formulations. This study describes the pharmacokinetics of paracetamol and the clinical outcomes following overdoses with a MR formulation.

Methods
Medical records including laboratory analyses concerning overdoses of MR paracetamol from 2009 to 2015 were collected retrospectively. Inclusion criteria were ingestion of a toxic dose, known time of intake and documented measurements of serum paracetamol and liver function tests. Graphical analysis, descriptive statistics and population pharmacokinetic modelling were used to describe data.

Results
Fifty-three cases were identified. Median age was 26 years (range 13–68), median dose was 20 g (range 10–166) and 74% were females. The pharmacokinetic analysis showed a complex, dose dependent serum versus time profile with prolonged absorption and delayed serum peak concentrations with increasing dose. Ten patients had persistently high serum levels for 24 h or more, six of them had a second peak 8-19 h after ingestion. Seven of 34 patients receiving N-acetylcysteine (NAC) within 8 h had alanine aminotransferase (ALT) above reference range. Three of them developed hepatotoxicity (ALT >1000 IU/l).

Discussion and conclusions
The pharmacokinetic and clinical analysis showed that the standard treatment protocol, including risk assessment and NAC regimen, used for IR paracetamol poisoning not appear suitable for MR formulation. Individual and tailored treatment may be valuable but further studies are warranted to determine optimal regimen of overdoses with MR formulation.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1339887

The toxicological significance of post-mortem drug concentrations in bile

Context
Some authors have proposed that post-mortem drug concentrations in bile are useful in estimating concentrations in blood. Both The International Association of Forensic Toxicologists (TIAFT) and the US Federal Aviation Administration recommend that samples of bile should be obtained in some circumstances. Furthermore, standard toxicological texts compare blood and bile concentrations, implying that concentrations in bile are of forensic value.

Aim
To review the evidence on simultaneous measurements of blood and bile drug concentrations reported in the medical literature.

Methods
We made a systematic search of EMBASE 1980–2016 using the search terms ("bile/" OR
"exp drug bile level/concentration/" AND "drug blood level/concentration/", PubMed 1975-2017 for ("bile[tw]" OR "biliary[tw]" OR "concentration[tw]" OR "concentrations[tw]" OR "level[tw]" OR "levels[tw]") AND "post-mortem[tw]" and also MEDLINE 1990–2016 for information on drugs whose biliary concentrations were mentioned in standard textbooks. The search was limited to human studies without language restrictions. We also examined recent reviews, indexes of relevant journals and citations in Web of Science and Google Scholar. We calculated the bile:blood concentration ratio. The searches together yielded 1031 titles with abstracts. We scanned titles and abstracts for relevance and retrieved 230, of which 161 were considered further. We excluded 49 papers because: the paper reported only one case (30 references); the data referred only to a metabolite (1); the work was published before 1980 (3); the information concerned only samples taken during life (10); or the paper referred to a toxin or unusual recreational drug (5). The remaining 112 papers provided data for analysis, with at least two observations for each of 58 drugs.

Bile:blood concentration ratios

Median bile:blood concentration ratios varied from 0.18 (range 0.058–0.32) for dextromoramide to 520 (range 0.62–43,000) for buprenorphine. Median bile concentrations exceeded blood concentrations by one order of magnitude for several drugs, including dihydrocodeine, quetiapine and sildenafil; and by two orders of magnitude of for buprenorphine, colchicine and 3,4-methylenedioxymethamphetamine (MDMA), among others. The minimum and maximum values for the ratio differed by a factor of three or more in three-quarters of the cases where data were available and by a factor of 10 or more for over half of the analytes.

Limitations

The data were difficult to find. Medline does not explicitly index the term "drug bile concentration". It may well be that other reports exist, although they would not alter our major conclusion. Many of the papers that contributed data failed to specify the source of the blood samples or the post-mortem interval, so that no judgment was possible regarding post-mortem redistribution in whole blood or bile.

Conclusions

For most drugs, there are wide ranges of bile:blood concentration ratios, which means that bile and blood concentrations are generally poorly correlated. Bile concentration measurements cannot readily be used to establish post-mortem blood concentrations; nor can they be extrapolated to ante-mortem concentrations. However, because drug concentrations in bile often exceed those in blood, bile may allow qualitative identification of drugs present, even when the blood concentration is below the limit of detection.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1339886

Intraosseous administration of antidotes – a systematic review

Context

Intraosseous (IO) access is an established route of administration in resuscitation situations. Patients with serious poisoning presenting to the emergency department may require urgent antidote therapy. However, intravenous (IV) access is not always readily available.

Objective

This study reviews the current evidence for IO administration of antidotes that could be used in poisoning. The primary outcome was mortality as a surrogate of efficacy. Secondary outcomes included hemodynamic variables, electrocardiographic variables, neurological
status, pharmacokinetics outcomes, and adverse effects as defined by each article.

Methods
A medical librarian created a systematic search strategy for Medline, subsequently translated to Embase, BIOSIS, PubMed, Web of Science, Cochrane, Database of Abstracts of Reviews of Effects (DARE), and the CENTRAL clinical trial register, all of which we searched from inception to 30 June 2016. Interventions included IO administration of selected antidotes. Articles included volunteer studies, poisoning, or other resuscitation contexts such as cardiac arrest, burns, dehydration, seizure, hemorrhagic shock, or undifferentiated shock. We considered all human studies and animal experiments to the exception of *in vitro* studies. Two reviewers independently selected studies, and a third adjudicated in case of disagreement. Three reviewers extracted all relevant data. Three reviewers evaluated the risk of bias and quality of the articles using specific scales according to each type of study design.

Results
A total of 47 publications (46 articles and one abstract) met our inclusion criteria and described IO administration of 13 different antidotes. These included one case series and 21 case reports describing 26 patients, and 25 animal experiments. Of those, seven human case reports and four animal experiments specifically reported the use of antidotes in poisoning. Human case reports suggested favorable outcomes with IO use of atropine, diazepam, hydroxocobalamin, insulin, lipid emulsion, methylene blue, phentolamine, prothrombin complex concentrate, and sodium bicarbonate. Clinical outcomes varied according to the antidote used. The only reported adverse event was ventricular tachycardia following IO naloxone. Regarding the animal experiments, IO administration of lipid emulsion and of hydroxocobalamin showed improved survival in bupivacaine-poisoned rats and in cyanide-intoxicated swine, respectively. Animal data also suggested an equivalent bio-availability between IO and IV administration for atropine, calcium chloride, dextrose 50%, diazepam, methylene blue, pralidoxime, and sodium bicarbonate. Adverse effect reporting of fat emboli after IO administration of sodium bicarbonate, for example, was conflicting due to the significant heterogeneity in the timing of lung examination across studies.

Conclusion
The evidence supporting the use of IO route for the administration of antidotes in a context of poisoning is scarce. The majority of the evidence consists of case reports and animal experiments. Common antidotes such as acetylcysteine, fomepizole, and digoxin-specific antibody fragments have not been studied or reported with the use of the IO route. Despite the low-quality evidence available, IO access is a potential option for antidotal treatments in toxicological resuscitation when IV access is unavailable.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1337122

Adverse events are rare after single-dose montelukast exposures in children

Arnold DH, Bowman N, Reiss TF, Hartert TV, Seger DL. Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1337123:

Study objective
Montelukast sodium is a leukotriene-receptor antagonist approved as a controller medication for chronic asthma and allergic rhinitis in children and adults. We sought to characterize adverse events associated with single montelukast exposures in children ages 5–17 years and to determine whether adverse events were dose related for all-dose and for ultra-high-dose (≥50 mg) exposures.
Methods

This is a retrospective analysis of data from the National Poison Data System for exposures that included montelukast in individuals aged 5–17 years for calendar years 2000–2016. Filters were applied to identify exposure events in which montelukast was the primary exposure and for which the exact or lowest-possible ingested dose was recorded. Characteristics of adverse events were examined using descriptive statistics and multivariable logistic models were used to examine whether associations of montelukast and adverse events were dose related.

Results

During the 17-year study period, there were 17,069 montelukast exposures available for analyses. Patients were median [interquartile range] age 7 (5, 9) years, and 10,907 (64%) male gender. Abdominal pain was the most common adverse event (0.23%). There were 618 ultra-high-dose exposures (≥50 mg). These patients had median age 6 (5, 8) years, and 347 (56%) male gender. Abdominal pain was the most common adverse event (1.46%). Increasing ingested dose was associated with abdominal pain (adjusted odds ratio, 1.01, 95% confidence interval 1.01, 1.02) after adjustment for age and gender. No serious or life-threatening events were reported.

Conclusions

Single-dose exposures of montelukast up to 445 mg are rarely associated with any adverse events and are not associated with serious or life-threatening adverse events in children aged 5-17 years.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1337123

Management of severe bupropion poisoning with intravenous lipid emulsion

Background

Bupropion toxicity is characterized by central nervous system and cardiovascular toxicity. Intravenous lipid emulsion (ILE) has been suggested as a treatment by some for the treatment of refractory bupropion toxicity. This recommendation is based largely on published case reports and cases presented at scientific meetings. The objective of this study is to characterize the outcomes of patients with suspected bupropion toxicity in which ILE was administered and the indications for its use.

Methods

Electronic records from one regional poison center were searched for intentional bupropion ingestions from 1 January 2009 through 31 December 2015. Cases in which ILE was administered or death was listed as the outcome were further analyzed.

Results

There were 1274 cases of suspected bupropion ingestion reported during the study period with 14 reported deaths. Nine cases of ILE administration were identified. Of these, four patients expired and five survived. One of the survivors had neurologic sequelae necessitating placement in a long-term care facility. Patient complications after ILE administration were common and included continued hypotension in 7 cases, recurrent seizures in 3 patients, ARDS in two patients, and renal failure in one patient.

Conclusions

The high mortality and complication rate after ILE in this study sample does not reflect the positive outcome benefit seen in previous published case reports. Further characterization of
the efficacy and complications of ILE in bupropion toxicity is needed.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1337909

Self-identification of nonpharmaceutical fentanyl exposure following heroin overdose

Objective
To compare user self-identification of nonpharmaceutical fentanyl exposure with confirmatory urine drug testing in emergency department (ED) patients presenting after heroin overdose.

Methods
This was a cross-sectional study of adult ED patients who presented after a heroin overdose requiring naloxone administration. Participants provided verbal consent after which they were asked a series of questions regarding their knowledge, attitudes and beliefs toward heroin and nonpharmaceutical fentanyl. Participants also provided urine samples, which were analyzed using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry to identify the presence of fentanyl, heroin metabolites, other clandestine opioids, common pharmaceuticals and drugs of abuse.

Results
Thirty participants were enrolled in the study period. Ten participants (33%) had never required naloxone for an overdose in the past, 20 participants (67%) reported recent abstinence, and 12 participants (40%) reported concomitant cocaine use. Naloxone was detected in all urine drug screens. Heroin or its metabolites were detected in almost all samples (93.3%), as were fentanyl (96.7%) and its metabolite, norfentanyl (93.3%). Acetylfentanyl was identified in nine samples (30%) while U-47700 was present in two samples (6.7%). Sixteen participants self-identified fentanyl in their heroin (sensitivity 55%); participants were inconsistent in their qualitative ability to identify fentanyl in heroin.

Conclusions
Heroin users presenting to the ED after heroin overdose requiring naloxone are unable to accurately identify the presence of nonpharmaceutical fentanyl in heroin. Additionally, cutting edge drug testing methodologies identified fentanyl exposures in 96.7% of our patients, as well as unexpected clandestine opioids (like acetylfentanyl and U-47700).

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1339889

Non-health care facility medication errors resulting in serious medical outcomes

Objective
The objective of this study is to provide an epidemiologic analysis of medication errors occurring outside of health care facilities that result in serious medical outcomes (defined by the National Poison Database System as "moderate effect," "major effect," "death," or "death, indirect report").
Methods
National Poison Database System data from 2000 through 2012 were used for this retrospective analysis of non-health care facility medication errors.

Results
From 2000 through 2012, Poison Control Centers in the United States received data on 67,603 exposures related to unintentional therapeutic pharmaceutical errors that occurred outside of health care facilities that resulted in serious medical outcomes. The overall average rate of these medication errors was 1.73 per 100,000 population, and there was a 100.0% rate increase during the 13-year study period. Medication error frequency and rates increased for all age groups except children younger than 6 years of age. Medical outcome was most commonly reported as moderate effect (93.5%), followed by major effect (5.8%) and death (0.6%). Common types of medication errors included incorrect dose, taking or administering the wrong medication, and inadvertently taking the medication twice. The medication categories most frequently associated with serious outcomes were cardiovascular drugs (20.6%) (primarily beta blockers, calcium antagonists, and clonidine), analgesics (12.0%) (most often opioids and acetaminophen, alone and combination products), and hormones/hormone antagonists (11.0%) (in particular, insulin, and sulfonylurea).

Conclusions
This study analyzed non-health care facility medication errors resulting in serious medical outcomes. The rate of non-health care facility medication errors resulting in serious medical outcomes is increasing, and additional efforts are needed to prevent these errors.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1337908

New legal requirements for submission of product information to poisons centres in EU member states

Introduction
In the past eight years, the European Association of Poisons Centres and Clinical Toxicologists (EAPCCT) has been intensively involved in a European Commission led process to develop EU legislation on the information of hazardous products that companies have to notify to EU Poisons Centres (or equivalent "appointed bodies"). As a result of this process, the Commission adopted Regulation (EU) No 2017/542, amending the CLP Regulation by adding an Annex on harmonised product submission requirements.

Harmonised mixture information requirements
Detailed and consistent information on the composition of the hazardous product will become available to EU Poisons Centres (PC). The information will be submitted by companies to PCs (or equivalent "appointed bodies") using a web-based software application or in-house software. Two new important features are introduced. Firstly, to be able to rapidly identify the product formula, a Unique Formula Identifier (UFI) on the product label links to the submitted information. Secondly, for better comparability of reports on poisonings between EU member states, a harmonised Product Categorisation System will specify the intended use of a product. Rapid product identification and availability of detailed composition information will lead to timely and adequate medical intervention. This may lead to considerable reduction in healthcare costs. Additionally, for companies trading across the EU, costs of submission of this information will be reduced significantly.

Next steps
From 2017, an implementation period has started, consisting of a three-year period for stakeholders to implement the new requirements, followed by a gradual applicability for
consumer products (2020), professional products (2021) and industrial use-only products (2024). Technical tools to generate the electronic format and the UFI together with guidance documents are expected to be made available by the end of 2017 by the European Chemicals Agency (ECHA). Guidance on interpretation of legal text and ECHA helpdesk support are planned to be ready at the end of 2018.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1339888

Occupational chemical exposures: a collaboration between the Georgia Poison Center and the Occupational Safety and Health Administration

Context
In the United States, regional poison centers frequently receive calls about toxic workplace exposures. Most poison centers do not share call details routinely with governmental regulatory agencies. Worker health and safety could be enhanced if regulators such as the Occupational Safety and Health Administration (OSHA) had the ability to investigate these events and prevent similar incidents. With this goal in mind, the Georgia Poison Center (GPC) began referring occupational exposures to OSHA in July 2014.

Methods
GPC began collecting additional employer details when handling occupational exposure calls. When workers granted permission, GPC forwarded call details to the OSHA Regional Office in Atlanta. These referrals enabled OSHA to initiate several investigations. We also analyzed all occupational exposures reported to GPC during the study period to characterize the events, detect violations of OSHA reporting requirements, and identify hazardous scenarios that could form the basis for future OSHA rulemaking or guidance.

Results
GPC was informed about 953 occupational exposures between 1 July, 2014 and 7 January, 2016. Workers were exposed to 217 unique substances, and 70.3% of victims received treatment in a healthcare facility. Hydrogen sulfide was responsible for the largest number of severe clinical effects. GPC obtained permission to refer 89 (9.3%) calls to OSHA. As a result of these referrals, OSHA conducted 39 investigations and cited 15 employers for "serious" violations. OSHA forwarded several other referrals to other regulatory agencies when OSHA did not have jurisdiction. At least one employer failed to comply with OSHA's new rule that mandates reporting of all work-related hospitalizations. This collaboration increased OSHA's awareness of dangerous job tasks including hydrofluoric acid exposure among auto detailers and carbon monoxide poisoning with indoor use of gasoline-powered tools.

Conclusions
Collaboration with the GPC generated a useful source of referrals to OSHA. OSHA investigations led to abatement of existing hazards, and OSHA acquired new knowledge of occupational exposure scenarios.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1338718
Safety profile of snake antivenom (use) in Hong Kong – a review of 191 cases from 2008 to 2015
Mong R, Ng VCH, Tse ML. Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1334916:

Introduction
The mainstay of treatment for significant envenoming from snakebites is antivenom. However, there is insufficient data regarding the safety of antivenom used in Hong Kong. We describe the incidence of hypersensitivity reactions from antivenom use and review the frequency and reasons for intensive care unit (ICU) admission.

Methods
The Hong Kong Poisons Information Centre database was reviewed. All patients given snake antivenom between 2008 and 2015 were included. Patient demographics, species of snake involved, details of antivenom used, treatment location, use of pre-treatment, reasons for ICU admission (where applicable) and details of early and late antivenom reactions were extracted.

Results
There were 191 patients who received snake antivenom. Most (93%) were treated with either the green pit viper antivenom from Thailand or the Agkistrodon halys antivenom from China. The incidences of early hypersensitivity reactions to green pit viper antivenom and Agkistrodon Halys antivenom were 4.7% and 1.4%, respectively. Most patients (69%) were managed in the ED observation ward or general ward. There were 59 patients managed in ICU, most (90%) of whom were admitted for close monitoring during antivenom administration. There were no cases of significant morbidity from antivenom administration. Eight patients (5.6%) had features suggestive of mild serum sickness.

Conclusions
The incidence of immediate hypersensitivity reaction to antivenom commonly used in Hong Kong is low. Majority of patients were managed safely in the emergency department observation ward or general ward. Serum sickness appears to be uncommon and possible cases presented with mild features.

Full text available from: http://dx.doi.org/10.1080/15563650.2017.1334916

Individual variability of venom from the European adder (Vipera berus berus) from one locality in Eastern Hungary

Abstract and full text available from: http://dx.doi.org/10.1016/j.toxicon.2017.06.004

Cobalt toxicity in humans—A review of the potential sources and systemic health effects
Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maes L. Toxicology 2017; 387: 43-56.

Abstract and full text available from: http://dx.doi.org/10.1016/j.tox.2017.05.015
Cases of acute mercury poisoning by mercury vapor exposure during the demolition of a fluorescent lamp factory
Abstract and full text available from: http://dx.doi.org/10.1186/s40557-017-0184-x

Distinct arsenic metabolites following seaweed consumption in humans
Abstract and full text available from: http://dx.doi.org/10.1038/s41598-017-03883-7

Pediatric jellyfish envenomation in the Mediterranean Sea
Abstract and full text available from: http://dx.doi.org/10.1097/MEJ.0000000000000479

Phosgene-induced acute lung injury (ALI): differences from chlorine-induced ALI and attempts to translate toxicology to clinical medicine
Abstract and full text available from: http://dx.doi.org/10.1186/s40169-017-0149-2
TOXICOLOGY

General
Brown NW.
Toxicology in clinical laboratories: challenging times.
Br J Biomed Sci 2017; online early:
doi: 10.1080/09674845.2017.1331521:

Surmatsis R, Khalid M, McKeever R, Vearrier D, Greenberg M.
The American Academy of Clinical Toxicology question of the day.
Dis Mon 2017; online early:
doi: 10.1016/j.disamonth.2017.03.005:

Vearrier D, Greenberg M.
The implementation of medical monitoring programs following potentially hazardous exposures: a medico-legal perspective.
Clin Toxicol 2017; online early:
doi: 10.1080/15563650.2017.1334913:

Analytical toxicology
Interest of single hair analysis to document drug exposure: literature review and a case report involving zuclopenthixol.
Curr Pharm Des 2017; online early:
doi: 10.2174/1381612823666170622100443:

Bertol E, Vaiano F, Mari F, Di Milia MG, Bua S, Supuran CT, Carta F.

Return of the lysergamides. Part IV: Analytical and pharmacological characterization of lysergic acid morpholine (LSM-775).
Drug Test Anal 2017; online early: doi: 10.1002/dta.2222:

Couchman L, Fisher DS, Subramaniam K, Handlea SA, Boughtflower RJ, Benton CM, Flanagan RA.
Ultra-fast LC-MS/MS in therapeutic drug monitoring: quantification of clozapine and norclozapine in human plasma.
Drug Test Anal 2017; online early: doi: 10.1002/dta.2223:

Rapid determination of 9 aromatic amines in mainstream cigarette smoke by modified dispersive liquid liquid extraction and ultaprecision convergence chromatography tandem mass spectrometry.
J Chromatogr A 2017; online early:
doi: 10.1016/j.chroma.2017.05.056:

Doucette ML, Frattaroli S, Vernick JS.
Oral fluid testing for marijuana intoxication: enhancing objectivity for roadside DUI testing.
Injury Prev 2017; online early: doi: 10.1136/injuryprev-2016-042264:

Fabresse N, Allard J, Sardaby M, Thompson A, Clutton RE, Eddleston M, Alvarez J-C.
LC-MS/MS quantification of free and Fab-bound colchicine in plasma, urine and organs following colchicine administration and colchicine-specific Fab fragments treatment in Göttingen minipigs.

Identification and quantification of predominant metabolites of synthetic cannabinoid MAB-CHMINACA in an authentic human urine specimen.
Drug Test Anal 2017; online early: doi: 10.1002/dta.2220:

An accurate and robust LC-MS/MS method for the quantification of chlorfenvinphos, ethion and linuron in liver samples.

An atmospheric pressure ionization MS/MS assay using online extraction for the analysis of 11 cannabinoids and metabolites in human plasma and urine.
Ther Drug Monit 2017; online early:
doi: 10.1097/FTD.0000000000000427:

Klepaki J, Davari B, Boulet M, Lizzarraga R, Christians U.
A high-throughput HPLC-MS/MS assay for the detection, quantification, and simultaneous structural confirmation of 136 drugs and metabolites in human urine.
Ther Drug Monit 2017; online early:
doi: 10.1097/FTD.0000000000000429:

Krotulski AJ, Mohr ALA, Papsun DM, Logan BK.
Metabolism of novel opioid agonists U-47700 and U-49900 using human liver microsomes with confirmation in authentic urine specimens from drug users.
Drug Test Anal 2017; online early: doi: 10.1002/dta.2228:

Rapid identification of psychoactive drugs in drained gastric lavage fluid and whole blood specimens of drug overdose patients using ambient mass spectrometry.

Hair analysis for the detection of drug use-is there potential for evasion?
Hum Psychopharmacol 2017; online early:
doi: 10.1002/hup.2587:

Pasin D, Cawley A, Bidny S, Fu S.
Current applications of high-resolution mass spectrometry for the analysis of new psychoactive substances: a critical review.
Anal Bioanal Chem 2017; online early:
doi: 10.1007/s00216-017-0441-4:

Simultaneous quantification of methiocarb and its metabolites, methiocarb sulfoxide and methiocarb sulfone, in five food products of animal origin using tandem mass spectrometry.

Raso S, Bell S.
Qualitative analysis and detection of the pyrolytic products of JWH-018 and 11 additional synthetic cannabinoid in the presence of common herbal smoking substrates.
J Anal Toxicol 2017; online early: doi: 10.1093/jat/bbx039:

Salem SA, Gurung S, Maiti A. Urine fluorescence in antifreeze poisoning. BMJ Case Rep 2017; doi: 10.1136/bcr-2017-221373:

Biomarkers

Carcinogenicity

Cardiotoxicity

Dubois VFS, Danhof M, Della Pasqua O. Characterizing QT interval prolongation in early clinical development: a case study with methadone. PharmacoI Res Perspect 2017; 5: e00284:

Moon JM, Chun BJ, Cho YS, Lee SD, Hong YJ, Shin MH, Jung EJ, Ryu HH. Cardiovascular effects and fatality may differ according to the formulation of glyphosate salt herbicide. Cardiovasc Toxicol 2017; online early: doi: 10.1007/s12012-017-9418-y:

Oun R, Rowan E. Cisplatin induced arrhythmia; electrolyte imbalance or disturbance of the SA node? Eur J PharmacoI 2017; online early: doi: 10.1016/j.ejphar.2017.05.063:

Patel KM, Shah S, Subedi D.
Takotsubo-like cardiomyopathy after loperamide overdose. Am J Ther 2017; online early: doi: 10.1097/MJT.0000000000000595:

Piskin Ö, Aydin BG. Effects of insulin+glucose pretreatment on bupivacaine cardiotoxicity in rats. Hum Exp Toxicol 2017; doi: 10.1177/09603770177112384:

Dermal toxicity

Zheng Y, Chaudhari PR, Maibach HI. Allergic contact dermatitis from ophthalmics.

Cutan Ocul Toxicol 2017; online early: doi: 10.1080/15569527.2017.1295251:

Developmental toxicity

Zheng Y, Chaudhari PR, Maibach HI. Allergic contact dermatitis from ophthalmics.

Cutan Ocul Toxicol 2017; online early: doi: 10.1080/15569527.2017.1295251:

Developmental toxicity

Driving under the influence of alcohol and other drugs

Epidemiology

Helmerhorst GTT, Teunis T, Janssen SJ, Ring D. An epidemic of the use, misuse and overdose of opioids and deaths due to overdose, in the United States and Canada: is Europe next? Bone Joint J 2017; 99-B: 856-64.

Foreign body ingestion

Forensic toxicology

Further evidence for GHB naturally occurring in common non-alcoholic beverages.

The toxicological significance of post-mortem drug concentrations in bile.

A case of nonfatal intoxication associated with the recreational use of diphenidine.

Analysis of fire deaths in Poland and influence of smoke toxicity.
Forensic Sci Int 2017; 277: 77-87.

Sudden death by spontaneous epiglottic hematoma secondary to high blood levels of warfarin.

Acrylfentanyl: another new psychoactive drug with fatal consequences.
Forensic Sci Int 2017; online early: doi: 10.1016/j.forsciint.2017.05.010:

Psychotropic medications in Swedish homicide victims and offenders: a forensic-toxicological case-control study of adherence and recreational use.
J Clin Psychiatry 2017; online early: doi: 10.1088/jcnp.16m11244:

Impact of novel psychoactive substances on clinical and forensic toxicology and global public health.

Darú 2017; 25: 15.

Illicit drug delivery via administration of human blood.

Method development in forensic toxicology.
Curr Pharm Des 2017; online early: doi: 10.2174/1381612823666170622113331:

High concentrations of lead and barium in hair of the rural population caused by water pollution in the Thar Jath oilfields in South Sudan.

Further evidence for GHB naturally occurring in common non-alcoholic beverages.

The toxicological significance of post-mortem drug concentrations in bile.

A case of nonfatal intoxication associated with the recreational use of diphenidine.

Analysis of fire deaths in Poland and influence of smoke toxicity.
Forensic Sci Int 2017; 277: 77-87.

Sudden death by spontaneous epiglottic hematoma secondary to high blood levels of warfarin.

Acrylfentanyl: another new psychoactive drug with fatal consequences.
Forensic Sci Int 2017; online early: doi: 10.1016/j.forsciint.2017.05.010:

Psychotropic medications in Swedish homicide victims and offenders: a forensic-toxicological case-control study of adherence and recreational use.
J Clin Psychiatry 2017; online early: doi: 10.1088/jcnp.16m11244:

Impact of novel psychoactive substances on clinical and forensic toxicology and global public health.

Darú 2017; 25: 15.

Illicit drug delivery via administration of human blood.

Method development in forensic toxicology.
Curr Pharm Des 2017; online early: doi: 10.2174/1381612823666170622113331:

High concentrations of lead and barium in hair of the rural population caused by water pollution in the Thar Jath oilfields in South Sudan.

Kotsampasakou E, Montanari F, Ecker GF. Predicting drug-induced liver injury: the importance of data curation. Toxicology 2017; online early: doi: 10.1016/j.tox.2017.06.003:

Inhalation toxicity

Kinetics

Dave RA, Follman KE, Morris ME. γ-hydroxybutyric acid (GHB) pharmacokinetics and pharmacodynamics: semi-mechanistic and physiologically relevant PK/PD model. AAPS J 2017; online early: doi: 10.1208/s12248-017-0111-7:

Mechanisms of toxicity

Meyer JN, Chan SSL. Sources, mechanisms, and consequences of chemical-induced mitochondrial toxicity. Toxicology 2017; online early: doi: 10.1016/j.tox.2017.06.002:

Medication errors

Hodges NL, Spiller HA, Casavant MJ, Chounthirath T, Smith GA. Non-health care facility medication errors resulting in serious medical outcomes. Clin Toxicol 2017; online early:
Metabolism

Nephrotoxicity

Neurotoxicity

Varrassi M, Di SA, Gianneramo C, Perri M, Saltelli G, Splendiani A, Masciocchi C.

Occupational toxicology

Taxell P, Santonen T.

Ocular toxicity

Paediatric toxicology

Corr TE, Hollenbeak CS. The economic burden of neonatal abstinence syndrome in the United States.
Addiction 2017; online early: doi: 10.1111/add.13842:

Seizures after pediatric vilazodone ingestion: a case series. Pediatr Emerg Care 2017; online early: doi: 10.1097/PED.0000000000001174:

Glatstein M, Adir D, Galil B, Scohn D, Rimon A, Pivko D, Hoyte C.

Safety profile of cough and cold medication use in infants with or without pharmacological treatment for withdrawal. Dev Psychobiol 2017; online early: doi: 10.1002/dev.21532:

Lai J, Chu J, Arnon R.

Masavkar SS, Mauskar A, Patwardhan G, Bhat V, Manglani MV.

Acquired methemoglobinemia – A sporadic Holi disaster. Indian Pediatr 2017; 54: 473-5:

Miloslavsky M, Galler MF, Moawad I, Actis J, Cummings BM, El Saleeby CM.

The impact of pediatric-specific vancomycin dosing guidelines: a quality improvement initiative. Pediatrics 2017; 139: e20162423:

Mohammad M, Saleem M, Mahseeri M, Alabdallat I, Alomari A, Za’tatreh A, Qudaisat I, Shudfat A, Nasri Alzoubi M.

Foreign body aspiration in children: a study of children who lived or died following aspiration. Int J Pediatr Otorhinolaryngol 2017; 98: 29-31:

Motola D, Donati M, Biagi C, Calamelli E, Cipriani F, Melis M, Monaco L, Vaccheri A, Ricci G.

Perez-Maldonado IN, Ochoa-Martínez AC, Orta-Garcia ST, Ruiz-Vera T, Varela-Silva JA.

Concentrations of environmental chemicals in urine and blood samples of children from San Luis Potosí, Mexico. Bull Environ Contam Toxicol 2017; online early: doi: 10.1007/s00128-017-2130-6:

Schröder C, Dörks M, Kollhorst B, Blenk T, Dittmann RW, Garbe E, Riedel O.

Delirium and benzodiazepines associated with prolonged ICU stay in critically ill infants and young children. Crit Care Med 2017; online early: doi: 10.1097/CCM.0000000000002691:

Toce MS, Stefater MA, Breault DT, Burns MM.

Childhood pesticide poisoning in Zhejiang, China: a retrospective analysis from 2006 to 2015. BMC Public Health 2017; 17: 602:

Yokel RA, Seger SE, Unrine JM.

Poisons information and poison information centres

Psychiatric aspects

Chouinard G, Samaha A-N, Chouinard V-A, Peretti C-S, Kanahele N, Takase M, Iyo M.

Antipsychotic-induced dopamine supersensitivity psychosis: pharmacology, criteria, and therapy. Psychother Psychosom 2017; 86: 189-219:

Ignacio Sandía S, Jorge Ramirez V, Javier Piñero A, Trino Baptista T.

Reprotoxicity
Rim K-T.
Reproductive toxic chemicals at work and efforts to protect workers' health: a literature review. Saf Health Work 2017; 8: 143-50.

Wiesner J, Knoss W. Herbal medicinal products in pregnancy – which data are available? Reprod Toxicol 2017; online early: doi: 10.1016/j.reprotox.2017.06.046:

Risk assessment

Suicide

MANAGEMENT
General

Eur Neuropsychopharmacol 2017; online early: doi: 10.1016/j.euroneuro.2017.05.006:
Resource utilization in emergency department patients with known or suspected poisoning.
J Med Toxicol 2017; online early: doi: 10.1007/s13181-017-0619-3:

Zag L, Berkes G, Takács IF, Szepes A, Szabó I.
Endoscopic management of massive mercury ingestion: a case report.
Medicine (Baltimore) 2017; 96: e6937.

Antidotes
Elliott A, Dubé P-A, Cossette-Côté A, Patakalvi L, Villeneuve E, Morris M, Gosselin S.
Intraosseous administration of antidotes – a systematic review.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1337122:

Acetylcysteine
Anon.
Acetylcysteine (Cetylev) for acetaminophen overdose.

Chiew AL, Isbister GK, Kirby KA, Page CB, Chan BSH, Buckley NA.
Massive paracetamol overdose: an observational study of the effect of activated charcoal and increased acetylcysteine dose (ATOM-2).
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1334915:

Nabi T, Nabi S, Rafiq N, Shah A.
Role of N-acetylcysteine treatment in non-acetaminophen-induced acute liver failure: a prospective study.
Saud J Gastroenterol 2017; 23: 169-75.

Salmonson H, Sjöberg G, Brogren J.
The standard treatment protocol for paracetamol poisoning may be inadequate following overdose with modified release formulation: a pharmacokinetic and clinical analysis of 53 cases.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1339887:

Teriaky A.
The role of N-acetylcysteine in the treatment of non-acetaminophen acute liver failure.

Activated charcoal
Chiew AL, Isbister GK, Kirby KA, Page CB, Chan BSH, Buckley NA.
Massive paracetamol overdose: an observational study of the effect of activated charcoal and increased acetylcysteine dose (ATOM-2).
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1334915:

Idarucizumab
Tripodi A.
The recommended dose of idarucizumab may not always be sufficient for sustained reversal of dabigatran: comment.

Antivenom
The efficacy of Crotalidae polyvalent immune fab (ovine) antivenom versus placebo plus optional rescue therapy on recovery from Copperhead snake envenomation: a randomized, double-blind, placebo-controlled, clinical trial.

Mong R, Ng VCH, Tse ML.
Safety profile of snake antivenom (use) in Hong Kong – a review of 191 cases from 2008 to 2015.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1334916:

Silva A, Maduwage K, Buckley NA, Laloo DG, Janka de Silva H, Isbister GK.
Antivenom for snake venom-induced neuromuscular paralysis.

Chelating agents
Yajima Y, Kawaguchi M, Yoshikawa M, Okubo M, Tsukagoshi E, Sato K, Katukura A.
The effects of 2,3-dimercaptosuccinic acid (DMPS) and meso-2,3-dimercaptosuccinic acid (DMSA) on the nephrotoxicity in the mouse during repeated cisplatin (CDDP) treatments.
J Pharmacol Sci 2017; online early: doi: 10.1016/j.jphs.2017.05.006:

Lipid emulsion therapy
O'Halloran C, Cullen K, Njoroge J, Jessop L, Smith J, Hope V, Ncube F.
Naloxone
Anon.
Naloxone access and use for suspected opioid overdoses.

McDonald R, Campbell ND, Strang J.
Twenty years of take-home naloxone for the prevention of overdose deaths from heroin and other opioids-Conception and maturation.

O'Halloran C, Cullen K, Njoroge J, Jessop L, Smith J, Hope V, Ncube F.

Alpha ketoglutarate

Calcium gluconate

Epinephrine

Extracorporeal treatments

Gastric lavage

Herbal medicines

Insulin/glucose

Ivabradine

Methylprednisolone

Modafinil

Naltrexone

Opioid maintenance therapy

Buprenorphine

Methadone
Leo RJ, Ghazi MA, Jaziri KS. Methadone management of withdrawal associated with loperamide-related opioid use disorder. J Addict Med 2017; online early: doi: 10.1097/ADM.0000000000000325:

Rivastigmine

Vitamin E

DRUGS
General
Chiavola A, Tedesco P, Boni MR.
Fate of selected drugs in the wastewater treatment plants (WWTPs) for domestic sewage. Environ Sci Pollut Res Int 2017; online early: doi: 10.1007/s11356-017-9313-x:

Fenner RE, Aronson JK.

Frazier KS.

Additive proarrhythmic effect of combined treatment with QT-prolonging agents. Cardiovasc Toxicol 2017; online early: doi: 10.1007/s12012-017-9416-0:

Hayashi PH.

Irfan O, Gilani JA, Irshad A, Irfan B, Khan JA.

Kamboj AK, Spiller HA, Casavant MJ, Hoogstraten J, Chounthirath T, Smith GA.

Klepacki J, Davari B, Boulet M, Lizarra C, Christians U.
A high-throughput HPLC-MS/MS assay for the detection, quantification, and simultaneous structural confirmation of 136 drugs and metabolites in human urine. Ther Drug Monit 2017; online early: doi: 10.1097/FTD.0000000000000429:

Kotsampasakou E, Montanari F, Ecker GF.
Predicting drug-induced liver injury: the importance of data curation. Toxicology 2017; online early: doi: 10.1016/j.tox.2017.06.003:

Data-driven prediction of adverse drug reactions induced by drug-drug interactions. BMC Pharmacol Toxicol 2017; 18: 44.

Hair analysis for the detection of drug use—is there potential for evasion? Hum Psychopharmacol 2017; online early: doi: 10.1002/hup.2587:

McEuen K, Borlak J, Tong W, Chen M.

Molla F, Assen A, Abhra S, Masresha B, Gashaw A, Wondimdu A, Belete Y, Melkam W.

Nadesan K, Kumari C, Afiq M.

Santos T, Silveira EA, Pereira LV, Provin MP, Lima DM, Amaral RG.

Sastre C, Bartoli C, Baillef-Couiniou V, Leonetti G, Pelissier-Alicot AL.

Stone DM, Holland KM, Bartholow B, Logan J, McIntosh WL, Trudeau A, Rockett IRS.

Veitenheimer AM, Wagner JR.

Yokel RA, Seger SE, Unrine JM.

Yu M.
Coding for medication-related poisoning and adverse effects. Continuum (Minneap Minn) 2017; 23: e17-e19.

Zhang Z, Imperial MZ, Patlela-Vrana GI, Wedagedera J, Gaohua L, Unadkat JD.
Development of a novel maternal-fetal physiologically based pharmacokinetic model I: insights into factors that determine fetal drug exposure through simulations and sensitivity analyses. Drug Metab Dispos 2017; online early: doi: 10.1124/dmd.117.075192:

Zheng Y, Chaudhari PR, Malbach HI.
Allergic contact dermatitis from ophthalmics.
Cutan Ocul Toxicol 2017; online early: doi: 10.1080/15569527.2017.1295251:

Acetaminophen
(see paracetamol)

Amphetamines and MDMA (ecstasy)
Darke S, Kaye S, Duflou J.
Rates, characteristics and circumstances of methamphetamine-related death in Australia: a national 7 year study.
Addiction 2017; online early: doi: 10.1111/add.13897:

Flack A, Persons AL, Kousik SM, Napier TC, Mosczynska A.
Self-administration of methamphetamine alters gut biomarkers of toxicity.

Johansen A, McFadden LM.
The neurochemical consequences of methamphetamine self-administration in male and female rats.

Anaesthetics

Bupivacaine
Piskin Ö, Aydin BG.
Effects of insulin+glucose pretreatment on bupivacaine cardiotoxicity in rats.
Hum Exp Toxicol 2017; online early: doi:10.1177/0960327117712384:

Halothane
Sensitivity and reliability of halothane-anaesthetized microminipigs to assess risk of drug-induced long QT syndrome.
Basic Clin Pharmacol Toxicol 2017; online early: doi: 10.1111/bcpt.12838:

Lidocaine
Hasan B, Asl T, Hasan M.
Lidocaine-induced systemic toxicity: a case report and review of literature.
Cureus 2017; 9: e1275.

Antiarrhythmic drugs

Amiodarone
Singh VK, Maheshwari V.
Acute respiratory distress syndrome complicated by amiodarone induced pulmonary fibrosis: don’t let your guard down.

Antibiotics

Tilmicosin
Oda SS, Derbahal AE.
Impact of diclofenac sodium on tilmicosin-induced acute cardiotoxicity in rats (tilmicosin and diclofenac cardiotoxicity).
Cardiovasc Toxicol 2017; online early: doi:10.1007/s12012-017-9414-2:

Vancomycin
Jeffres MN.
The whole price of vancomycin: toxicities, troughs, and time.
Drugs 2017; online early: doi: 10.1007/s40265-017-0764-7:

Miloslavsky M, Galler MF, Moawad I, Actis J, Cummings BM, El Saleeby CM.
The impact of pediatric-specific vancomycin dosing guidelines: a quality improvement initiative.
Pediatrics 2017; 139: e20162423.

Anticoagulants

Milling TJ, Jr., Frontera J.
Exploring indications for the use of direct oral anticoagulants and the associated risks of major bleeding.

Vu TT, Gooderham M.
Adverse drug reactions and cutaneous manifestations associated with anticoagulation.

Yao X, Shah ND, Sangaralingham LR, Gersh BJ, Noseworthy PA.
Non-vitamin K antagonist oral anticoagulant dosing in patients with atrial fibrillation and renal dysfunction.

Dabigatran
Tripodi A.
The recommended dose of idarucizumab may not always be sufficient for sustained reversal of dabigatran: comment.

Warfarin
Sudden death by spontaneous epiglottic hematoma secondary to high blood levels of warfarin.

Anticonvulsants

Carbamazepine
Jose M, Sreelatha HV, James MV, Arumughan S, Thomas SV.
Teratogenic effects of carbamazepine in mice.

Phenytoin
Gupta A, Yek C, Hendler RS.
Phenytoin toxicity.

Valproate
Caruana Galizia E, Isaacs JD, Cock HR.
Non-hyperammonaemic valproate encephalopathy after 20 years of treatment.
Epilepsy Behav Case Rep 2017; 8: 9-11.

Murr A, Torra M, Callari A, Pacchiarotti I, Romero S, Gonzalez de la Presa B, Vare C, Goikolea JM, Perez-Sola V, Vieta E, Colom F.
A study on the bioequivalence of lithium and valproate salivary and blood levels in the treatment of bipolar disorder.
Eur Neuropsychopharmacol 2017; online early: doi: 10.1016/j.euroneuro.2017.06.003:

Antidepressants

Löfman S, Hakko H, Mainio A, Ripinen P.
Affective disorders and completed suicide by self-poisoning, trend of using antidepressants as a method of self-poisoning.
Psychiatry Res 2017; 255: 360-6.

Bupropion

Vilazodone

Antihistamines

Antifungal drugs
Voriconazole

Antihypertensive drugs

Antimalarial drugs

Antineoplastic drugs
Cisplatin
Oun R, Rowan E. Cisplatin induced arrhythmia; electrolyte imbalance or disturbance of the SA node? Eur J Pharmacol 2017; online early: doi: 10.1016/j.ejphar.2017.05.063:

Yajima Y, Kawaguchi M, Yoshikawa M, Okubo M, Tsukagoshi E, Sato K, Katakura A. The effects of 2,3-dimercapto-1-propanesulfonic acid (DMPS) and meso-2,3-dimercaptosuccinic acid (DMSA) on the nephrotoxicity in the mouse during repeated cisplatin (CDDP) treatments. J Pharmacol Sci 2017; online early: doi: 10.1016/j.jphs.2017.05.006:

Oxaliplatin
Pulvers JN, Marx G. Factors associated with the development and severity of oxaliplatin-induced peripheral neuropathy: a systematic review. Asia Pac J Clin Oncol 2017; online early: doi: 10.1111/ajco.12694:

Antipsychotics

Clozapine

Levosulpiride

Zuclopenthixol
Antitussives
Safety profile of cough and cold medication use in pediatrics.
Pediatrics 2017; 139: e20163070.

Dextromethorphan
Dilich A, Girgis C.
Robo-tripping: a case of robitussin abuse in a methadone maintenance patient.
Psychosomatics 2017; online early: doi: 10.1016/j.psym.2017.03.010:

Anxiolytic
Phenibut
Joshi YB, Friend SF, Jimenez B, Steiger LR.
Dissociative intoxication and prolonged withdrawal associated with phenibut: a case report.
J Clin Psychopharmacol 2017; online early: doi: 10.1097/JCP.0000000000000731:

Apixaban
Latuga N.
Re: Drug-drug interactions between methadone and apixaban.

Baclofen
Issa SY, Hafez EM, El-Banna AS, Abdel Rahman SM, AlMazroua MK, El-Hamid MA.
Baclofen systemic toxicity: experimental histopathological and biochemical study.
Hum Exp Toxicol 2017; online early: doi: 10.1177/0960327117712369:

Miller JJ.
Baclofen overdose mimicking anoxic encephalopathy: a case report and review of the literature.

Benzodiazepines
An atmospheric pressure ionization MS/MS assay using online extraction for the analysis of 11 cannabinoids and metabolites in human plasma and urine.
Ther Drug Monit 2017; online early: doi: 10.1097/FTD.0000000000000427:

Rickner SS, Cao D, Kleinschmidt K, Fleming S.
A little "dab" will do ya’ in: a case report of neuro-and cardiotoxicity following use of cannabis concentrates.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1334914:

Colchicine
Fabresse N, Allard J, Sardaby M, Thompson A, Clutton RE, Eddeleston M, Alvarez J-C.
LC-MS/MS quantification of free and Fab-bound colchicine in plasma, urine and organs following colchicine administration and colchicine-specific Fab fragments treatment in Göttingen minipigs.

Contraceptives
Jödicke AM, Dahmke H, Damke B, Schaublin M, Kullak-Ublick GA, Weller S.
Severe injection site reactions after subcutaneous administration of Sayana®.
Swiss Med Wkly 2017; 147: w14432:

Digoxin
Muñoz NL, Buendia AB, Manterola FA.
Electrocardiographic changes after suicidal digoxin intoxication in a healthy woman.

Serin SO.
Neglected facts in digoxin intoxication.

Eye drops
Cristaldi M, Olivieri M, Lupo G, Anfuso CD, Pezzino S, Rusciano D.
N-hydroxymethylglycinate with EDTA is an efficient eye drop preservative with very low toxicity: an in vitro comparative study.
Cutan Ocul Toxicol 2017; online early: doi: 10.1080/15569527.2017.1347942:

Gamma hydroxybutyrate
Dave RA, Folman KE, Morris ME.
γ-hydroxybutyric acid (GHB) pharmacokinetics and pharmacodynamics: semi-mechanistic and physiologically relevant PK/PD model.
AAPS J 2017; online early: doi: 10.1208/s12248-017-0111-7:

Elliott SP, Fais P.
Further evidence for GHB naturally occurring in common non-alcoholic beverages.
Forensic Sci Int 2017; online early: doi: 10.1016/j.forsciint.2017.05.012:

Intoxication by gamma hydroxybutyrate and related analogues: clinical characteristics and comparison between pure intoxication and that combined with other substances of abuse.
Toxicol Lett 2017; online early: doi: 10.1016/j.toxlet.2017.05.030:

Morse BL, Chadha GS, Felmlee MA, Folman KE, Morris ME.
Effect of chronic γ-hydroxybutyrate (GHB) administration on GHB toxokinetics and GHB-induced respiratory depression.

Herbal medicines, ethnic remedies and dietary supplements
A nationwide study of the incidence rate of herb-induced liver injury in Korea.
Arch Toxicol 2017; online early: doi: 10.1007/s00204-017-0207-9:

Fu Y, Si Z, Li P, Li M, Zhao H, Jiang L, Xing Y, Hong W, Ruan L, Wang J-S.
Acute psychoactive and toxic effects of *D. metel* on mice explained by 1H NMR based metabolomics approach.
Metab Brain Dis 2017; online early: doi: 10.1007/s11011-017-0308-9:

Lee JH, Yoon JH, Kim SS, Ma SK, Kim SW, Bae EH.
Panax ginseng induces toxic hepatitis and acute kidney injury.

Park H, Hwang Y-H, Ma JY.
Acute toxicity and genotoxicity of fermented traditional medicine *oyaksungji-san*.

Samavati R, Duzca E, Hajagos-Tóth J, Gaspar R.
Herbal laxatives and antiemetics in pregnancy.
Reprod Toxicol 2017; online early: doi: 10.1016/j.reprotox.2017.06.041:

Vo KT, Tabas JA, Smollin CG.
Alternating ventricular complexes after overdose from an herbal medication.

Wiesner J, Knöss W.
Herbal medicinal products in pregnancy – which data are available?
Reprod Toxicol 2017; online early: doi: 10.1016/j.reprotox.2017.06.046:

Yang F, Dong X, Yin X, Wang W, You L, Ni J.
Radix bupleuri: a review of traditional uses, botany, phytochemistry, pharmacology, and toxicology.

Zhou M, Hong Y, Lin X, Shen L, Feng Y.
Recent pharmaceutical evidence on the compatibility rationality of traditional Chinese medicine.
J Ethnopharmacol 2017; 206: 363-75.

Safety pharmacology and subchronic toxicity of jinqing granules in rats.

Heroin (diacetylmorphine)
Banta-Green CJ, Coffin PO, Schoeppe JA, Merrill JO, Whiteside LK, Ebersol AK.
Heroin and pharmaceutical opioid overdose events: emergency medical response characteristics.

Carroll JJ, Marshall BDL, Rich JD, Green TC.
Exposure to fentanyl-contaminated heroin and overdose risk among illicit opioid users in Rhode Island: a mixed methods study.
Int J Drug Policy 2017; online early: doi: 10.1016/j.drugpo.2017.05.023:

Self-identification of nonpharmaceutical fentanyl exposure following heroin overdose.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1339889:

McDonald R, Campbell ND, Strang J.
Twenty years of take-home naloxone for the prevention of overdose deaths from heroin and other opioids-Conception and maturation.

Solis E, Jr., Cameron-Burr KT, Shatham Y, Kiyatkin EA.
Intravenous heroin induces rapid brain hypoxia and hyperglycemia that precede brain metabolic response.

Stewart K, Cao Y, Hsu MH, Artigiani E, Wish E.
Geospatial analysis of drug poisoning deaths involving heroin in the USA, 2000-2014.
J Urban Health 2017; online early: doi: 10.1007/s11524-017-0177-7:

Worley J.
A primer on heroin and fentanyl.
Hypoglycaemic drugs

Metformin

Nazer RJ, Alburikan KA.
Metformin is not associated with lactic acidosis in patients with diabetes undergoing coronary artery bypass graft surgery: a case control study.

Immunosuppressants

Tocilizumab

Toxic drug-induced liver failure during therapy of rheumatoid arthritis with tocilizumab subcutaneously: a case report.

Iron

Lai J, Chu J, Amron R.
Pediatric liver transplantation for fulminant hepatic failure secondary to intentional iron overdose.

Ketamine

Pulseless ventricular tachycardia associated with chronic ketamine use.

Laxatives

Samavati R, Ducza E, Hajagos-Tóth J, Gaspar R.
Herbal laxatives and antiemetics in pregnancy.

Levetiracetam

Agrawal A, Banergee A.
A review of levetiracetam in neonates.

Lithium

Foulser P, Abbasi Y, Mathilakath A, Nilforooshan R.
Do not treat the numbers: lithium toxicity.

Murray A, Torra M, Callari A, Pacchiarotti I, Romero S, Gonzalez de la Presa B, Varo C, Goikolea JM, Pérez-Sola V, Vieta E, Colom F.
A study on the bioequivalence of lithium and valproate salivary and blood levels in the treatment of bipolar disorder.

Permanent cerebellar degeneration after acute hyperthermia with non-toxic lithium levels: a case report and review of literature.

Söderberg C, Wernvik E, Jönsson AK, Druid H.
Reference values of lithium in postmortem femoral blood.

Loperamide

Eggleston W, Marraffa JM, Nacca N.
In response to: "Loperamide metabolite-induced cardiomyopathy and QTc prolongation".

Katselou M, Papoutsis I, Nikolaou P, Dona A, Spiliopoulou C, Anaselasel S.
"Poor man's methadone" can kill the poor man. Extra-medical uses of loperamide: a review.
Forensic Toxicol 2017; online early: doi: 10.1007/s11419-017-0365-x.

Leo RJ, Ghazi MA, Jaziri KS.
Methadone management of withdrawal associated with loperamide-related opioid use disorder.

Patel KM, Shah S, Subedi D.
Takotsubo-like cardiomyopathy after loperamide overdose.

Riaz IB, Khan MS, Kamal MU, Sirpa QAR, Riaz A, Zahid U, Bhattacharjee S.
Cardiac dysrhythmias associated with substitutive use of loperamide: a systematic review.

LSD

Richeval C, Allorge D, Vanhoye X, Gaulier JM.
LSD detection and interpretation in hair.

Metamizole

Leucopenia associated with metamizole: a case-control study.
Swiss Med Wkly 2017; 147: w14438.

Methylphenidate

Bjarnadottir GD, Johannsson M, Magnusson A, Rafnar BO, Sigurdsson E, Steingrimsson S, Asgrimsson V, Snorradottir I, Bradagott H, Haraldsson HM.
Methylphenidate disintegration from oral formulations for intravenous use by experienced substance users.

Montelukast

Arnold DH, Bowman N, Reiss TF, Hartert TV, Seger DL.
Adverse events are rare after single-dose montelukast exposures in children.

Nicotine

Cai H, Wang C.
Graphical review: the redox dark side of e-cigarettes; exposure to oxidants and public health concerns.
Nitrogen mustard
Helander A, Bradley M, Lapins J.
‘Is nitrogen mustard contamination responsible for the reported MT-4S toxicity?’ Reply from the authors.
Br J Dermatol 2017; online early: doi: 10.1111/bjd.15676:

Novel psychoactive substances
Assi S, Gulyamova N, Ibrahim K, Kneller P, Osselton D.
Profile, effects, and toxicity of novel psychoactive substances: a systematic review of quantitative studies.
Hum Psychopharmacol 2017; online early: doi: 10.1002/hup.2607:

Bäckberg M, Jönsson K-H, Helander A, Beck O.
Investigation of drug products received for analysis in the Swedish STRIDA project on new psychoactive substances.
Drug Test Anal 2017; online early: doi: 10.1002/dta.2226:

Bertol E, Vaiano F, Mari F, Di Milia MG, Bua S, Supuran CT, Carta F.

Return of the lysergamides. Part IV: Analytical and pharmacological characterization of lysergic acid morpholide (LSM-775).
Drug Test Anal 2017; online early: doi: 10.1002/dta.2222:

Elliott S, Sedefrov R, Evans-Brown M.
Assessing the toxicological significance of new psychoactive substances in fatalities.
Drug Test Anal 2017; online early: doi: 10.1002/dta.2225:

Gyarmathy VA, Péterfi A, Fijeczki T, Kiss J, Medgyesi-Frank K, Posta J, Csorba J.
Diverted medications and new psychoactive substances—A chemical network analysis of discarded injecting paraphernalia in Hungary.

Huestis MA, Brandt SD, Rana S, Auwärter V, Baumann MH.
Impact of novel psychoactive substances on clinical and forensic toxicology and global public health.

Kapitány-Fövény M, Farkas J, Pataki PA, Kiss A, Horváth J, Urbán R, Demetrovics Z.
Novel psychoactive substance use among treatment-seeking opiate users: the role of life events and psychiatric symptoms.
Hum Psychopharmacol 2017; online early: doi: 10.1002/hup.2602:

Negrei C, Galateanu B, Stan M, Balalau C, Dumitru MLB, Ozcagli E, Fenga C, Kovatsi L, Fragou D, Tsatsakis A.
Worldwide legislative challenges related to psychoactive drugs.

Palma-Conesa Ñ, Ventura M, Galindo L, Fonseca F, Grifell M, Quintana P, Fornis I, Gil C, Farré M, Torrens M.
Something new about something old: a 10-year follow-up on classical and new psychoactive tryptamines and results of analysis.
J Psychoactive Drugs 2017; online early: doi: 10.1080/02791072.2017.1320732:

Pasin D, Cawley A, Bidny S, Fu S.
Current applications of high-resolution mass spectrometry for the analysis of new psychoactive substances: a critical review.
Anal Bioanal Chem 2017; online early: doi: 10.1007/s00216-017-0441-4:

Thornton S, Lisbon D, Lin T, Gerona R.
Beyond ketamine and phencyclidine: analytically confirmed use of multiple novel arylcyclohexylamines.
J Psychoactive Drugs 2017; online early: doi: 10.1080/02791072.2017.1333660:

Wille SMR, Richeval C, Nachon-Phanithavong M, Gaulier JM, Di Fazio V, Humbert L, Samyn N, Allorge D.
Prevalence of new psychoactive substances and prescription drugs in the Belgian driving under the influence of drugs population.
Drug Test Anal 2017; online early: doi: 10.1002/dta.2232:

Diphenidine
Gerace E, Bovetto E, Di Corcia D, Vincenti M, Salomone A.
A case of nonfatal intoxication associated with the recreational use of diphenidine.

Phenethylamines
Madsen GR, Petersen TS, Dalhoff KP.
NBOMe hallucinogenic drug exposures reported to the Danish Poison Information Centre.

Shintani-Ishida K, Saka K, Nakamura M, Yoshida K, Ikegaya H.
Experimental study on the postmortem redistribution of the substituted phenethylamine, 25B-NBOMe.

Zídková M, Linhart I, Balíková M, Himl M, Dvorácková V, Lhotková E, Páleníček T.
Identification of three new phase II metabolites of a substituted phenethylamine, 25B-NBOMe.

Synthetic cannabinoids
Pharmacotoxicological effects of the novel third-generation fluorinate synthetic cannabinoids, SF-ADBINACA, AB-FUBINACA, and 5T5-135 in mice. In vitro and in vivo studies.
Hum Psychopharmacol 2017; online early: doi: 10.1002/hup.2601:

Synthetic cathinones

Synthetic opioids

NSAIDs

Diclofenac

Opioids

Qualitative identification of fentanyl analogs and other opioids in postmortem cases by UHPLC-ion trap-MSn. J Anal Toxicol 2017; online early: doi: 10.1093/jat/bkx041:

Fentanyl

Methadone

Toce MS, Stefater MA, Breault DT, Burns MM. A case report of methadone-associated hypoglycemia in an 11-month-old male. Clin Toxicol 2017; online early:
OxyContin
Vosburg S, Haynes C, Besharat A, Green JL.
Changes in drug use patterns reported on the web after the introduction of ADF OxyContin: findings from the Researched Abuse, Diversion, and Addiction-Related Surveillance (RADARS) System Web Monitoring Program.
Pharmacoepidemiol Drug Saf 2017; online early: doi: 10.1002/pds.4248:

Paracetamol (acetaminophen)
Anon.
Acetylcysteine (Cetylev) for acetaminophen overdose.

Castañeda-Arriaga R, Galano A.
Exploring chemical routes relevant to the toxicity of paracetamol and its meta-analogue at a molecular level.

Chiew AL, Isbister GK, Kirby KA, Page CB, Chan BSH, Buckley NA.
Massive paracetamol overdose: an observational study of the effect of activated charcoal and increased acetylcysteine dose (ATOM-2).
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1334915:

Håkonsen H, Hedenrud T.
A population-based study of risk perceptions of paracetamol use among Swedes-with a special focus on young adults.
Pharmacoepidemiol Drug Saf 2017; online early: doi: 10.1002/pds.4238:

Hepatic hypoxia-inducible factors inhibit PPARα expression to exacerbate acetaminophen induced oxidative stress and hepatotoxicity.

Nakamura N, Chang C-W, Yang X, Shi Q, Salminen WF, Suzuki A.
Distribution of acetylated histone 4 in normal liver and acetaminophen-induced liver damage.

Salmonson H, Sjöberg G, Brogren J.
The standard treatment protocol for paracetamol poisoning may be inadequate following overdose with modified release formulation: a pharmacokinetic and clinical analysis of 53 cases.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1339887:

Taney J, Anastasio H, Paternostro A, Berghella V, Roman A.
Placental abruption with delayed fetal compromise in maternal acetaminophen toxicity.
Obstet Gynecol 2017; online early: doi: 10.1097/AOG.0000000000002089:

Pharmacobezoars
Schmit G, De BE, Vanhaecest J, Capron A.
Bupropion overdose resulted in a pharmacobezoar in a fatal bupropion (Wellbutrin®) sustained-release overdose: postmortem distribution of bupropion and its major metabolites.

Psychoactive drugs
Hedlund J, Forsman J, Sturup J, Masterman T.
Psychotropic medications in Swedish homicide victims and offenders: a forensic-toxicological case-control study of adherence and recreational use.
J Clin Psychiatry 2017; online early: doi: 10.4088/JCP.16m11244:

Rapid identification of psychoactive drugs in drained gastric lavage fluid and whole blood specimens of drug overdose patients using ambient mass spectrometry.

Scopolamine
Ignacio Sandía S, Jorge Ramírez V, Javier Piñero A, Trino Baptista T.
Treating ‘devils breath’ intoxication: use of rivastigmine in six patients with toxic psychoses due to non pharmaceutical scopolamine.
Eur Neuropsychopharmacol 2017; online early: doi: 10.1016/j.euroneuro.2017.05.006:

Silibinin
Silibinin affects the pharmacokinetics of methadone in rats.
Drug Test Anal 2017; online early: doi: 10.1002/dta.2235:

SSRIs and SNRIs
Venlafaxine
Schnroeder I, Zoller M, Angstwurm M, Kur F, Frey L.
Venlafaxine intoxication with development of Takotsubo cardiomyopathy: successful use of extracorporeal life support, intravenous lipid emulsion and CytoSorb®.
Int J Artif Organs 2017; online early: doi: 10.5301/ijao.5000595:

Substance abuse
Bjarnadottir GD, Johannsson M, Magnusson A, Rafnar BO, Sigurdsson E, Steingrimsson S, Asgrimmsson V, Snorradottir I, Bragadottir H, Haraldsson HM.
Methyleneindate disintegration from oral formulations for intravenous use by experienced substance users.

Young people who use drugs engaged in harm reduction programs in New York City: overdose and other risks.

Carroll JJ, Marshall BDL, Rich JD, Green TC.
Exposure to fentanyl-contaminated heroin and overdose risk among illicit opioid users in Rhode Island: a mixed methods study.
Int J Drug Policy 2017; online early: doi: 10.1016/j.drugpo.2017.05.023:

Cicero TJ, Ellis MS, Kasper ZA.
Increases in self-reported fentanyl use among a population entering drug treatment: the need for systematic surveillance of illicith manufactured opioids.

Dias VT, Vey LT, Rosa HZ, D'avila LF, Silva Barcelos RC, Burger ME.
Could modafinil prevent psychostimulant addiction? An experimental study in rats.
Basic Clin Pharmacol Toxicol 2017; online early:

Shinefeld J, Poe J, Raymond HF, Brady K.

Int J Drug Policy 2017; 46: 34

O'Halloran C, Cullen K, Njoroge J, Smith J, Hope V, Ncufe B.

Donroe JH, Tetrault JM.

Gubner NR, Pagano A, Tajima B, Guydish J.

A comparison of daily versus weekly electronic cigarette treatments in use for substance use disorder.

Katselou M, Papoutsis I, Nikolau P, Dona A, Spiliopoulou C, Athanaselis S.

"Poor man's methadone" can kill the poor man. Extra-medical uses of loperamide: a review.

Forensic Toxicol 2017; online early: doi: 10.1007/s11419-017-0365-x:

Labay LM, Catanese CA.

I illicit drug delivery via administration of human blood.

High enhancer, downer, withdrawal helper: multifunctional nonmedical benzodiazepine use among young adult opioid users in New York City.

Intoxication by gamma hydroxybutyrate and related analogues: clinical characteristics and comparison between pure intoxication and that combined with other substances of abuse.

Toxicol Lett 2017; online early: doi: 10.1016/j.toxlet.2017.05.030:

O'Brien PL, Karmell LH, Gokhale M, Kenneth Pack BS, Campopiano M, Zur J.

Prescribing of benzodiazepines and opioids to individuals with substance use disorders.

O'Halloran C, Cullen K, Njoroge J, Jessop L, Smith J, Hope V, Ncufe B.

The extent of and factors associated with self-reported overdose and self-reported receipt of naloxone among people who inject drugs (PWID) in England, Wales and Northern Ireland.

Roper V, Cox KJ.

Opioid use disorder in pregnancy.

J Midwifery Womens Health 2017; online early: doi: 10.1111/jmwh.12619:

Scherer JN, Fiorentin TR, Borille BT, Pasa G, Sousa TRV, Von Diemen L, Limberger RP, Pechansky F.

Reliability of point-of-collection testing devices for drugs of abuse in oral fluid: a systematic review and meta-analysis.

Sharma A, Morrow JD.

Isopropyl alcohol swabs as a preferred substance of abuse.

J Psychoactive Drugs 2017; online early: doi: 10.1080/02791072.2017.1290302:

Soares WE, III, Wilson D, Rathlev N, Lee JD, Gordon M, Nunes EV, O'Brien CP, Friedman PD.

Healthcare utilization in adults with opioid dependence receiving extended release naltrexone compared to treatment as usual.

J Subst Abuse Treat 2017; online early: doi: 10.1016/j.jsat.2017.05.009:

Vosburg S, Haynes C, Besharat A, Green JL.

Changes in drug use patterns reported on the web after the introduction of ADF OxyContin: findings from the Researched Abuse, Diversion, and Addiction-Related Surveillance (RADARS) System Web Monitoring Program.

Pharmacoepidemiol Drug Saf 2017; online early: doi: 10.1002/pds.4248:

Williams SC, Davey-Rothwell MA, Tobin KE, Latkin C.

People who inject drugs and have mood disorders—a brief assessment of health risk behaviors.

Subst Use Misuse 2017; online early: doi: 10.1080/10826084.2017.1302954:

Tricyclic antidepressants

Amiptyline

Amiptyline may have possibility to induce Brugada syndrome rather than long QT syndrome.

Cardiovasc Toxicol 2017; online early: doi: 10.1007/s12012-017-9417-z:

CHEMICAL INCIDENTS AND POLLUTION

Air pollution

Young SS, Smith RL, Lopiano KK.

Air quality and acute deaths in California, 2000-2012.

Regul Toxicol Pharmacol 2017; online early: doi: 10.1016/j.yrtph.2017.06.003:

Exhaust fumes

Taxell P, Santonen T.

Diesel engine exhaust: basis for occupational exposure limit value.

Toxicol Sci 2017; online early: doi: 10.1093/toxsci/kfx110:

Pollution and hazardous waste

Water pollution
Chiavola A, Tedesco P, Boni MR. Fate of selected drugs in the wastewater treatment plants (WWTPs) for domestic sewage. Environ Sci Pollut Res Int 2017; online early: doi: 10.1007/s11356-017-9313-x:

CHEMICALS
General

Meyer JN, Chan SSL. Sources, mechanisms, and consequences of chemical-induced mitochondrial toxicity. Toxicology 2017; online early: doi: 10.1016/j.tox.2017.06.002:

Perez-Maldonado IN, Ochoa-Martinez AC, Orta-Garcia ST, Ruiz-Vera T, Varela-Silva JA. Concentrations of environmental chemicals in urine and blood samples of children from San Luis Potosí, Mexico. Bull Environ Contam Toxicol 2017; online early: doi: 10.1007/s00128-017-2130-6:

Acrolein

Alcohol (ethanol)

Asbestos

Boric acid

Carbon dioxide
Carbon monoxide

Contrast media

Cyanide

Dust

Dyes and pigments

E-cigarettes and e-liquids

Ethylene glycol
Salem SA, Gurung S, Malti A. Urine fluorescence in antifreeze poisoning. BMJ Case Rep 2017; doi: 10.1136/bcr-2017-221373:

Flame retardants

Fragrance chemicals
RIFM fragrance ingredient safety assessment, 4-(3,4-methylenedioxyphenyl)-2-butane, CAS registry number 55418-52-5.

Food Chem Toxicol 2017; online early: doi: 10.1016/j.fct.2017.06.008:

RIFM fragrance ingredient safety assessment, 4-[[3-(1-oxopropyl)amino]-methyl ester, CAS registry number 25628-84-6.

RIFM fragrance ingredient safety assessment, benzoic acid, 2-[(1-oxopropyl)amino]-, methyl ester, CAS registry number 31487-27-9.

Food Chem Toxicol 2017; online early: doi: 10.1016/j.fct.2017.06.007:

RIFM fragrance ingredient safety assessment, 3-methylbutanol, CAS Registry Number 13471-90-9.

Splashed by a clear liquid.

Food Chem Toxicol 2017; online early: doi: 10.1016/j.fct.2017.06.003:

RIFM fragrance ingredient safety assessment, 2-methylbutanol, CAS Registry Number 13471-90-9.

Food Chem Toxicol 2017; online early: doi: 10.1016/j.fct.2017.06.008:

RIFM fragrance ingredient safety assessment, methylanthranilate, CAS registry number 31491-79-7.

Food Chem Toxicol 2017; online early: doi: 10.1016/j.fct.2017.06.005:

RIFM fragrance ingredient safety assessment, 2-[(1-oxopropyl)amino]-methyl acetate, CAS registry number 31491-79-7.

Food Chem Toxicol 2017; online early: doi: 10.1016/j.fct.2017.06.009:

RIFM fragrance ingredient safety assessment, methylhexyl oxo cyclopentanone carboxylate, CAS registry number 37172-53-5.

Food Chem Toxicol 2017; online early: doi: 10.1016/j.fct.2017.06.017:

RIFM fragrance ingredient safety assessment, acetic acid, 2-[(1-oxopropyl)amino]-methyl ester, CAS registry number 13491-79-7.

Food Chem Toxicol 2017; online early: doi: 10.1016/j.fct.2017.06.022:

RIFM fragrance ingredient safety assessment, benzenepropanenitrile, 4-ethyl-alpha..., alpha-dimethyl, CAS Registry Number 134123-93-6.

Food Chem Toxicol 2017; online early: doi: 10.1016/j.fct.2017.06.026:

Hydrofluoric acid

Yang K-W, Hung D-Z, Chang S-Y.

Splashed by a clear liquid.

Iodine
Lakhal K, Ehrmann S, Robert-Edan V.
Iodinated contrast medium renal toxicity: the phantom menace or much ado about nothing?
CJ Crit Care Med 2017; 45: e745-e746.

Isopropyl alcohol
Sharma A, Arrow JD.
Isopropyl alcohol swabs as a preferred substance of abuse.
J Psychoactive Drugs 2017; online early: doi: 10.1080/02791072.2017.1290302:

Melamine
An L, Sun W.
A brief review of neurotoxicity induced by melamine.
Neurotox Res 2017; online early: doi: 10.1007/s12640-017-9731-z:

Methanol
Rohani M, Munizho RP, Haeri G.
Abnormal movements induced by methanol toxicity.
Postgrad Med J 2017; online early: doi: 10.1136/postgradmedj-2017-134947:

Methylxylketone
Metabolism of inhaled methylxylketone in rats.

Nanoparticles
Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brasinne F, Sebahi N, Hoet PH.
Toxicology of silica nanoparticles: an update.
Arch Toxicol 2017; online early: doi: 10.1007/s00204-017-1993-y:

Naphthalene
Human CYP2A13 and CYP2F1 mediate naphthalene toxicity in the lung and nasal mucosa of CYP2A13/2F1-humanized mice.
Environ Health Perspect 2017; 125: 067004.

Octamethylcyclotetrasiloxane
Franzen A, Greene T, Van Landingham C, Gentry R.
Toxicology of octamethylcyclotetrasiloxane (DM).
Toxicol Lett 2017; online early: doi: 10.1016/j.toxlet.2017.06.007:

Parabens
Environmental exposure to parabens and sperm chromosome disomy.

Petrol (gasoline) and petroleum oils
Hebati B, Pollitt KIG, Karimi A, Yazdani CJ, Ducatman A, Shokrzadeh M, Mohammadyan M.
BTEX exposure assessment and quantitative risk assessment among petroleum product distributors.

Phthalates
Karacsonji IB, Jurica SA, Lasic D, Jurica K.
Facts about phthalate toxicity in humans and their occurrence in alcoholic beverages.

Polychlorinated chemicals
Lupton S3, O’Keeffe M, Muñiz-Ortiz JG, Clinch N, Basu P.

Radiation
Early biomarker for radiation-induced wounds: day one post-irradiation assessment using hemoglobin concentration measured from diffuse optical reflectance spectroscopy.

Retinoic acid
Piersma AH, Hessel EV, Staal YC.
Retinoic acid in developmental toxicology: teratogen, morphogen and biomarker.
Reprod Toxicol 2017; online early: doi: 10.1016/j.reprotox.2017.05.014:

Salt
Campbell NRC, Train EJ.
A systematic review of fatalities related to acute ingestion of salt, a need for warning labels?

Silica
Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brassinne F, Sebahi N, Hoet PH.
Toxicology of silica nanoparticles: an update.
Arch Toxicol 2017; online early: doi: 10.1007/s00204-017-1993-y:

Smoke
de Carvalho FO, Silva ÉR, Felipe FA, Teixeira LGB, Zago LBS, Nunes PS, Shamugam S, Serafini MR, de Souza Araújo AA.
Natural and synthetic products used for the treatment of smoke inhalation: a patent review.
Expert Opin Ther Pat 2017; online early: doi: 10.1080/19440049.2017.1339790:

Sodium
Safety of nebulized epinephrine in smoke inhalation injury.
J Burn Care Res 2017; online early: doi: 10.1097/BCR.0000000000000575:

Phthalates
Karaconji IB, Jurica SA, Lasic D, Jurica K.
Facts about phthalate toxicity in humans and their occurrence in alcoholic beverages.

Polychlorinated chemicals
Lupton S3, O’Keeffe M, Muñiz-Ortiz JG, Clinch N, Basu P.

Radiation
Early biomarker for radiation-induced wounds: day one post-irradiation assessment using hemoglobin concentration measured from diffuse optical reflectance spectroscopy.

Retinoic acid
Piersma AH, Hessel EV, Staal YC.
Retinoic acid in developmental toxicology: teratogen, morphogen and biomarker.
Reprod Toxicol 2017; online early: doi: 10.1016/j.reprotox.2017.05.014:

Salt
Campbell NRC, Train EJ.
A systematic review of fatalities related to acute ingestion of salt, a need for warning labels?

Silica
Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brassinne F, Sebahi N, Hoet PH.
Toxicology of silica nanoparticles: an update.
Arch Toxicol 2017; online early: doi: 10.1007/s00204-017-1993-y:

Smoke
de Carvalho FO, Silva ÉR, Felipe FA, Teixeira LGB, Zago LBS, Nunes PS, Shamugam S, Serafini MR, de Souza Araújo AA.
Natural and synthetic products used for the treatment of smoke inhalation: a patent review.
Expert Opin Ther Pat 2017; online early: doi: 10.1080/19440049.2017.1339790:

Safety of nebulized epinephrine in smoke inhalation injury.
J Burn Care Res 2017; online early: doi: 10.1097/BCR.0000000000000575:

Phthalates
Karaconji IB, Jurica SA, Lasic D, Jurica K.
Facts about phthalate toxicity in humans and their occurrence in alcoholic beverages.
Sodium hypochlorite
Nikpour S, Masoumi-Moghaddam E, Pazoki S, Hassanian-Moghadam H, Zamani N.
Upper gastrointestinal endoscopic evaluation following household sodium hypochlorite ingestion.
J Burn Care Res 2017; online early:
doi: 10.1097/BCR.0000000000000608:

Sucralose
Magnuson BA, Roberts A, Nestmann ER.
Critical review of the current literature on the safety of sucralose.
Food Chem Toxicol 2017; online early:
doi: 10.1016/j.fct.2017.05.047:

Tobacco
Ali M, Jawad M.
Health effects of waterpipe tobacco use: getting the public health message just right.
Tob Use Insights 2017; 10:
doi: 10.1097/jtu.0000000000000133:

Volatile organic compounds
Indoor exposure to volatile organic compounds in children: health risk assessment in the context of physiological development.
Adv Exp Med Biol 2017; online early:
doi: 10.1007/5564_2017_31:

Water
Kashiura M, Sugiyama K, Hamabe Y.
Association between rapid serum sodium correction and rhabdomyolysis in water intoxication: a retrospective cohort study.
J Intensive Care 2017; 5:
doi: 10.1007/5584_2017_31:

METALS
General
Intentional self-harm human poisoning with agricultural micronutrient foliar spray: from rural India of southern Karnataka.
Indian J Crit Care Med 2017; 21:
doi: 10.1002/jbcr.26234:

Aluminium
Assunção JH, Malavolta EA, Gracitelli MEC, Filippi RZ, Ferreira AAN.
Multifocal osteonecrosis secondary to occupational exposure to aluminium.
Acta Ortop Bras 2017; 25:
doi: 10.1093/ntcr/ntx133:

Arsenic
Bencko V, Yan Li Foong F.
The history of arsenical pesticides and health risks related to the use of Agent Blue.
Ann Agric Environ Med 2017; 24:
doi: 10.1002/jbcr.0000000000000608:

Arsenic
Bencko V, Yan Li Foong F.
The history of arsenical pesticides and health risks related to the use of Agent Blue.
Ann Agric Environ Med 2017; 24:
doi: 10.1002/jbcr.0000000000000608:

Barium
Pragst F, Stiegitz K, Runge H, Runow K-D, Quig D, Osborne R, Runge C, Arik J.
High concentrations of lead and barium in hair of the rural population caused by water pollution in the Thar Jath oilfields in South Sudan.
Forensic Sci Int 2017; 274:
doi: 10.1002/jbcr.0000000000000608:

Cadmium
Mallya R, Chatterjee PK, Vinodini NA, Chatterjee P, Mithra P.
Moringa oleifera leaf extract: beneficial effects on cadmium induced toxicities - a review.
J Clin Diagn Res 2017; 11:
doi: 10.1002/jbcr.0000000000000608:

Chromium
Serum protein expression profiling and bioinformatics analysis in workers occupationally exposed to chromium (VI).
Toxicol Lett 2017; online early:
doi: 10.1016/j.toxlet.2017.05.026:

Cobalt
LeysSENS L, Vinck B, Van Der Straeten C, Wuyps F, Maes L.
Cobalt toxicity in humans. A review of the potential sources and systemic health effects.
Toxicology 2017; 387:
doi: 10.1016/j.toxlet.2017.05.026:

Iron
Lai J, Chu J, Amon R.
Pediatric liver transplantation for fulminant hepatic failure secondary to intentional iron overdose.
Pediatr Transplant 2017; online early:
doi: 10.1111/petr.12994:

Lead
Chan NCN, Chan KP.
Coarse basophilic stippling in lead poisoning.
Blood 2017; 129: 3270.

Lithium
Foulser P, Abbasi Y, Mathilikath A, Nilforooshan R. Do not treat the numbers: lithium toxicity. BMJ Case Rep 2017; doi: 10.1136/bcr-2017-220079:

Manganese

Mercury

Da Silva-Junior FMR, Oleinski RM, Azevedo AES, Monroe KC, Dos Santos M, De Silveira TB, De Oliveira AMN, Soares MCF, De Silva Pereira T. Vulnerability associated with "symptoms similar to those of mercury poisoning" in communities from Xingu River, Amazon basin. Environ Geochem Health 2017; online early: doi: 10.1007/s10653-017-9993-7:

Nickel

Palladium

Selenium

Thallium
PESTICIDES

General

The use of pesticides in Belgian illicit indoor cannabis plantations.

Knipe DW, Gunnell D, Eddleston M.
Preventing deaths from pesticide self-poisoning-learning from Sri Lanka’s success.

Nagami H, Suenga T, Nakazaki M.
Pesticide exposure and subjective symptoms of cut-flower farmers.

Pedersen B, Ssemugabo C, Nabankema V, Jers E.
Characteristics of pesticide poisoning in rural and urban settings in Uganda.
Environ Health Insights 2017; 11: 1178630217713015.

Trueblood AB, Shipp EM.
Characteristics of acute occupational pesticide exposures in Texas reported to Poison Centers, 2000-2015.

Childhood pesticide poisoning in Zhejiang, China: a retrospective analysis from 2006 to 2015.
BMC Public Health 2017; 17: 602.

Pesticides and cancer
Portier CJ, Clausing P.
Re: Tarazona et al. (2017): Glyphosate toxicity and carcinogenicity: a review of the scientific basis of the European Union assessment and its differences with IARC.

Agent blue
Bencko V, Yan Li Foong F.
The history of arsenical pesticides and health risks related to the use of Agent Blue.

Aluminium phosphide
Invasive mucormycosis in a case of aluminium phosphide poisoning.

Halvaei Z, Tehrani H, Soltaninejad K, Abdollahi M, Shadnia S.
Vitamin E as a novel therapy in the treatment of acute aluminium phosphide poisoning.

Bipyridyl herbicides
Prolonged methylprednisolone therapy after the pulse treatment for patients with moderate-to-severe paraquat poisoning: a retrospective analysis.
Medicine (Baltimore) 2017; 96: e7244.

Predictors of acute kidney injury after paraquat intoxication.

Carbamate insecticides
Methiocarb
Simultaneous quantification of methiocarb and its metabolites, methiocarb sulfoxide and methiocarb sulfone, in five food products of animal origin using tandem mass spectrometry.

Glyphosate
Cattani D, Cosconetto PA, Tavares MK, Parisotto EB, De Oliveira PA, Rieg CEH, Leite MC, Prediger RDS, Wendt NC, Razzera G, Filho DW, Zamoner A.
Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: implication of glutamate excitotoxicity and oxidative stress.

Moon JM, Chun BJ, Cho YS, Lee SD, Hong YJ, Shin MH, Jung EJ, Ryu HH.
Cardiovascular effects and fatality may differ according to the formulation of glyphosate salt herbicide.

Ozaki T, Sofue T, Kuroda Y.
Severe glyphosate-surfactant intoxication successfully treated with continuous hemodiafiltration and direct hemoperfusion: case report.

Portier CJ, Clausing P.
Re: Tarazona et al. (2017): Glyphosate toxicity and carcinogenicity: a review of the scientific basis of the European Union assessment and its differences with IARC.

Indoxacarb
Yen C-K, Ku I-T, Chao C-M, Lai C-C.
Methemoglobinemia caused by indoxacarb poisoning.

Ivermectin
Dey S, kurade NP, Khurana KL, Dan A.
Clinicobioc hemal changes in ivermectin toxicity in Doberman pinscher pups.

Organophosphorus insecticides
General
Cequier E, Sakhki AH, Haug LS, Thomsen C.
Exposure to organophosphorus pesticides in Norwegian mothers and their children: diurnal variability in concentrations of their biomarkers and associations with food consumption.

Chlorfenvimphos

Pyrethroid insecticides
General

Rodenticides
Bromadiolone

Thallium

CHEMICAL WARFARE, BIOLOGICAL WARFARE AND RIOT CONTROL AGENTS
Chemical warfare
General

Mustard gas

Phosgene

PLANTS
Datura metel L. (Devil’s trumpet)
Fu Y, Si Z, Li P, Li M, Zhao H, Jiang L, Xing Y, Hong Y, Ruan L, Wang J-S. Acute psychoactive and toxic effects of D. metel on mice explained by 'H NMR based metabolomics approach. Metab Brain Dis 2017; online early: doi: 10.1007/s11011-017-0389:

Digitalis spp. (Foxglove)

Gelsemium elegans (Heartbreak grass)

Mushrooms

Panax spp. (Ginseng)

Glycyrrhiza glabra (Liquorice)

Paicicourea aeneofusca

Radix bupleuri (Chaihu)
Yang F, Dong X, Yin X, Wang W, You L, Ni J.

Taxus baccata (Yew)

ANIMALS

Bee stings

Fish/marine poisoning

Ciguatera

Seaweed

Shellfish poisoning

Snake bites
Choudhury M, McCleary RJR, Keshewani M, Kini RM, Velmurugan D. Comparison of proteomic profiles of the venoms of two of the ‘Big Four’ snakes of India, the Indian cobra (Naja naja) and the common krait (Bungarus caeruleus), and analyses of their toxins. Toxicon 2017; 135: 33-42.

INDEX

Acetaminophen ... 34
Acetylcysteine ... 23
Acrolein ... 36
Activated charcoal ... 23
Agent blue ... 42
Air pollution .. 35
Alcohol .. 36
Alpha ketoglutarate ... 24
Aluminium ... 40
Aluminium phosphide ... 42
Amphetamines .. 26
Amiodarone .. 26
Amitriptyline .. 35

Anaesthetics.. 26
Analytical toxicology ... 13
Animals, general.. 44
Antiarrhythmic drugs ... 26
Antibiotics ... 26
Anticoagulants .. 26
Anticonvulsants .. 26
Antidepressants .. 26
Antidotes ... 23
Antiemetics ... 27
Antifungal drugs .. 27
Antihistamines ... 27
Antihypertensive drugs ... 27
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naphthalene</td>
<td>39</td>
</tr>
<tr>
<td>Neuprotoxicity</td>
<td>19</td>
</tr>
<tr>
<td>Neurotoxicity</td>
<td>19</td>
</tr>
<tr>
<td>Nickel</td>
<td>41</td>
</tr>
<tr>
<td>Nicotine</td>
<td>30</td>
</tr>
<tr>
<td>Nitrazepam</td>
<td>28</td>
</tr>
<tr>
<td>Nitrogen mustard</td>
<td>31</td>
</tr>
<tr>
<td>Novel psychoactive substances</td>
<td>31</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>32</td>
</tr>
<tr>
<td>Occupational toxicology</td>
<td>20</td>
</tr>
<tr>
<td>Orotatecyclotetrasiloxane</td>
<td>39</td>
</tr>
<tr>
<td>Occlusive toxicity</td>
<td>20</td>
</tr>
<tr>
<td>Opioid maintenance therapy</td>
<td>24</td>
</tr>
<tr>
<td>Opioids</td>
<td>32</td>
</tr>
<tr>
<td>Organophosphorus insecticides, general</td>
<td>42</td>
</tr>
<tr>
<td>Oxaliplatin</td>
<td>27</td>
</tr>
<tr>
<td>Oxycontin</td>
<td>34</td>
</tr>
<tr>
<td>Paediatric toxicology</td>
<td>20</td>
</tr>
<tr>
<td>Palicourea aeneofusca</td>
<td>43</td>
</tr>
<tr>
<td>Palladium</td>
<td>41</td>
</tr>
<tr>
<td>Panax spp.</td>
<td>43</td>
</tr>
<tr>
<td>Parabens</td>
<td>39</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>34</td>
</tr>
<tr>
<td>Pesticides and cancer</td>
<td>42</td>
</tr>
<tr>
<td>Pesticides, general</td>
<td>42</td>
</tr>
<tr>
<td>Petrol</td>
<td>39</td>
</tr>
<tr>
<td>Pharmacobozars</td>
<td>34</td>
</tr>
<tr>
<td>Phenethylamines</td>
<td>31</td>
</tr>
<tr>
<td>Phenibut</td>
<td>28</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>26</td>
</tr>
<tr>
<td>Phosgene</td>
<td>43</td>
</tr>
<tr>
<td>Phthalates</td>
<td>39</td>
</tr>
<tr>
<td>Pit vipers</td>
<td>44</td>
</tr>
<tr>
<td>Plants, general</td>
<td>43</td>
</tr>
<tr>
<td>Poison information centres</td>
<td>21</td>
</tr>
<tr>
<td>Poisons information</td>
<td>21</td>
</tr>
<tr>
<td>Pollution</td>
<td>21</td>
</tr>
<tr>
<td>Polychlorinated chemicals</td>
<td>35</td>
</tr>
<tr>
<td>Psychiatric aspects</td>
<td>39</td>
</tr>
<tr>
<td>Psychoactive drugs</td>
<td>21</td>
</tr>
<tr>
<td>Pyrethroid insecticides, general</td>
<td>43</td>
</tr>
<tr>
<td>Radiation</td>
<td>39</td>
</tr>
<tr>
<td>Radix bupleuri</td>
<td>43</td>
</tr>
<tr>
<td>Reprotoxicity</td>
<td>22</td>
</tr>
<tr>
<td>Retinoic acid</td>
<td>39</td>
</tr>
<tr>
<td>Risk assessment</td>
<td>22</td>
</tr>
<tr>
<td>Rivastigmine</td>
<td>24</td>
</tr>
<tr>
<td>Rodenticides</td>
<td>43</td>
</tr>
<tr>
<td>Salt</td>
<td>39</td>
</tr>
<tr>
<td>Smoke</td>
<td>39</td>
</tr>
<tr>
<td>Snake bite</td>
<td>44</td>
</tr>
<tr>
<td>Sodium hypochlorite</td>
<td>40</td>
</tr>
<tr>
<td>SSRIs and SNRIs</td>
<td>34</td>
</tr>
<tr>
<td>Substance abuse</td>
<td>34</td>
</tr>
<tr>
<td>Sucralse</td>
<td>40</td>
</tr>
<tr>
<td>Suicide</td>
<td>22</td>
</tr>
<tr>
<td>Synthetic cannabinoids</td>
<td>31</td>
</tr>
<tr>
<td>Synthetic catinrinollos</td>
<td>32</td>
</tr>
<tr>
<td>Synthetic opioids</td>
<td>32</td>
</tr>
<tr>
<td>Taxus baccata</td>
<td>44</td>
</tr>
<tr>
<td>Thalium</td>
<td>26</td>
</tr>
<tr>
<td>Tilmicosin</td>
<td>26</td>
</tr>
<tr>
<td>Tobacco</td>
<td>40</td>
</tr>
<tr>
<td>Tocilizumab</td>
<td>30</td>
</tr>
<tr>
<td>Toxicology, general</td>
<td>13</td>
</tr>
<tr>
<td>Tricyclic antidepressants</td>
<td>35</td>
</tr>
<tr>
<td>True vipers</td>
<td>44</td>
</tr>
<tr>
<td>Valproate</td>
<td>26</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>26</td>
</tr>
<tr>
<td>Venlafaxine</td>
<td>34</td>
</tr>
<tr>
<td>Vilazodone</td>
<td>27</td>
</tr>
<tr>
<td>Viperinae</td>
<td>44</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>24</td>
</tr>
<tr>
<td>Volatile organic compounds</td>
<td>40</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>27</td>
</tr>
<tr>
<td>Warfarin</td>
<td>26</td>
</tr>
<tr>
<td>Water pollution</td>
<td>40</td>
</tr>
<tr>
<td>Yew</td>
<td>44</td>
</tr>
<tr>
<td>Zuclopenthixol</td>
<td>27</td>
</tr>
</tbody>
</table>