Introduction
This is the 33rd Annual Report of the American Association of Poison Control Centers' (AAPCC) National Poison Data System (NPDS). As of 1 January 2015, 55 of the nation's poison centers (PCs) uploaded case data automatically to NPDS. The upload interval was 9.52 [7.40, 13.6] (median [25%, 75%]) minutes, creating a near real-time national exposure and information database and surveillance system.

Methods
We analyzed the case data tabulating specific indices from NPDS. The methodology was similar to that of previous years. Where changes were introduced, the differences are identified. Poison center cases with medical outcomes of death were evaluated by a team of medical and clinical toxicologist reviewers using an ordinal scale of 1-6 to assess the Relative Contribution to Fatality (RCF) of the exposure.

Results
In 2015, 2,792,130 closed encounters were logged by NPDS: 2,168,371 human exposures, 55,516 animal exposures, 560,467 information calls, 7657 human confirmed nonexposures,
and 119 animal confirmed nonexposures. US PCs also made 2,695,699 follow-up calls in 2015. Total encounters showed a 3.42% decline from 2014, while health care facility (HCF) human exposure cases increased by 5.09% from 2014. All information calls decreased by 15.5% but HCF information calls increased 2.67%, and while medication identification requests (Drug ID) decreased 31.7%, human exposures reported to US PCs were essentially flat, increasing by 0.149%. Human exposures with less serious outcomes have decreased 2.95% per year since 2008 while those with more serious outcomes (moderate, major or death) have increased by 4.34% per year since 2000. The top 5 substance classes most frequently involved in all human exposures were analgesics (11.1%), household cleaning substances (7.54%), cosmetics/personal care products (7.41%), sedatives/hypnotics/antipsychotics (5.83%), and antidepressants (4.58%). Sedative/Hypnotics/Antipsychotics exposures as a class increased the most rapidly (2597 calls (11.4%)/year) over the last 14 years for cases showing more serious outcomes. The top 5 most common exposures in children age 5 years or less were cosmetics/personal care products (13.6%), household cleaning substances (11.2%), analgesics (9.12%), foreign bodies/toys/miscellaneous (6.45%), and topical preparations (5.33%). Drug identification requests comprised 35.0% of all information calls. NPDS documented 1831 human exposures resulting in death with 1371 human fatalities judged related (RCF of 1-Undoubtedly responsible, 2-Probably responsible, or 3-Contributory).

Conclusions

These data support the continued value of PC expertise and need for specialized medical toxicology information to manage more serious exposures, despite a decrease in calls involving less serious exposures. Unintentional and intentional exposures continue to be a significant cause of morbidity and mortality in the US. The near real-time, always current status of NPDS represents a national public health resource to collect and monitor US exposure cases and information calls. The continuing mission of NPDS is to provide a nationwide infrastructure for surveillance for all types of exposures (e.g., foreign body, viral, bacterial, venomous, chemical agent, or commercial product), the identification of events of public health significance, resilience, response and situational awareness tracking. NPDS is a model system for the real-time surveillance of national and global public health.

Full text available from: http://dx.doi.org/10.1080/15563650.2016.1245421

What can clinicians learn from therapeutic studies about the treatment of acute oral methotrexate poisoning?

Context

Methotrexate (MTX) is an anti-folate drug that has been utilized in both malignant and chronic inflammatory conditions. Doctors are often concerned with a potential adverse outcome when managing patients with acute oral MTX poisoning given its potential for serious adverse reactions at therapeutic doses. However, there is surprisingly little data from acute poisoning cases and more data from the therapeutic use of high-dose MTX.

Objectives

To review pharmacokinetic and pharmacological properties of MTX and systematically review series of acute MTX poisonings and therapeutic studies on high-dose MTX that provide pharmacokinetic or clinical data.

Methods

An Embase (1974–October 2016) and Medline (1946–October 2016) search was performed by combining "MTX" and "overdose/poison" or "MTX" and "toxicity" or "MTX" and "high-dose MTX" or "MTX" and "bioavailability" or "pharmacokinetics"; 25, 135, 109 and 365 articles were found, respectively, after duplicates were removed. There were 15 papers that
provided clinical data on acute ingestion and toxicity that occurred with low-dose administration. Eighteen papers were on high-dose MTX (>1 g per m² body surface area) used as a single chemotherapy agent which provided pharmacokinetic or clinical data on MTX toxicity. Thirty papers were reviewed to determine the toxic dose, pharmacokinetics, risk factors, clinical symptoms and management of acute MTX toxicity. Given the limited acute poisoning data, a retrospective audit was performed through the consultant records of the New South Wales Poisons Information Centre from April 2004 to July 2015 to examine the clinical syndrome and toxicity of acute oral MTX poisoning.

Pharmacokinetics
Reduced MTX bioavailability is a result of saturable absorption. Although maximal bioavailable absorption occurs at a dose of ~15 mg m⁻², splitting the dose increases bioavailability. MTX clearance is proportional to renal function.

Acute toxicity
Oncologists prescribe doses up to 12 g m⁻² of MTX. Patients treated with an intravenous dose of MTX <1g m⁻² do not require folinic acid rescue. MTX toxicity correlates better with duration and extent of exposure than peak serum concentration.

Acute oral poisoning
Acute oral MTX poisoning in 177 patients did not report any severe toxicity. In the New South Wales Poisons Information Centre audit data (2004-2015), 51 cases of acute MTX poisoning were reported, of which 15 were accidental paediatric ingestions. The median reported paediatric ingestion was 50 mg (IQR: 10–100; range: 10–150) with a median age of 2 years (IQR: 2–2; range: 1–4). Of the 36 patients with acute deliberate MTX poisoning, median age and dose were 47 years (IQR: 31–62; range: 10–85) and 325 mg (IQR: 85–500; range: 40–1000), respectively. Of the 19 patients who had serum MTX concentrations measured, all were significantly below the concentrations used in oncology and the folinic acid rescue nomogram line and no patient reported adverse sequelae.

Management of acute oral poisoning
Due to the low bioavailability of MTX, treatment is not necessary for single ingestions. Oral folinic acid may be used to lower the bioavailability further with large ingestions >1 g m⁻². Oral followed by intravenous folinic acid may be used in patients with staggered ingestion >36 h or patients with acute overdose and renal impairment (eGFR <45 mL/min/1.73 m²).

Conclusions
As a consequence of saturable absorption MTXs bioavailability is so low that neither accidental paediatric MTX ingestion nor acute deliberate MTX overdose causes toxicity. An acute oral overdose will not provide a bioavailable dose even close to 1 g m⁻² of parenteral MTX. Hence, no treatment is required in acute ingestion unless the patient has renal failure or staggered ingestion. There is also no need to monitor MTX concentrations in acute oral MTX poisoning.

Full text available from: http://dx.doi.org/10.1080/15563650.2016.1271126

The toxicity of zinc chloride smoke producing bombs and screens

El Idrissi A, van Berkel L, Bonekamp NE, Dalemans DJZ, van der Heyden MAG. Clin Toxicol 2017; online early:
doi: [10.1080/15563650.2016.1271125](https://dx.doi.org/10.1080/15563650.2016.1271125):

Context
Zinc chloride (ZnCl₂)-based smoke bombs and screens are in use since the Second World War (1939–1945). Many case descriptions on ZnCl₂ smoke inhalation incidents appeared since 1945.
Objective
We provide a comprehensive overview of the clinical symptoms and underlying pathophysiology due to exposure to fumes from ZnCl₂ smoke producing bombs. In addition, we give a historical overview of treatment regimens and their outcomes.

Methodology
We performed a literature search on Medline, Scopus and Google Scholar databases using combinations of the following search terms "smoke bomb", "smoke screen", "ZnCl₂", "intoxication", "poisoning", "case report", "HE smoke", "hexachloroethane smoke", "smoke inhalation" and "white smoke". We retrieved additional reports based on the primary hits. We collected 30 case reports from the last seven decades encompassing 376 patients, 23 of whom died. Of all the patient descriptions, 31 were of sufficient detail for prudent analysis.

Results and conclusions
Intoxication with clinical signs mainly took place in war situations and in military and fire emergency training sessions in enclosed spaces. Symptoms follow a biphasic course mainly characterised by dyspnoea, coughing and lacrimation, related to irritation of the airways in the first six hours, followed by reappearance of early signs complemented with inflammation related signs and tachycardia from 24 h onwards. Acute respiratory stress syndrome developed in severely affected individuals. Chest radiographs did not always correspond with clinical symptoms. Common therapy comprises corticosteroids, antibiotics and supplemental oxygen or positive pressure ventilation in 64% of the cases. Of the 31 patients included, eight died, three had permanent lung damage and 15 showed complete recovery, whereas in five patients outcome was not reported. Early signs likely relate to caustic reactions in the airway lining, whereas inhaled ZnCl₂ particles may trigger an inflammatory response and associated delayed fibrotic lung damage. Smoke bomb poisoning is a potentially lethal condition that can occur in large cohorts of victims simultaneously.

Full text available from: http://dx.doi.org/10.1080/15563650.2016.1271125

Acute salicylate poisoning: risk factors for severe outcome

Context
Salicylate poisoning remains a significant public health threat with more than 20,000 exposures reported annually in the United States.

Objective
We aimed to establish early predictors of severe in-hospital outcomes in Emergency Department patients presenting with acute salicylate poisoning.

Methods
This was a secondary data analysis of adult salicylate overdoses from a prospective cohort study of acute drug overdoses at two urban university teaching hospitals from 2009 to 2013. Patients were included based on confirmed salicylate ingestion and enrolled consecutively. Demographics, clinical parameters, treatment and disposition were collected from the medical record. Severe outcome was defined as a composite occurrence of acidemia (pH <7.3 or bicarbonate <16 mEq/L), hemodialysis, and/or death.

Results
Out of 1997 overdoses screened, 48 patients met inclusion/exclusion criteria. Patient characteristics were 43.8% male, median age 32 (range 18–87), mean initial salicylate concentration 28.1 mg/dL (SD 26.6), and 20.8% classified as severe outcome. Univariate analysis indicated that age, respiratory rate, lactate, coma, and the presence of co-ingestions
were significantly associated with severe outcome, while initial salicylate concentration alone had no association. However, when adjusted for salicylate concentration, only age (OR 1.13; 95% CI 1.02–1.26) and respiratory rate (OR 1.29; 95% CI 1.02–1.63) were independent predictors. Additionally, lactate showed excellent test characteristics to predict severe outcome, with an optimal cutpoint of 2.25 mmol/L (78% sensitivity, 67% specificity).

Conclusions
In adult Emergency Department patients with acute salicylate poisoning, independent predictors of severe outcome were older age and increased respiratory rate, as well as initial serum lactate, while initial salicylate concentration alone was not predictive.

Full text available from: http://dx.doi.org/10.1080/15563650.2016.1271127

In-vivo evidence of nephrotoxicity and altered hepatic function in rats following administration of diglycolic acid, a metabolite of diethylene glycol

Context
Diglycolic acid (DGA) is one of the two primary metabolites of diethylene glycol (DEG). DEG is an industrial solvent that has been implicated in mass poisonings resulting from product misuse in the United States and worldwide, with the hallmark toxicity being acute kidney injury, hepatotoxicity, encephalopathy and peripheral neuropathy. Our laboratory has generated in-vitro evidence suggesting that DGA is the metabolite responsible for the proximal tubule necrosis and decreased kidney function observed following DEG ingestion. Furthermore, we have shown that DGA specifically accumulates in kidney tissues (100× higher than peak blood concentrations) following DEG administration.

Objective
To examine renal and hepatic accumulation and dysfunction following direct administration of DGA in-vivo. We hypothesize that administration of DGA will result in renal and hepatic DGA accumulation, as well as proximal tubular necrosis and liver injury.

Materials and methods
Adult male Wistar rats were divided into three groups dosed with 0, 100 or 300 mg/kg DGA via single oral gavage. Urine was collected every 6–12 h and blood, kidneys and liver were removed upon sacrifice at 48 h post-dosing for analysis.

Results
DGA accumulated significantly in both kidney and liver tissue only at 300 mg DGA/kg. DGA concentrations in the kidneys and liver correlated with renal and hepatic injury, respectively. Histopathological and clinical chemistry analysis revealed that DGA-treated animals exhibited moderate liver fatty accumulation and marked renal injury, again only at 300 mg/kg.

Discussion
DGA-induced kidney injury demonstrated a steep dose response threshold, where severe damage occurred only in animals given 300 mg/kg DGA, while no toxicity was observed at 100 mg/kg.

Conclusion
These results provide evidence for in-vivo toxicity following direct administration of DGA, a metabolite of DEG. The steep dose–response threshold for toxicity suggests mechanistically that there is likely a saturable step that results in DGA accumulation in target organs.

Full text available from: http://dx.doi.org/10.1080/15563650.2016.1271128
Toxicity from automotive screenwashes reported to the United Kingdom National Poisons Information Service (NPIS) from 2012 to 2015

Background
Automotive screenwashes commonly contain ethylene glycol, methanol, and/or isopropanol; ethanol is also included in many formulations. The concentrations and combinations of each constituent vary considerably between the products. This study was undertaken to investigate the toxicity of automotive screenwashes as reported by telephone to the United Kingdom National Poisons Information Service (NPIS).

Methods
Enquiries to the NPIS relating to automotive screenwashes were analyzed retrospectively for the period January 2012 to December 2015.

Results
There were 295 enquiries involving 255 individual exposures. The majority (n = 241, 94.5%) of exposures involved ingestion and 14 of these also involved other routes. Six cases were due to skin contact alone, three to inhalation alone, three to eye contact alone, one to ear exposure alone and another occurred from inhalation and skin contact. Children below 5 years of age accounted for 26% of all ingestions. The identity (and therefore composition) of the screenwash was known with certainty in 124 of 241 ingestions and included methanol in 106 formulations, isopropanol in 72, ethylene glycol in 38, and ethanol in 104. The World Health Organisation/International Programme on Chemical Safety/European Commission/European Association of Poison Centres and Clinical Toxicologists Poisoning Severity Score was known in 235 of 241 cases of ingestion: most patients were asymptomatic (n = 169, 71.9%), but 59 (25.1%) developed minor (PSS 1), six (2.6%) moderate (PSS 2), and one patient severe (PSS 3) features; this patient later died. Nausea (n = 10), vomiting (n = 11), abdominal pain (n = 10), metabolic acidosis (n = 8) and raised anion gap (n = 8) were reported most commonly after ingestion.

Conclusions
Most patients (71.9%) ingesting automotive screenwash did not develop features. The implication is that the amount of screenwash ingested was very small. Skin and eye exposure produced either no features or only minor toxicity.

Full text available from: http://dx.doi.org/10.1080/15563650.2016.1271130

New evidence for oxetorone toxicity

Context
Oxetorone is a serotonin antagonist antimigraine drug but literature relating to its toxic properties is poor. The aim of this study is to describe the toxicological profile of oxetorone and to highlight any relationship between clinical and analytical findings.

Materials and methods
This is a retrospective and observational study of cases exposure to oxetorone, reported to the Angers Poison and Toxicovigilance Centre between January 2002 and May 2016. Severity was assessed using the Poisoning Severity Score (PSS). Cases where data were incomplete, where oxetorone was deemed not accountable, where clinical signs were linked
mainly to a co-ingested drug or where the plasma concentration of oxetorone was negative were all excluded.

Results

We include 43 cases of exposure, 31 of whom were suicide attempts. The assumed ingested dose (60–3600 mg) was correlated to severity ($r_s = 0.45, p = 0.01$). Symptoms of moderate severity (PSS2 = drowsiness, hypertonia, myosis, convulsions, arterial hypotension, QRS widening, QTc prolongation) were observed following ingestion of more than 600 mg of oxetorone (median dose =1200 mg) and severe symptoms (PSS 3 = coma, convulsions, QTc prolongation, QRS widening, ventricular tachycardia, arterial hypotension, cardiogenic shock) were observed starting from 1800 mg (median dose =2700 mg). In four cases, a secondary worsening of symptoms 10–48 h following ingestion was observed. Plasma oxetorone was measured in four patients. Severe symptoms were observed in the event of a concentration over 0.3 mg/L and the highest measured serum oxetorone level was delayed by 20–48 h following the ingestion for two cases.

Conclusions

Several clinical and paraclinical parameters strongly point towards membrane-stabilising properties of the molecule and the risk of a delayed occurrence of symptoms or a secondary worsening.

Full text available from: http://dx.doi.org/10.1080/15563650.2016.1267358

The impact of an international initiative on exposures to liquid laundry detergent capsules reported to the United Kingdom National Poisons Information Service between 2008 and 2015

Introduction

Although the majority of those exposed to liquid laundry detergent capsules remain asymptomatic or suffer only minor clinical features after exposure, a small proportion develop central nervous system depression, stridor, pulmonary aspiration and/or airway burns following ingestion or conjunctivitis and corneal ulceration following eye exposure. As a consequence, the International Association for Soaps, Detergents and Maintenance Products (AISE) established a Product Stewardship Programme in Europe, requiring that safety measures be implemented to reduce the visibility of, and restrict access to, these detergent capsules by small children. Implementation occurred in the United Kingdom over several months during the first half of 2013.

Objective

This study investigated whether the AISE Programme had an impact on the number and severity of exposures reported to the United Kingdom National Poisons Information Service.

Methods

Telephone enquiries to the National Poisons Information Service relating to liquid laundry detergent capsules were analysed for the period January 2008 to December 2015.

Results

While there was a significant difference ($p = 0.0002$) between the mean number of annual exposures (469.4) reported between 2008 and 2012 and the mean number reported between 2014 and 2015 (403.5), the number of exposures was decreasing steadily prior to implementation of the Programme in 2013, which did not impact this fall from 2013 onwards. In addition, the number of exposures per million units sold was not impacted by
the Programme. There was no significant difference ($p = 0.68$) between the mean number of exposures (11.8) with PSS ≥ 2 reported between 2008 and 2012 and the mean number (13.0) reported between 2014 and 2015. Although there was a 28.7% decrease between 2010–2012 and 2014–2015 in the number of exposures with PSS ≥ 2 per million units sold, this decrease was not statistically significant ($p = 0.18$).

Conclusion

There is no evidence that the Product Stewardship Programme had a beneficial impact on the number of exposures reported to the National Poisons Information Service or their severity.

Full text available from: http://dx.doi.org/10.1080/15563650.2016.1267359

Lead intoxication due to ayurvedic medications as a cause of abdominal pain in adults

Background

Though a majority of cases of lead intoxication come from occupational exposures, traditional and folk remedies have also been reported to contain toxic amounts of lead. We present a large series of patients with lead poisoning due to intake of Ayurvedic medicines, all of whom presented with unexplained abdominal pain.

Methodology

This was a retrospective, observational case series from a tertiary care center in India. The charts of patients who underwent blood lead level (BLL) testing as a part of workup for unexplained abdominal pain between 2005 and 2013 were reviewed. The patients with lead intoxication (BLLs $>25 \mu g/dl$) were identified and demographics, history, possible risk factors, clinical presentation and investigations were reviewed. Treatment details, duration, time to symptomatic recovery, laboratory follow-up and adverse events during therapy were recorded.

Results

BLLs were tested in 786 patients with unexplained abdominal pain and high levels were identified in 75 (9.5%) patients, of which a majority (73 patients, 9.3%) had history of Ayurvedic medication intake and only two had occupational exposure. Five randomly chosen Ayurvedic medications were analyzed and lead levels were impermissibly high (14–34,950 ppm) in all of them. Besides pain in abdomen, other presenting complaints were constipation, hypertension, neurological symptoms and acute kidney injury. Anemia and abnormal liver biochemical tests were observed in all the 73 patients. Discontinuing the Ayurvedic medicines and chelation with d-penicillamine led to improvement in symptoms and reduction in BLLs in all patients within 3–4 months.

Conclusion

The patients presenting with severe recurrent abdominal pain, anemia and history of use of Ayurvedic medicines should be evaluated for lead toxicity. Early diagnosis in such cases can prevent unnecessary investigations and interventions, and permits early commencement of the treatment.

Full text available from: http://dx.doi.org/10.1080/15563650.2016.1259474
11 analytically confirmed cases of mexedrone use among polydrug users

Introduction

Mexedrone, 3-methoxy-2-(methylamino)-1-(4-methylphenyl)propan-1-one, is the alpha-methoxy-derivative of mephedrone (4-methyl-N-methyl cathinone). Mexedrone inhibits the re-uptake of serotonin and dopamine in a dose-dependent manner and has affinity for serotonin and dopamine membrane transporters and receptors (5-HT2 and D2 receptors), producing sympathomimetic effects similar to amphetamines. To date there are no published clinical reports on mexedrone use that are analytically confirmed.

Objective

To characterise the features of mexedrone use in patients who presented to our hospital after using a variety of psychoactive substances including mexedrone, with analytical confirmation in each case.

Methods

This is an observational case series. Urine toxicological screening using ultra-performance liquid chromatography with tandem mass spectrometry and exact mass time of flight was employed in all patients.

Results

A total of 305 cases were screened and mexedrone was identified in 11 urine samples. Agitation was the most common presenting feature in 10 of 11 patients. This was marked to the extent of aggression in some cases, with six patients requiring sedation and/or physical restraint. Delusions and hallucinations, often with paranoia, were observed in three cases with a prominent supernatural/demonic theme. None of these individuals had a history of psychosis. Seven of 11 patients were tachycardic >100 bpm. The median length of stay was 20 hours (range 2-77; IQR 4-33). Mexedrone alone is only likely to have been responsible for these clinical features in 2 cases; in two others mexedrone was found in high concentration along with substantial amounts of other stimulants. In 7 other cases other stimulants detected more likely explained the features. However, comprehensive analytical data enabled us to identify the full complement of agents contributing to the clinical presentation.

Conclusions

Agitation was the predominant clinical feature in this case series and was often accompanied by a sinus tachycardia; mexedrone was primarily responsible in 2 patients but contributed substantially in two others. Patients typically recovered fully within 24 hours, unless they required sedation.

Full text available from: http://dx.doi.org/10.1080/15563650.2016.1271424

Outcomes from massive paracetamol overdose: a retrospective observational study

Abstract and full text available from: http://dx.doi.org/10.1111/bcp.13214
Acute esophageal injury and strictures following corrosive ingestions in a 27 year cohort

Mortality risk among workers with exposure to dioxins
Abstract and full text available from: http://dx.doi.org/10.1093/occmed/kqw167

Pharmacokinetic properties and human use characteristics of an FDA-approved intranasal naloxone product for the treatment of opioid overdose
Abstract and full text available from: http://dx.doi.org/10.1002/jcph.759

"Zombie" outbreak caused by the synthetic cannabinoid AMB-FUBINACA in New York
Abstract and full text available from: http://dx.doi.org/10.1056/NEJMoa1610300

Clinical policy: critical issues in the evaluation and management of adult patients presenting to the emergency department with acute carbon monoxide poisoning
Abstract and full text available from: http://dx.doi.org/10.1016/j.annemergmed.2016.11.003

Nationwide scorpion exposures reported to US poison control centers from 2005 to 2015
Abstract and full text available from: http://dx.doi.org/10.1007/s13181-016-0594-0

Effect of activated charcoal on rivaroxaban complex absorption
Abstract and full text available from: http://dx.doi.org/10.1007/s40262-016-0485-1
TOXICOLOGY

General

McGregor AJ.
The effects of sex and gender on pharmacologic toxicity: implications for clinical therapy.

Mowry JB, Spyker DA, Brooks DE, Zimmerman A, Schauben JL.
Clin Toxicol 2016; 54: 924-1109.

Sharma S, Dewan A, Singh G.
Toxico-vigilance – An inevitable prerequisite to keep a watch on toxins around you.

Analytical toxicology
Highly sensitive LC-MS/MS methods for urinary biological monitoring of occupational exposure to cyclophosphamide, ifosfamide, and methotrexate antineoplastic drugs and routine application.

Caspar AT, Brandt SD, Stoever AE, Meyer MR, Maurer HH.
Metabolic fate and detectability of the new psychoactive substances 2-(4-bromo-2,5-dimethoxyphenyl)-N-[2-methoxyphenyl](methyl)ethanamine (25B-NBOMe) and 2-(4-chloro-2,5-dimethoxyphenyl)-N-[2-methoxyphenyl]-methyl[ethanamine (25C-NBOMe) in human and rat urine by GC-MS, LC-MS”, and LC-HR-MS/MS approaches.

Untargeted screening of unknown xenobiotics and potential toxins in plasma of poisoned patients using high-resolution mass spectrometry: generation of xenobiotic fingerprint using background subtraction.

Eliaerts J, Dardenne P, Meert N, Van Durme F, Samyn N, Janssens K, De Wael K.
Rapid classification and quantification of cocaine in seized powders with ATR-FTIR and chemometrics.
Drug Test Anal 2016; online early: doi: 10.1002/dta.2149:

Fleming SW, Cooley JC, Johnson L, Frazee CC, Domanski K, Kleinschmidt K, Garg U.
Analysis of U-47700, a novel synthetic opioid, in human urine by LC-MS-MS and LC-QToF.
J Anal Toxicol 2016; online early: doi: 10.1093/jat/bkw131:

Hamelin EJ, Blake TA, Perez JW, Crow BS, Shaner RL, Coleman RM, Johnson RC.
Bridging the gap between sample collection and laboratory analysis: using dried blood spots to identify human exposure to chemical agents.

Karlsson O, Hanrieder J.
Imaging mass spectrometry in drug development and toxicology.
Arch Toxicol 2016; online early: doi: 10.1007/s00204-016-1905-6:

Kong TY, Kim JH, Kim JY, In MK, Choi KH, Kim HS, Lee HS.

Labat L, Goncalves A, Cleophax C, Megarbane B, Decleves X.
Dosage du baclofène dans le plasma en chromatographie phase liquide couplée à de la spectrométrie de masse en tandem : à propos d’un cas de surdosage. [Baclofen determination in plasma by liquid chromatography-tandem mass spectrometry: about one case of intoxication]. In French with English abstract.

Logarinho F, Rosado T, Lourenço C, Barroso M, Araujo ARTS, Gallardo E.
Determination of antipsychotic drugs in hospital and wastewater treatment plant samples by gas chromatography/tandem mass spectrometry.

Mesihāā S, Ketola RA, Pelander A, Rasanen I, Ojanperä I.
Development of a GC-APCI-QTOFMS library for new psychoactive substances and comparison to a commercial ESI library.

Michely JA, Brandt SD, Meyer MR, Maurer HH.
Biotransformation and detectability of the new psychoactive substances N,N-Diallylftryptamine (DALT) derivatives 5-fluoro-DALT, 7-methyl-DALT, and 5,6-methylenedioxy-DALT in urine using GC-MS, LC-MS”, and LC-HR-MS/MS.

Neukamm MA, Bahrami A, Auwärter V, Mehne FM, Höss E.
Evaluation of KIMS immunoassays on a cobas c 501 analyzer for drugs of abuse and ethyl glucuronide testing in urine for forensic abstinence control.
Drug Test Anal 2016; online early: doi: 10.1002/dta.2154:

Identification of drugs in parenteral pharmaceutical preparations from a quality assurance and a diversion program by direct analysis in real-time AccuTOF-mass spectrometry (DART-MS).

Restolho J, Barroso M, Saramago B, Dias M, Afonso CAM.
Response to the letter to the editor reply to Restolho et al. "Contactless decontamination of hair samples: cannabinoids" by Moosmann and Auwärter.
Drug Test Anal 2016; online early: doi: 10.1002/dta.2150:

Rosado T, Gonçalves A, Margalho C, Barroso M, Gallardo E.
Rapid analysis of cocaine and metabolites in urine using microextraction in packed sorbent and GC/MS.

Staeheli SN, Gascho D, Ebert LC, Kraemer T, Steuer AE.

Biomarkers

Body packers

Carcinogenicity

Cardiotoxicity

Oduor H, Minniti CP, Broffierio A, Gharib AM, Abdel-Elmoniem KZ, Hsieh MM, Tisdale JF, FitzHugh CD. Severe cardiac iron toxicity in two adults with sickle cell disease. Transfusion 2016; online early: doi: 10.1111/trf.13961:

Perinatal exposure to lead (Pb) induces ultrastructural and molecular alterations in synapses of rat offspring. Toxicology 2016; 373: 13-29.

Developmental toxicology

Rousis NI, Zuccato E, Castiglioni S.
Wastewater-based epidemiology to assess human exposure to pyrethroid pesticides. Environ Int 2016; online early:
doi: 10.1016/j.envint.2016.11.020:

Rudd RA, Seth P, David F, Scholl L.

Santos MSV, Silva CGL, Neto BS, Grangeiro Júnior CRP, Lopes VHS, Teixeira Júnior AG, Bezerra DA, Luna JVC, Cordeiro JB, Júnior JG, Lima MAP.

Schmutz M, Carron P-N, Yersin B, Trueb L.

Schulte J, Domanski K, Smith EA, Menendez A, Kleinschmidt KC, Roth BA.

Teklemariam E, Tesema S, Jemal A.

Trinidad JP, Warner M, Bastian BA, Minino AM, Hedegaard H.
Pattern of poisoning involving deaths:

Walker ER, Pratt LA, Schoenborn CA, Druss BG.

Warner M, Trinidad JP, Bastian BA, Minino AM, Hedegaard H.

Foreign body ingestion
Cairns R, Brown JA, Buckley NA.

Colizzo J, Gill J.

Harris C, Stemboroski LN, Shuja A.

Forensic toxicology
Boumba VA, Rallis GN, Vougikoulakis T.

DeRoux SJ, Dunn WA.

Dulkadir Z, Chaturvedi AK, Craft KJ, Hickerson JS, Cliburn KD.

Hiquet J, Christin E, Tovagliao F, Gaulier J-M, Dumestre-Toulet V, Gromb-Monnoyer S.

Hockenhull J, Murphy KG, Paterson S.

Ifeagwu SC, Raithelhuber M, Crean C, Gerostamoulos D, Chung H, Tettey JN.
Toxicology in international drug control- prioritizing the most harmful, persistent and prevalent substances. Forensic Sci Int 2016; online early: doi: 10.1016/j.forsciint.2016.11.022:

Johansen SS.

Lozano JG, Healy NL, Kimberley Molina D.

Miller B, Kim J, Concheiro M.

Neukamm MA, Bahrami A, Auwärter V, Mehne FM, Höss E.
Palmiere C, Scarpelli MP, Varlet V, Baumann P, Michaud K, Augsburger M.

Palmiere C, Augsburger M, Varlet V.

Potocka-Banas B, Janus T, Majdanik S, Banas T, Dembinska T, Borowiak K.

Staeheli SN, Gascho D, Ebert LC, Kraemer T, Steuer AE.

Genotoxicity

Fa S, Larsen TV, Bilde K, Daugaard TF, Ernst EH, Olesen RH, Mamsen LS, Ernst E, Larsen A, Nielsen AL.

Khan F, Niaz K, Ismail HF, Abdollahi M.

Hepatotoxicity

Chalasani NP, Ghabril M, Fontana RJ, Barnhart HX, Hayashi PH, Ahmad J, Stolz A, Navarro VJ, Hoofnagle JH.

Idiosyncratic drug induced liver injury in African Americans: causes, clinical features and outcomes. Hepatology 2016; 63: 64A.

Dalal I, Katz K, Tilara A.

Daly AK.

Estremera-Marcial R, Figueroa I, Martin-Ortiz JR, Santiago-Rivera L.

Etienne D, Ofori E, Mullangi S, Shah J, Ona MA, Stevens M, Reddy M.

A case of synthetic marijuana (Spice(K2))-induced liver injury. Am J Gastroenterol 2016; 111: S858.

Gupta A, Sanaka S, Lingiah V, Fung P, Pyrsopoulos N.

Hamilton LA, Collins-Yoder A, Collins RE.

Katare Y, Verma S.

Kothadia JP, Rangray R, Olivera-Martinez M.

Liebman HR, Kellogg MD, Fulgoni VL, III, Agarwal S.

Madhavan S, Triplett D, Rao PK.

Kinetics

Mechanisms of toxicity

Medication errors

Metabolism

Nephrotoxicity

Robinson CN, Latimer B, Abreu F, Brousard K, McMtin KE. In-vivo evidence of nephrotoxicity and altered hepatic function in rats following administration of diglycolic acid, a metabolite of diethylene glycol.
Neurotoxicity
Abou Hassan OK, Karnib M, El-Khoury R, Nemer G, Ahdab-Barmada M, BouKhalil P.
Front Pharmacol 2016; online early: doi: 10.3389/fphar.2016.00325:
Baladacchino A, Armanyous M, Balfour DJK, Humphris G, Matthews K.
Neuropsychological functioning and chronic methadone use: a systematic review and meta-analysis.
Neurosci Biobehav Rev 2016; online early: doi: 10.1016/j.neubiorev.2016.11.008:
Bi M, Li Q, Guo D, Ding X, Bi W, Zhang Y, Zou Y.
Sulforaphane improves neuronal mitochondrial function in brain tissue in acute carbon monoxide poisoning rats.
Basic Clin Pharmacol Toxicol 2016; online early: doi: 10.1111/bcpt.12728:
Chibowska K, Baranowska-Bosiacka I, Falkowska A, Gutowska I, Goschorska M, Chlubek M.
Effect of lead (Pb) on inflammatory processes in the brain.
Int J Mol Sci 2016; 17: 2140.
Dundar MA, Derin S, Aricigil M, Eryilmaz MA.
Sudden bilateral hearing loss after organophosphate inhalation.
Hsu C-W, Lee Y, Lee C-Y, Lin P-Y.
Neurotoxicity and nephrotoxicity caused by combined use of lithium and risperidone: a case report and literature review.
Solvent neurotoxicity in vehicle collision repair workers in New Zealand.
Padalla D, Reeves C, Galang E.
Neurotoxic manifestations after intrathecal gadobutrol injection: a case report.
PM R 2016; 8: S289.
Neurotoxicity induced by methamphetamine: an up-to-date review.
Curr Neuropharmacol 2016; online early: PMID:27908258:
Power K, Sparr SA.
Sensorimotor polyneuropathy attributed to heroin exposure in young female: a case report.
PM R 2016; 8: S278.
Power MC, Adar SD, Yanosky JD, Weuve J.
Exposure to air pollution as a potential contributor to cognitive function, cognitive decline, brain imaging, and dementia: a systematic review of epidemiologic research.
Rodríguez VM, Mendoza-Trejo MS, Hernandez-Plata I, Giordano M.
Behavioral effects and neuroanatomical targets of acute atrazine exposure in the male Sprague-Dawley rat.
Neurotoxicology 2017; 58: 161-70.
Romano F, Tarnutzer AA, Straumann D, Ramat S, Bertolini G.
Gaze-evoked nystagmus induced by alcohol intoxication.
J Physiol 2016; online early: doi: 10.1113/JP273204:
Romero DM, Berardino BG, Wolansky M3, Kotler ML.
Vulnerability of C6 astrocytoma cells after single-compound and joint exposure to type I and type II pyrethroid insecticides.
Toxicol Sci 2017; 155: 196-212.
Occupational toxicology
Sex ratio of the offspring of New Zealand phenoxy herbicide producers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin.
Balani A, Golla N, Dey AK, Mahankali S, Seelam S.
Image of the month: Intracranial calcifications due to chronic lead exposure.
Highly sensitive LC-MS/MS methods for urinary biological monitoring of occupational exposure to cyclophosphamide, ifosfamide, and methotrexate antineoplastic drugs and routine application.
Collins JJ, Bodner KM, Aylward TJ, Anteau S, Wilken M, Bodnar CM.
Mortality risk among workers with exposure to dioxins.
Forrester MB.
Firefighter exposures to potentially hazardous substances reported to Texas poison centers.
Gomes WR, Devóz PP, Araújo ML, Batista BL, Barbosa F, Jr., Barcelos GRM.
Milk and dairy products intake is associated with low levels of lead (Pb) in workers highly exposed to the metal.
Solvent neurotoxicity in vehicle collision repair workers in New Zealand.
Kofod DH, Jørs E, Varma A, Bhatta S, Thomsen JF.
Occup Environ Med 2016; online early: doi: 10.1136/oemed-2016-104200:
Llave I, Esquivel Rodríguez E, Castellanos Juárez FX, Sandoval Carrillo A, Lechuga Químones AM, Vázquez Alanis F, García Vargas G, Méndez Hernández EM, Duarte Sustaita J.
The relationship between blood lead levels and occupational exposure in a pregnant population.

Ocular toxicity

Paediatric toxicology

Gao Z, Ying X, Yan J, Wang J, Cai S, Yan C.
Acute mercury vapor poisoning in a 3-month-old infant: a case report.

Gopalakrishnan N, Kamarajan M, Balasubramaniyan T,
Sakthirajan R, Dhanapriya J, Dineshkumar T.
Diethylene glycol poisoning-induced acute kidney injury.

Gunes A, Bali H, Yel S, Kocamaz H, Bosnak M.
Respiratory depression after accidental nasal ingestion of brimonidine eye drops in infants.

Güngör O, Özkaya AK, Kirik S, Dalkiran T, Güngör G,
Isikay S, Davutoglu M, Dilber C.
Acute mercury poisoning in a group of school children.
Pediatri Emerg Care 2016; online early: doi: 10.1097/PEC.0000000000001011:

Holland J, Brown R.
Neonatal venlafaxine discontinuation syndrome: a mini-review.
Eur J Paediatr Neurol 2016; online early: doi: 10.1016/j.epjn.2016.11.003:

Hudson J, Mayo R, Dickes L, Chen L, Sherrill WW,
Summey J, Dalton B, Dankovich K.
Early treatment for neonatal abstinence syndrome: a palliative approach.

Inui A, Umetsu S, Sogo T, Komatsu H, Fukuda A,
Kasahara M, Matsuta A, Fujisawa T.
A Japanese child with idiopathic copper toxicosis.

Jackson MA, Schutze GE, Committee on Infectious Diseases.
The use of systemic and topical fluoroquinolones.
Pediatrics 2016; 138: e20162706.

Kieran I, Zakaria Z, Kaliperumal C, O’Rourke D, O’Hare A,
Laffan E, Caird J, King MD, Murray DJ.
Possible toxicity following embolization of congenital giant vertebra hemangioma: case report.
J Neurosurg Pediatr 2016; online early: doi: 10.3171/2016.5.PEDS13345:

Kim D, Park J, Kim YM, Tchah H.
Acute intoxication due to *Wisteria floribunda* seed in seven young children.
Pediatri Int 2016; online early: doi: 10.1111/ped.13218:

Kishore S, Chandelia S, Patharia N, Swarnim.
Severe acute respiratory distress syndrome caused by unintentional sewing machine lubricant ingestion: a case report.

Lau B, Khazanie U, Rowe E, Fauman K.
How a drug shortage contributed to a medication error leading to bactofen toxicity in an infant.

McKenzie LB, Roberts KJ, Kaercher RM, Collins CL,
Comstock RD, Fernandez S, Abdel-Rasoul M, Casavant MJ, Mihalov L.
Paediatric emergency department-based carbon monoxide detector intervention: a randomised trial.
J Pediatr Pharmacol Ther 2016; online early: doi: 10.1097/PEC.0000000000001011:

Mihalov L, Comstock RD, Fernandez S, Abdel
McKenzie LB, Roberts KJ, Kaercher RM, Collins CL,
Comstock RD, Fernandez S, Abdel-Rasoul M, Casavant MJ, Mihalov L.
Paediatric emergency department-based carbon monoxide detector intervention: a randomised trial.

Noble MJ, Longstreet B, Hendrickson RG, Gerona R.
Unintentional pediatric ingestion of electronic cigarette nicotine refill liquid necessitating intubation.

O’Hara B.
Paediatric pharmacokinetics and drug doses.

Ocete-Hita E, Salmerón-Fernández MJ, Urrutia-Maldonado E,
de Rueda PM, Salmerón-Ruiz M, Martinez-Padilla MC, Ruiz-Extremera A.
Analysis of immunogenetic factors in idiosyncratic drug-induced liver injury in the paediatric population.
J Pediatr Gastroenterol Nutr 2016; online early: doi: 10.1097/MPG.0000000000001502:

Sanke S, Yadav P, Chander R, Chandra J.
Acute methotrexate toxicity presenting with bullous lesions: an unusual presentation.

Schenk-Jaeger KM, Hofer-Lentner KE, Plenert B, Eckart D,
Haberl B, Schulze G, Borchert-Avalone J, Stedtler U, Pfab R.
No clinically relevant effects in children after accidental ingestion of Panareaolina foenisecii (lawn mower’s mushroom).
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2016.1271129:

Schulte J, Domanski K, Smith EA, Menendez A, Kleinschmidt KC, Roth BA.
Peditrics 2016; 138: e20160491.

Shin YH, Lee SH, Kim DY.
Risperidone in a child with untractable emergency delirium: a case report.

Siqueira LM.
Nicotine and tobacco as substances of abuse in children and adolescents.
Pediatrics 2016; online early: doi: 10.1542/peds.2016-3436:

Toce MS, Farias M, Brucolieri R, Brown DW, Burns MM.
J Pediatr 2016; online early: doi: 10.1016/j.jpeds.2016.11.038:

Tucker JS, Troxel WM, Ewing BA, D’Amico EJ.
Alcohol mixed with energy drinks: Associations with risky drinking and functioning in high school.
Drug Alcohol Depend 2016; 167: 36-41.

Vuong AM, Braun JM, Yolton K, Xie C, Webster GM, Sjödin A,
Dietrich KN, Lanphear BP, Chen A.

Poisons information and poison information centres
Forrester MB.
Firefighter exposures to potentially hazardous substances reported to Texas poison centers. J Occup Environ Med 2016; 58: e375.

Kang AM, Brooks DE.

Tak CR, Malheiro MC, Bennett HKW, Crouch BI.

Polymorphisms
Daly AK.

Psychiatric aspects

Reprotoxicty

Edlavitch SA.

Khan F, Niaz K, Ismail HF, Abdollahi M.

Li S, Guo Y, Williams G.

Risk assessment

Suicide

Coplan PM, Sessler NE, Hankirshnan V, Singh R, Perkel C. Comparison of abuse, suspected suicidal intent, and fatalities related to the 7-day buprenorphine transdermal patch versus other opioid analgesics in the National Poison Data System. Postgrad Med 2016; online early: doi: 10.1080/00325481.2017.1269596:

Wilbowo BP, Sitorus EC. A 30-year-old male with pylorus stricture and giant ulcers 4 weeks after caustic ingestion, a tentament suicide. J Gastroenterol Hepatol 2016; 31: 115-6.

MANAGEMENT

General

Antidotes

Acetylcysteine

Activated charcoal

Antivenom

Kalita B, Patra A, Mukherjee AK.
Unraveling the proteome composition and immuno-profiling of western India Russell’s viper venom for in-depth understanding of its pharmacological properties, clinical manifestations, and effective antivenom treatment. J Proteome Res 2016; online early: doi: 10.1021/acs.jproteome.6b00693:

Chelating agents

Flumazenil

Fomepizole

Iadarucizumab

Lipid emulsion therapy

Methylthioninium chloride (Methylene blue)

Naloxone
Berland N, Fox A, Tofighi B, Hanley K. Opioid overdose prevention training with naloxone, an adjunct to basic life support training for first year medical students. Subst Abus 2016; online early: doi: 10.1080/08897077.2016.1275925:

Antihistamines

Carvedilol
Citric acid
Abdel-Salam OME, Youness ER, Mohammed NA, Yassen NN, Khadrawy YA, El-Toukhy SE, Sleem AA.
Novel neuroprotective and hepatoprotective effects of citric acid in acute malathion intoxication.

Extracorporeal treatments
Porru M, Mameli A, Cianchetti ME, Musu M, Schirru P, Ruberto MF, Barcellona D, Marongiu F.
Dabigatran overdose: a case report of acute hepatitis.
Extracorporeal treatment.

Haemodialysis
Kawanishi H, Morishii M, Takahashi N, Tsuchiya S.
Preparation and quality management of fluids for hemodialysis.

Gastric lavage
Sanesi-Zaedeh H, Marashi SM.
Gastric decontamination in aluminium phosphide poisoning: a case against the use of water-based solutions.
Arq Hig Rada Toksikol 2016; 67: 364-5.

Melatonin
Asghari MH, Abdollahi M, de Oliveira MR, Nabavi SM.
A review of the protective role of melatonin during phosphine-induced cardiotoxicity: focus on mitochondrial dysfunction, oxidative stress and apoptosis.
J Pharm Pharmacol 2016; online early: doi: 10.1111/jphp.12682:

Vijayakumar HH, Ramya K, Duggappa DR, Gowda KV, Sudheesh K, Nethra SS, Raghavendra Rao RS.
Effect of melatonin on duration of delirium in organophosphorus compound poisoning patients: a double-blind randomised placebo controlled trial.

Opioid maintenance therapy
Sutter M, Walter M, Dürsteler KM, Strasser J, Vogel M.
J Dual Diagn 2016; online early: doi: 10.1080/15504263.2016.1269224:

Quercetin
Serum metabolomics analysis of quercetin against acrylamide-induced toxicity in rats.

Sulforaphane
Bi M, Li Q, Guo D, Ding X, Bi W, Zhang Y, Zou Y.
Sulforaphane improves neuronal mitochondrial function in brain tissue in acute carbon monoxide poisoning rats.
Basic Clin Pharmacol Toxicol 2016; online early: doi: 10.1111/bcpt.12728:

Vitamin K1
Treatment of a long-acting anticoagulant rodenticide poisoning cohort with vitamin K1 during the maintenance period.
Medicine (Baltimore) 2016; 95: e5461.

DRUGS General

Chalasani NP, Ghabril M, Fontana RJ, Barnhart HX, Hayashi PH, Ahmad J, Stolz A, Navarro VJ, Hoofnagle JH.
Idiosyncratic drug induced liver injury in African Americans: causes, clinical features and outcomes.
Hepatology 2016; 63: 64A.

Untargeted screening of unknown xenobiotics and potential toxins in plasma of poisoned patients using high-resolution mass spectrometry: generation of xenobiotic fingerprint using background subtraction.

Daly AK.
Are polymorphisms in genes relevant to drug disposition predictors of susceptibility to drug-induced liver injury?
Pharm Res 2016; online early: doi: 10.1007/s11095-016-2091-1:

Hamilton LA, Collins-Yoder A, Collins RE.
Drug-induced liver injury.

Harris V, Jackson C, Cooper A.
Review of toxic epidermal necrolysis.

Ifeagwu SC, Raithelhuber M, Crean C, Gerostamoulos D, Chung H, Tettey JN.
Toxicology in international drug control- prioritizing the most harmful, persistent and prevalent substances.

Jiang Y, McDonald JV, Koziol J, McCormick M, Viner S, Alexander Scott N.
Can emergency department, hospital discharge, and death data be used to monitor burden of drug overdose in Rhode Island?

Karlsson O, Hanrieder J.
Imaging mass spectrometry in drug development and toxicology.
Arch Toxicol 2016; online early: doi: 10.1007/s00204-016-1905-6:

Katarey D, Verma S.
Drug-induced liver injury.

Kung JS, Rajaguru CP, Sheik M.
The versatility of an overtube for effective foreign body removal in the setting of body packing.
Am J Gastroenterol 2016; 111: S693.
The effects of sex and gender on pharmacologic toxicity: implications for clinical therapy.
McGregor AJ.

Evaluation of KIMS immunoassays on a cobas c 501 analyzer for drugs of abuse and ethyl glucuronide testing in urine for forensic abstinence control.
Neukamm MA, Bahrami A, Auwärter V, Mehne FM, Höss E.

Intravenous lipid emulsion for management of systemic toxic effects of drugs.
O’Hara K.

Paediatric pharmacokinetics and drug doses.
Okubo Y, Nochioka K, Testa MA.

Analysis of immunogenetic factors in idiosyncratic drug-induced liver injury in the paediatric population.
Ocete-Hita E, Salmerón-Fernández MJ, Urrutia-Maldonado E, de Rueda PM, Salmerón-Ruiz M, Martínez-Padilla MC, Ruiz-Extremera A.

Intrathecally administered clopidogrel to improve platelet inhibition in hospital-acquired infections.
Okumura E, Takahashi M, Okada T.

Characterization of adverse drug reactions causing admission to an intensive care unit.

Identification of drugs in parenteral pharmaceutical preparations from a quality assurance and a diversion program by direct analysis in real-time AccuTOF mass spectrometry (DART-MS).

Characterization of adverse drug reactions causing admission to an intensive care unit.
Rudd RA, Seth P, David F, Scholl L.

Increases in drug and opioid-involved overdose deaths - United States, 2010-2015.
Trinidad JP, Warner M, Bastian BA, Minino AM, Hedegaard H.

Mortality at music festivals: academic and grey literature for case finding.
Turris SA, Lund A.

Wrightman RS, Nelson LS.

Acetaminophen (see paracetamol)

Aconitine
Karturi SP, Gudmundsson H, Akhtar M, Jahangir A, Choudhuri I.
Spectrum of cardiac manifestations from aconitine poisoning.

Adrenaline
Anshien M, Rose SR, Wills BK.
Unintentional epinephrine auto-injector injuries: a National Poison Center observational study.

Amphetamines and MDMA (ecstasy)
Banks ML.
Utility of preclinical drug versus food choice procedures to evaluate candidate medications for methamphetamine use disorder.

Fatal ecstasy-induced malignant hyperthermia with rhabdomyolysis. A case report.
Lang J, Dettmeyer R, Henn V, Birngruber CG, Veit F.
Rom J Legal Med 2016; 24: 212-5.

Toce MS, Farias M, Brucoleri R, Brown DW, Burns MM.

Antiarrhythmic drugs
Amiodarone
Mando R, Kandaswamy S, Cumpa E.
Amiodarone hepatotoxicity masked by underlying cirrhosis.
Ann J Gastroenterol 2016; 111; S1: S865.

Acute amiodarone pulmonary toxicity after surgical procedures.

Anaesthetics

Isoflurane

Antibiotics

Linezolid

Anticholinergic drugs

Anticoagulants

Dabigatran

Enoxaparin

Rivaroxaban

Anticonvulsants
Carbamazepine

Lamotrigine

Oxcarbazepine
Tarnutzer AA, Imbach LL. The intoxicated EEG. Seizure 2017; 45: 40-1:

Antidepressants

Mirtazapine
Antihistamines

Antineoplastics

Methotrexate

Antipsychotics

Quetiapine

Risperidone

Antituberculous drugs

Rifapentine

Antiviral drugs
Abacavir

Nevirapine

Baclofen
Calcium channel blockers

Amlodipine

Recurrent episodes of life-threatening vasodilatory shock following unintentional intoxication with amlodipine.
Hell J Cardiol 2016; online early:
doi: 10.1016/j.hjc.2016.12.001:

Verapamil
Akgün Sahin F, Çelebi SH, Güngör I, Coskun D, Ergüven Kaya E.

Therapeutic effects of intralipid and mediadlipid emulsions in a rat model of verapamil toxicity.

Lipid emulsion inhibits apoptosis induced by a toxic dose of verapamil via the delta-opioid receptor in H9c2 rat cardiomyoblasts.
Cardiovasc Toxicol 2016; online early:
doi: 10.1007/s12012-016-9392-9:

Cannabis (marijuana)
Bravo AJ, Pearson MR, Conner BT, Barnes JE.

Is 4/20 an event-specific marijuana holiday? a daily diary investigation of marijuana use and consequences among college students.

Maklad M, Al-Shammari M, Herrera K, Yoo J, Makar R.

Cannabinoid hyperemesis syndrome: a systematic review.
Am J Gastroenterol 2016; 111: S410.

Beta blockers

Lorazepam
Estremera-Marcial R, Figueroa I, Martin-Ortiz JR, Santiago-Rivera L.

Drug induced liver injury caused by lorazepam.
Am J Gastroenterol 2016; 111, S1: S1360.

Buprenorphine
Coplan PM, Sessler NE, Harikrishnan V, Singh R, Perkel C.

Comparison of abuse, suspected suicidal intent, and fatalities related to the 7-day buprenorphine transdermal patch versus other opioid analgesics in the National Poison Data System.
Postgrad Med 2016; online early:
doi: 10.1080/00325481.2017.1269596:

Caffeine
Tucker JS, Troxel WM, Ewing BA, D’Amico EJ.

Alcohol mixed with energy drinks: Associations with risky drinking and functioning in high school.
Drug Alcohol Depend 2016; 167: 36-41.

Calcium channel blockers

Amlodipine

Recurrent episodes of life-threatening vasodilatory shock following unintentional intoxication with amlodipine.
Hell J Cardiol 2016; online early:
doi: 10.1016/j.hjc.2016.12.001:

Verapamil
Akgün Sahin F, Çelebi SH, Güngör I, Coskun D, Ergüven Kaya E.

Therapeutic effects of intralipid and mediadlipid emulsions in a rat model of verapamil toxicity.

Lipid emulsion inhibits apoptosis induced by a toxic dose of verapamil via the delta-opioid receptor in H9c2 rat cardiomyoblasts.
Cardiovasc Toxicol 2016; online early:
doi: 10.1007/s12012-016-9392-9:

Cannabis (marijuana)
Bravo AJ, Pearson MR, Conner BT, Barnes JE.

Is 4/20 an event-specific marijuana holiday? a daily diary investigation of marijuana use and consequences among college students.

Maklad M, Al-Shammari M, Herrera K, Yoo J, Makar R.

Cannabinoid hyperemesis syndrome: a systematic review.
Am J Gastroenterol 2016; 111: S410.

Beta blockers

Lorazepam
Estremera-Marcial R, Figueroa I, Martin-Ortiz JR, Santiago-Rivera L.

Drug induced liver injury caused by lorazepam.
Am J Gastroenterol 2016; 111, S1: S1360.

Buprenorphine
Coplan PM, Sessler NE, Harikrishnan V, Singh R, Perkel C.

Comparison of abuse, suspected suicidal intent, and fatalities related to the 7-day buprenorphine transdermal patch versus other opioid analgesics in the National Poison Data System.
Postgrad Med 2016; online early:
doi: 10.1080/00325481.2017.1269596:

Caffeine
Tucker JS, Troxel WM, Ewing BA, D’Amico EJ.

Alcohol mixed with energy drinks: Associations with risky drinking and functioning in high school.
Drug Alcohol Depend 2016; 167: 36-41.

Cytotoxic drugs

Cantrixil

Desmethyl carbodenafil

Eye drops

Gamma hydroxybutyrate

Herbal medicines, ethnic remedies and dietary supplements

Aschenbeck KA, Hylwa SA. Poison ivy and related Toxicodendron extracts in topical products. Dermatitiss 2016; online early: doi: 10.1097/DER.0000000000000252:

Hydroxychloroquine

Hypnotics

Suvorexant

Hypoglycaemic drugs

Metformin

Pinto J, Sheikh I, Pabona JM, Culppepper-Morgan J. A rare case of metformin associated hepatotoxicity masquerading as autoimmune hepatitis.
Am J Gastroenterol 2016; 111, S1: S891.

Insulin

Koch HJ. Intentional long-term repeated insulin overdosing for 15 years in a 55-year-old male with compulsive personality traits.

Khat

Am J Gastroenterol 2016; 111: S1359.

Levetiracetam

BMJ Case Rep 2016; doi: 10.1136/bcr-2016-217407:

Lithium

Gitlin M. Lithium side effects and toxicity: prevalence and management strategies.

Loperamide

Eggleston W, Clark KH, Marraffa JM. Loperamide abuse associated with cardiac dysrhythmia and death.

Pharmacotherapy 2016; online early: doi: 10.1002/phar.1885:

Long WM, Sinnott VB, Bracker K, Thomas D. Use of 20% intravenous lipid emulsion for the treatment of loperamide toxicosis in a Collie homozygous for the ABCB1-Δ mutation.

Stanciu CN, Gnanasegaram SA. Loperamide, the "poor man's methadone": brief review.
J Psychoactive Drugs 2016; online early: doi: 10.1080/02791072.2016.1260188:

Mephedrone

Curr Neuropharmacol 2016; online early: PMID:27908258:

Muscle relaxants

Carisoprodol

Vo KT, Horng H, Smollin CG, Benowitz NL. Severe carisoprodol withdrawal after a 14-year addiction and acute overdose.

Nicotine

Siqueira LM. Nicotine and tobacco as substances of abuse in children and adolescents.
Pediatrics 2016; online early: doi: 10.1542/peds.2016-3436:

Nitrous oxide

Sleeman I, Wiobl L, Burn D. An unusual cause of falls in a young woman.

Novel psychoactive substances

Curr Top Behav Neurosci 2016; online early: doi: 10.1007/7854_2016_63:

Michely JA, Brandt SD, Meyer MR, Maurer HH. Biotransformation and detectability of the new psychoactive substances 5-fluoro-DALT, 7-methyl-DALT, and 5,6-methylenedioxy-DALT in urine using GC-MS, LC-MS, and LC-MS/MS.

Pichini S, Busardo FP, Pacifi R, Kintz P.
New psychoactive substances (NPS), a new global issue: neuropharmacological, chemical and toxicological aspects. Curr Neuropharmacol 2016; online early; PMID:28000553:

Phenethylamines

Synthetic cannabinoids

Synthetic cathinones

Synthetic opioids

NSAIDs

Diclofenac

Ondansetron

Opioids

Bizzarri JV, Cassetti V, Sanna L, Maremmanni AG, Rovai L, Bacciardi S, Piacentino D, Conca A, Maremmanni I. The newer opioid agonist treatment with lower substitutive opiate doses is associated with better toxicity outcome than the older harm reduction treatment. Ann Gen Psychiatry 2016; 15: 34.

Codeine

Fentanyl

Methadone

Morphine

Paracetamol (acetaminophen)

Heppell SPE, Isbister GK. Lack of respiratory depression in paracetamol-codeine combination overdoses.
Potassium
Palmiere C, Scarpelli MP, Varlet V, Baumann P, Michaud K, Augsburger M.
Fatal intravenous injection of potassium: is postmortem biochemistry useful for the diagnosis?

Psychotropic drugs
Palmiere C, Augsburger M, Varlet V.
Disturbances of glucose metabolism associated with the use of psychotropic drugs: a post-mortem evaluation.

Serotonin antagonists
Oxetorone
New evidence for oxetorone toxicity.

SSRIs and SNRIs
Ou J-J, Li Y-M.
Autism spectrum disorder and prenatal exposure to selective serotonin reuptake inhibitors: need for further analysis.
Reprod Toxicol 2016; online early: doi: 10.1016/j.reprotox.2016.11.017:

Escitalopram
Degiacomo J, Luedtke S.
Neonatal toxicity from escitalopram use in utero: a case report.

Venlafaxine
Eldem I, Kendirli T, Azapagasi E, Özdemir G, Yildiz Ç, Yilmaz MM, Karatasoglu Ö, Benderlioglu E.
Venlafaxine intoxication in an adolescent presenting with severe lactic acidosis.

Holland J, Brown R.
Neonatal venlafaxine discontinuation syndrome: a mini-review.
Eur J Paediatr Neurol 2016; online early: doi: 10.1016/j.ejpn.2016.11.003:

Necpál J, Skovranek M.
Opsoclonus-myoclonus ataxia syndrome secondary to venlafaxine intoxication.

Substance abuse
Berland N, Fox A, Toffigi B, Hanley K.
Opioid overdose prevention training with naloxone, an adjunct to basic life support training for first year medical students.
Subst Abus 2016; online early: doi: 10.1080/08897077.2016.1275925:

Iwanicki JL, Severson SG, McDaniel H, Rosenblum A, Fong C, Cicero TJ, Ellis MS, Kurtz SP, Buttram ME, Dart RC.
Abuse and diversion of immediate release opioid analgesics as compared to extended release formulations in the United States.

Keeshin SW, Feinberg J.
Endocarditis as a marker for new epidemics of injection drug use.

Kong TY, Kim JH, Kim JY, In MK, Choi KH, Kim HS, Lee HS.

Kurtz SP, Buttram ME, Surratt HL.
Benzodiazepine dependence among young adult participants in the club scene who use drugs.
J Psychoactive Drugs 2016; online early: doi: 10.1080/02791072.2016.1269978:

Lasoff DR, Koh CH, Corbett B, Minns AB, Cantrell FL.
Pharmacotherapy 2016; online early:

Tricyclic antidepressants

Amitriptyline

Vitamins
25-hydroxy vitamin D

Calciferol

McCullough P, Amend J. Results of daily oral dosing with up to 60,000 international units (iu) of vitamin D3 for 2 to 6 years in 3 adult males. J Steroid Biochem Mol Biol 2016; online early: doi: 10.1016/j.jsbmb.2016.12.009:

CHEMICAL INCIDENTS AND POLLUTION
Air pollution

Pollution and hazardous waste

Water pollution

CHEMICALS General
Forrester MB.
Firefighter exposures to potentially hazardous substances reported to Texas poison centers. J Occup Environ Med 2016; 58: e375.

1,4-naphthoquinone

4,4'-methylene-bis(2-chloroaniline)

Acrylamide

Alcohol (ethanol)

Carbon black

Carbon monoxide
Aida JT, Tran DA. A three month journey from the ICU to return to work following carbon monoxide poisoning: a case report. PM R 2016; 8: S243.

Aldehydes

Alkylphenol

Ammonia

Benzene

Comparison of lung damage in mice exposed to black carbon particles and 1,4-naphthoquinone coated black carbon particles. Sci Total Environ 2016; online early: doi: 10.1016/j.scitotenv.2016.11.214:

Wiergowski M, Anand JS, Karnecki K, Soltyszewski I, Jankowski Z.

Contrast media

Corrosives

Wibowo BP, Sitorus EC. A 30-year-old male with pylorus stricture and giant ulcers 4 weeks after caustic ingestion, a tentament suicide. J Gastroenterol Hepatol 2016; 31: 115-6.

Cosmetics

Diethylene glycol

Dioxin

E-cigarettes and e-liquids
Khlystov A, Samburova V.
Flavoring compounds dominate toxic aldehyde production during e-cigarette vaping.

Ethylene vinyl alcohol copolymer

Formic acid

Fragrance compounds

Hydrocarbons

Hydrofluoric acid

Hydrogen sulphide

Iodine

Methyl glucose polyethers

N-butane

Nitrogen dioxide

Nitrous oxide

Paradichlorobenzene

Paraphenylenediamine

Perchlorate
Phenol
Giri PP, Sinha R, Sikka S, Mour S.
Acute carbonic acid poisoning: a report of four cases.

Phthalates
Tschatzis ED, Tzimou-Tsitouridou R, Gika HG.
Analytical methodologies for the assessment of phthalate exposure in humans.

Polybrominated diphenyls
Vuong AM, Braun JM, Yolton K, Xie C, Webster GM, Sjödin A, Dietrich KN, Lanphear BP, Chen A.
Prenatal and postnatal polybrominated diphenyl ether exposure and visual spatial abilities in children.

Polybrominated biphenyls
Boucher O, Muckle G, Ayotte P, Dewaillée E, Jacobson SW, Jacobson JL.
Altered fine motor function at school age in Inuit children exposed to PCBs, methymercury, and lead.

Polychlorinated dibenzodioxins
Sex ratio of the offspring of New Zealand phenoxy herbicide producers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin.

Polycyclic aromatic hydrocarbons
Li J, Li F.
Polycyclic aromatic hydrocarbons in the Yellow River estuary: levels, sources and toxic potency assessment.
Mar Pollut Bull 2016; online early: doi: 10.1016/j.marpolbul.2016.11.043:

Quaternary ammonium compounds
Johnson W, Jr., Heldreth B, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Jr., Shank RC, Slaga TJ, Snyder PW, Andersen FA.
Safety assessment of polyguaternium-22 and polyquatemum-39 as used in cosmetics.
Int J Toxicol 2016; 35: 47S-53S.

Screenwashes
Toxicity from automotive screenwashes reported to the United Kingdom National Poisons Information Service (NPIS) from 2012 to 2015.
Clin Toxicol 2017; online early: doi: 10.1080/155636650.2016.1271130:

Silica
Pavan C, Fubini B.
Unveiling the variability of "quartz hazard" in light of recent toxicological findings.
Chem Res Toxicol 2016; online early: doi: 10.1021/acs.chemrestox.6b00409:

Smoke
Siddiqui Z, Ladha P, Dissanaike S.
Sickle cell disease, severe acidosis, and inhalation injury: case report of neurologically intact survival after cardiac arrest from smoke inhalation.
J Burn Care Res 2016; online early: doi: 10.1097/BCR.0000000000000487:

Sodium formate
Johnson W, Jr., Heldreth B, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Jr., Shank RC, Slaga TJ, Snyder PW, Andersen FA.
Safety assessment of formic acid and sodium formate as used in cosmetics.
Int J Toxicol 2016; 35: 41S-54S.

Solvents
Solvent neurotoxicity in vehicle collision repair workers in New Zealand.

Tobacco
Tobacco-specific nitrosamines in the tobacco and mainstream smoke of U.S. commercial cigarettes.
Chem Res Toxicol 2016; online early: doi: 10.1021/acs.chemrestox.6b00268:

Analytical methodologies for the assessment of phthalate exposure in humans.

Polycyclic aromatic hydrocarbons in the Yellow River estuary: levels, sources and toxic potency assessment.
Mar Pollut Bull 2016; online early: doi: 10.1016/j.marpolbul.2016.11.043:

Safety assessment of polyguaternium-22 and polyquatemum-39 as used in cosmetics.
Int J Toxicol 2016; 35: 47S-53S.

Toxic alcohols
Hassanian-Moghadam H, Zamani N.
A brief review on toxic alcohols: management strategies.

Ethylene glycol
Kowsika S.
Ethylene glycol induced bowel perforation.
Am J Gastroenterol 2016; 111: S984.
Methanol

Chen T-H, Kuo C-H, Huang C-T, Wang W-L.

Use of fomepizole in pediatric methanol exposure: the first case report in Taiwan and a literature review.

Toxicity from automotive screenwashers reported to the United Kingdom National Poisons Information Service (NPIS) from 2012 to 2015.

Clin Toxicol 2017; online early; doi: 10.1080/15563650.2016.1271130:

Triclosan

Wei L, Qiao P, Shi Y, Ruan Y, Yin J, Wu Q, Shao B.

Triclosan/triclocarban levels in maternal and umbilical blood samples and their association with fetal malformation.

Clin Chim Acta 2016; online early; doi: 10.1016/j.cca.2016.12.024:

Tryptamine

Wüst N, Rauscher-Gabernig E, Steinwider J, Bauer F, Paulsen P.

Risk assessment of dietary exposure to tryptamine for the Austrian population.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; online early; doi: 10.1080/19440049.2016.1269207:

Zinc chloride

El Idrissi A, van Berkel L, Bonekamp NE, Dalemans DJZ, van der Heyden MAG.

The toxicology of zinc chloride smoke producing bombs and screens.

Clin Toxicol 2017; online early; doi: 10.1080/15563650.2016.1271125:

METALS

General

Malara P, Fischer A, Malara B.

Selected toxic and essential heavy metals in impacted teeth and the surrounding mandibular bones of people exposed to heavy metals in the environment.

Perez AL, Nembhard M, Monnot A, Bator D, Madonick E, Gaffney SH.

Child and adult exposure and health risk evaluation following the use of metal- and metalloid-containing costume cosmetics sold in the United States.

Regul Toxicol Pharmacol 2016; online early; doi: 10.1016/j.yrtph.2016.12.005:

Skalny AV, Kaminskaya GA, Kreshevska TI, Abikenova SK, Skalnaya MG, Berezkina ES, Grabeklis AR, Tinkov AA.

The level of toxic and essential trace elements in hair of petrochemical workers involved in different technological processes.

Environ Sci Pollut Res Int 2016; online early; doi: 10.1007/s11356-016-8315-4:

Potentially toxic trace element contamination, sources, and pollution assessment in farmlands, Bijie City, southwestern China.

Environ Monit Assess 2017; 189: 25.

Aluminium

Becker LC, Boyer I, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Jr., Shank RC, Slaga TJ, Snyder PW, Andersen FA.

Safety assessment of alumina and aluminum hydroxide as used in cosmetics.

Int J Toxicol 2016; 35: 165-33S.

Arsenic

Röllin HB, Channa K, Olutola BG, Odland JØ.

Evaluation of in utero exposure to arsenic in South Africa.

Human exposure to organic arsenic species from seafood.

J Expo Sci Environ Epidemiol 2016; online early: doi: 10.1038/jes.2016.74:

Chromium

Salama A, Hegazy R, Hassan A.

Intranasal chromium induces acute brain and lung injuries in rats: assessment of different potential hazardous effects of environmental and occupational exposure to chromium and introduction of a novel pharmacological and toxicological animal model.

Copper

A Japanese child with idiopathic copper toxicity.

Iron

Oduor H, Minniti CP, Brofferio A, Gharib AM, Abd-Elmoniem KZ, Hsieh MM, Tisdale JF, Fitzhugh CD.

Severe cardiac iron toxicity in two adults with sickle cell disease.

Transfusion 2016; online early: doi: 10.1111/trf.13961:

Vachhani H.

'Adult metal toxicity. How ironic,' a rare case of iron poisoning in an adult.

Am J Gastroenterol 2016; 111, S1: S1352.

Lead

Balani A, Golla N, Dey AK, Mahankali S, Seelam S.

Image of the month: Intracranial calcifications due to chronic lead exposure.

Boucher O, Mucke G, Ayotte P, Dewailly E, Jacobson SW, Jacobson JL.

Altered fine motor function at school age in Inuit children exposed to PCBs, methylmercury, and lead.

Environ Int 2016; 95: 144.

Chibowska K, Baranowska-Bosiacka I, Falkowska A, Gutowska I, Goshorska M, Chlubek D.

Effect of lead (Pb) on inflammatory processes in the brain.

Int J Mol Sci 2016; 17: 2140.
El-Magd MA, Kahilo KA, Nasr NE, Kamal T, Shukry M, Saleh AA.
A potential mechanism associated with lead-induced testicular toxicity in rats.
Andrologia 2016; online early: doi: 10.1111/and.12750:

Perinatal exposure to lead (Pb) induces ultrastructural and molecular alterations in synapses of rat offspring.
Toxicology 2016; 373: 13-29.

Gomes WR, Devóz PP, Araújo ML, Batista BL, Barbosa F, Jr., Barcelos GRM.
Milk and dairy products intake is associated with low levels of lead (Pb) in workers highly exposed to the metal.

Kieltucki J, Dobrakowski M, Pawlas N, Sredniawa B, Boron M, Kasperczyk S.
The analysis of QT interval and repolarization morphology of the heart in chronic exposure to lead.
Hum Exp Toxicol 2016; online early: doi: 10.1177/0960377516680277:

The relationship between blood lead levels and occupational exposure in a pregnant population.

Lead intoxication due to ayurvedic medications as a cause of abdominal pain in adults.

Miracle VA.
Lead poisoning in children and adults.

Effect of occupational exposure to lead on new risk factors for cardiovascular diseases.
Occup Environ Med 2016; online early: doi: 10.1136/oemed-2016-103996:

Prenatal lead exposure and fetal growth: smaller infants have heightened susceptibility.
Environ Int 2016; online early: doi: 10.1016/j.envint.2016.11.023:

Zhou R, Xu Y, Shen J, Han L, Chen X, Feng X, Kuang X.
Urinary KIM-1: a novel biomarker for evaluation of occupational exposure to lead.

Lithium

Gitlin M.
Lithium side effects and toxicity: prevalence and management strategies.

Zamani N, Peaezi M, Hassanian-Moghaddam H.
Lithium toxicity in a pregnant woman.

Mercury

Boucher O, Muckle G, Ayotte P, Dewailly E, Jacobson SW, Jacobson JL.
Altered fine motor function at school age in Inuit children exposed to PCBs, methylmercury, and lead.

Gao Z, Ying X, Yan J, Wang J, Cai S, Yan C.
Acute mercury vapor poisoning in a 3-month-old infant: a case report.

Acute mercury poisoning in a group of school children.
Pediatri Emerg Care 2016; online early: doi: 10.1097/PEC.0000000000001011:

Kotera SS, Shankar KC, Rajagopalan S.
Liposuction technique used as a treatment modality for suicide attempt by injection of mercury.

Mosa A, Duffin J.
The interwoven history of mercury poisoning in Ontario and Japan.

Is chelation therapy efficient for the treatment of intravenous metallic mercury intoxication?
Basic Clin Pharmacol Toxicol 2016; online early: doi: 10.1111/bcpt.12725:

Sahani M, Sulaiman NS, Tan BS, Yahya NA, Anual ZF, Wan Mahiyuddin WR, Khan MF, Mutalib KA.
Mercury in dental amalgam: are our health care workers at risk?

Pesticides

Harari R, Harari F, Forastiere F.
Environmental nickel exposure from oil refinery emissions: a case study in Ecuador.

General

Lekei EE, Ngowi AV, London L.
Underreporting of acute pesticide poisoning in Tanzania: modelling results from two cross-sectional studies.
Environ Health 2016; 15: 118.

Matusiak M, Kruszewski M, Jodlowska-Jedrych B, Kapka-Skrzypczak L.
Effect of prenatal exposure to pesticides on children's health.

Mohiuddin H, Siddiqi R, Aljaz P.

Pesticides and cancer

Aluminium phosphate

Atrazine

Herbicides

Glyphosate

Linuron

Insecticides (general)

Silver K, Dong K, Zhorov BS. Molecular mechanism of action and selectivity of sodium channel blocker insecticides. Curr Med Chem 2016; online early: PMID:27993108:

Neonicotinoids

Acetamiprid

Imidacloprid

Organochlorine pesticides

General

Organophosphorus insecticides

General

Chlorpyrifos

Malathion

Methamidophos

Paraquat and diquat

Pyrethroid insecticides

General

Cypermethrin

Rodenticides

CHEMICAL WARFARE, BIOLOGICAL WARFARE AND RIOT CONTROL AGENTS

Chemical warfare

General

Mustard gas

Nerve agents

Soman

VX

PLANTS

Achillea millefolium (Yarrow)

Areca catechu (Betel nut)

ANIMALS

Fish/marine poisoning

Scorpions

Snake bites

Elapidae
Su HY, Wang MJ, Li YH, Tang CN, Tsai MJ.
Can surgical need in patients with Naja atra (Taiwan or Chinese cobra) envenomation be predicted in the emergency department?

Viperinae (True vipers)
Kalita B, Patra A, Mukherjee AK.
Unraveling the proteome composition and immuno-profil of western India Russell’s viper venom for in-depth understanding of its pharmacological properties, clinical manifestations, and effective antivenom treatment.
J Proteome Res 2016; online early; doi: 10.1021/acs.jproteome.6b00693:

Spiders
Xu D, Wang X.
Transcriptome analysis to understand the toxicity of Latrodectus tredecimguttatus eggs.
Toxins (Basel) 2016; 8: 378.

INDEX

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-naphthoquinone</td>
<td>34</td>
</tr>
<tr>
<td>25-hydroxy vitamin D</td>
<td>33</td>
</tr>
<tr>
<td>4,4’-methylene-bis(2-chloroaniline)</td>
<td>34</td>
</tr>
<tr>
<td>Abacavir</td>
<td>26</td>
</tr>
<tr>
<td>Acetaminophen</td>
<td>31</td>
</tr>
<tr>
<td>Acetamiprid</td>
<td>40</td>
</tr>
<tr>
<td>Acetylcysteine</td>
<td>21</td>
</tr>
<tr>
<td>Achillea millefolium</td>
<td>41</td>
</tr>
<tr>
<td>Acetamide</td>
<td>34</td>
</tr>
<tr>
<td>Activated charcoal</td>
<td>21</td>
</tr>
<tr>
<td>Adrenaline</td>
<td>24</td>
</tr>
<tr>
<td>Air pollution</td>
<td>33</td>
</tr>
<tr>
<td>Alcohol</td>
<td>34</td>
</tr>
<tr>
<td>Alanine</td>
<td>24</td>
</tr>
<tr>
<td>Alkylphenol</td>
<td>34</td>
</tr>
<tr>
<td>Aluminium</td>
<td>38</td>
</tr>
<tr>
<td>Aluminium phosphate</td>
<td>40</td>
</tr>
<tr>
<td>Amfetamines</td>
<td>24</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>24</td>
</tr>
<tr>
<td>Amitriptyline</td>
<td>33</td>
</tr>
<tr>
<td>Amodipine</td>
<td>35</td>
</tr>
<tr>
<td>Ammonia</td>
<td>34</td>
</tr>
<tr>
<td>Anaesthetics</td>
<td>25</td>
</tr>
<tr>
<td>Analytical toxicology</td>
<td>11</td>
</tr>
<tr>
<td>Animals, general</td>
<td>42</td>
</tr>
<tr>
<td>Antiarhythmic drugs</td>
<td>24</td>
</tr>
<tr>
<td>Antibiotics</td>
<td>25</td>
</tr>
<tr>
<td>Anticholinergic drugs</td>
<td>25</td>
</tr>
<tr>
<td>Anticoagulants</td>
<td>25</td>
</tr>
<tr>
<td>Anticonvulsants</td>
<td>25</td>
</tr>
<tr>
<td>Antidepressants</td>
<td>25</td>
</tr>
<tr>
<td>Antidotes</td>
<td>21</td>
</tr>
<tr>
<td>Antihistamines</td>
<td>22</td>
</tr>
<tr>
<td>Antineoplastics</td>
<td>26</td>
</tr>
<tr>
<td>Antipsychotics</td>
<td>26</td>
</tr>
<tr>
<td>Antitubercular drugs</td>
<td>26</td>
</tr>
<tr>
<td>Antivenom</td>
<td>21</td>
</tr>
<tr>
<td>Antiviral drugs</td>
<td>26</td>
</tr>
<tr>
<td>Areca catechu</td>
<td>41</td>
</tr>
<tr>
<td>Arsenic</td>
<td>38</td>
</tr>
<tr>
<td>Atrazine</td>
<td>40</td>
</tr>
<tr>
<td>Baclofen</td>
<td>26</td>
</tr>
<tr>
<td>Barbbiturates</td>
<td>27</td>
</tr>
<tr>
<td>Benzene</td>
<td>34</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>27</td>
</tr>
<tr>
<td>Beta blockers</td>
<td>27</td>
</tr>
<tr>
<td>Betel nut</td>
<td>41</td>
</tr>
<tr>
<td>Biological warfare</td>
<td>41</td>
</tr>
<tr>
<td>Biomarkers</td>
<td>12</td>
</tr>
<tr>
<td>Black nightshade</td>
<td>42</td>
</tr>
<tr>
<td>Body packers</td>
<td>12</td>
</tr>
<tr>
<td>Buprenorphine</td>
<td>27</td>
</tr>
<tr>
<td>Caffeine</td>
<td>27</td>
</tr>
<tr>
<td>Calcirol</td>
<td>33</td>
</tr>
<tr>
<td>Calcium channel blockers</td>
<td>27</td>
</tr>
<tr>
<td>Cannabis</td>
<td>27</td>
</tr>
<tr>
<td>Cantrix</td>
<td>28</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>25</td>
</tr>
<tr>
<td>Carbon black</td>
<td>34</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>34</td>
</tr>
<tr>
<td>Carcinogenicity</td>
<td>12</td>
</tr>
<tr>
<td>Cardiotoxicity</td>
<td>12</td>
</tr>
<tr>
<td>Carisoprodol</td>
<td>29</td>
</tr>
<tr>
<td>Carvedilol</td>
<td>22</td>
</tr>
<tr>
<td>Cassava</td>
<td>42</td>
</tr>
<tr>
<td>Catha edulis</td>
<td>42</td>
</tr>
<tr>
<td>Chelating agents</td>
<td>22</td>
</tr>
<tr>
<td>Chemical warfare, general</td>
<td>41</td>
</tr>
<tr>
<td>Chemicals, general</td>
<td>33</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>40</td>
</tr>
<tr>
<td>Chromium</td>
<td>38</td>
</tr>
<tr>
<td>Citric acid</td>
<td>23</td>
</tr>
<tr>
<td>Codeine</td>
<td>27</td>
</tr>
<tr>
<td>Contrast media</td>
<td>35</td>
</tr>
<tr>
<td>Copper</td>
<td>38</td>
</tr>
<tr>
<td>Corrosives</td>
<td>35</td>
</tr>
<tr>
<td>Cosmetics</td>
<td>35</td>
</tr>
<tr>
<td>Permyrin</td>
<td>41</td>
</tr>
<tr>
<td>Cyproheptadine</td>
<td>22</td>
</tr>
<tr>
<td>Cytotoxic drugs</td>
<td>28</td>
</tr>
<tr>
<td>Dabigatran</td>
<td>25</td>
</tr>
<tr>
<td>DEET</td>
<td>35</td>
</tr>
<tr>
<td>Dermal toxicity</td>
<td>13</td>
</tr>
<tr>
<td>Desmethyl carbodenafil</td>
<td>28</td>
</tr>
<tr>
<td>Detergents</td>
<td>35</td>
</tr>
<tr>
<td>Developmental toxicology</td>
<td>13</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>32</td>
</tr>
<tr>
<td>Diacylumberophosphate</td>
<td>28</td>
</tr>
<tr>
<td>Dialkyl sulfosuccinate salts</td>
<td>35</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>30</td>
</tr>
<tr>
<td>Dietary supplements</td>
<td>28</td>
</tr>
<tr>
<td>Diethylenglycol</td>
<td>35</td>
</tr>
<tr>
<td>Dioxin</td>
<td>35</td>
</tr>
<tr>
<td>Diquat</td>
<td>41</td>
</tr>
<tr>
<td>Drugs, general</td>
<td>23</td>
</tr>
<tr>
<td>E-cigarettes and e-liquids</td>
<td>35</td>
</tr>
<tr>
<td>Ecstasy</td>
<td>24</td>
</tr>
<tr>
<td>Elapidae</td>
<td>43</td>
</tr>
<tr>
<td>Term</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Enoxaparin</td>
<td>25</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>13</td>
</tr>
<tr>
<td>Escitalopram</td>
<td>32</td>
</tr>
<tr>
<td>Ethanol</td>
<td>34</td>
</tr>
<tr>
<td>Ethanol remedies</td>
<td>28</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>37</td>
</tr>
<tr>
<td>Ethylene vinyl alcohol copolymer</td>
<td>36</td>
</tr>
<tr>
<td>Extracorporeal treatments</td>
<td>23</td>
</tr>
<tr>
<td>Eye drops</td>
<td>28</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>31</td>
</tr>
<tr>
<td>Fish/marine poisoning</td>
<td>42</td>
</tr>
<tr>
<td>Flumazenil</td>
<td>22</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>25</td>
</tr>
<tr>
<td>Fomepizole</td>
<td>22</td>
</tr>
<tr>
<td>Foreign body ingestion</td>
<td>14</td>
</tr>
<tr>
<td>Forensic toxicology</td>
<td>14</td>
</tr>
<tr>
<td>Formic acid</td>
<td>36</td>
</tr>
<tr>
<td>Fragrance compounds</td>
<td>36</td>
</tr>
<tr>
<td>Gamma hydroxybutyrate</td>
<td>28</td>
</tr>
<tr>
<td>Garcinia cambogia</td>
<td>42</td>
</tr>
<tr>
<td>Gastric lavage</td>
<td>23</td>
</tr>
<tr>
<td>Genotoxicity</td>
<td>15</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>40</td>
</tr>
<tr>
<td>Haemodialysis</td>
<td>23</td>
</tr>
<tr>
<td>Hazardous waste</td>
<td>33</td>
</tr>
<tr>
<td>Hepatotoxicity</td>
<td>15</td>
</tr>
<tr>
<td>Herbal medicines</td>
<td>36</td>
</tr>
<tr>
<td>Herbicides</td>
<td>40</td>
</tr>
<tr>
<td>Heroin</td>
<td>28</td>
</tr>
<tr>
<td>Hydrocarbons</td>
<td>36</td>
</tr>
<tr>
<td>Hydrofluoric acid</td>
<td>36</td>
</tr>
<tr>
<td>Hydrogen sulphide</td>
<td>36</td>
</tr>
<tr>
<td>Hydroxychloroquine</td>
<td>28</td>
</tr>
<tr>
<td>Hypnotics</td>
<td>29</td>
</tr>
<tr>
<td>Hypoglycaemic drugs</td>
<td>29</td>
</tr>
<tr>
<td>Idracizumab</td>
<td>22</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>40</td>
</tr>
<tr>
<td>Inhalation toxicity</td>
<td>16</td>
</tr>
<tr>
<td>Insecticides (general)</td>
<td>40</td>
</tr>
<tr>
<td>Insulin</td>
<td>29</td>
</tr>
<tr>
<td>Iodine</td>
<td>36</td>
</tr>
<tr>
<td>Iron</td>
<td>38</td>
</tr>
<tr>
<td>Isoflurane</td>
<td>25</td>
</tr>
<tr>
<td>Khat</td>
<td>29, 42</td>
</tr>
<tr>
<td>Kinetics</td>
<td>16</td>
</tr>
<tr>
<td>Lamotrigine</td>
<td>25</td>
</tr>
<tr>
<td>Lead</td>
<td>38</td>
</tr>
<tr>
<td>Levetiracetam</td>
<td>29</td>
</tr>
<tr>
<td>Linezolid</td>
<td>25</td>
</tr>
<tr>
<td>Linuron</td>
<td>40</td>
</tr>
<tr>
<td>Lipid emulsion therapy</td>
<td>22</td>
</tr>
<tr>
<td>Lithium</td>
<td>29, 39</td>
</tr>
<tr>
<td>Loperamide</td>
<td>29</td>
</tr>
<tr>
<td>Lorazepam</td>
<td>27</td>
</tr>
<tr>
<td>Malathion</td>
<td>41</td>
</tr>
<tr>
<td>Management, general</td>
<td>21</td>
</tr>
<tr>
<td>Manihot esculenta</td>
<td>42</td>
</tr>
<tr>
<td>Marijuana</td>
<td>27</td>
</tr>
<tr>
<td>MDMA</td>
<td>24</td>
</tr>
<tr>
<td>Mechanisms</td>
<td>16</td>
</tr>
<tr>
<td>Medication errors</td>
<td>16</td>
</tr>
<tr>
<td>Melatonin</td>
<td>23</td>
</tr>
<tr>
<td>Mephedrone</td>
<td>29</td>
</tr>
<tr>
<td>Mercury</td>
<td>39</td>
</tr>
<tr>
<td>Metabolism</td>
<td>16</td>
</tr>
<tr>
<td>Metals, general</td>
<td>27</td>
</tr>
<tr>
<td>Metformin</td>
<td>29</td>
</tr>
<tr>
<td>Methadone</td>
<td>29</td>
</tr>
<tr>
<td>Methamidophos</td>
<td>41</td>
</tr>
<tr>
<td>Methanol</td>
<td>38</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>26</td>
</tr>
<tr>
<td>Methyl glucose polyethers</td>
<td>36</td>
</tr>
<tr>
<td>Methylene blue</td>
<td>22</td>
</tr>
<tr>
<td>Methylthioninium chloride</td>
<td>22</td>
</tr>
<tr>
<td>Mirtazapine</td>
<td>25</td>
</tr>
<tr>
<td>Morphine</td>
<td>31</td>
</tr>
<tr>
<td>Muscle relaxants</td>
<td>29</td>
</tr>
<tr>
<td>Mushrooms</td>
<td>42</td>
</tr>
<tr>
<td>Mustard gas</td>
<td>41</td>
</tr>
<tr>
<td>Naloxone</td>
<td>22</td>
</tr>
<tr>
<td>N-butane</td>
<td>36</td>
</tr>
<tr>
<td>Neocitominoids</td>
<td>40</td>
</tr>
<tr>
<td>Nephrotoxicity</td>
<td>16</td>
</tr>
<tr>
<td>Nerve agents</td>
<td>41</td>
</tr>
<tr>
<td>Neurotoxicity</td>
<td>17</td>
</tr>
<tr>
<td>Nevirapine</td>
<td>41</td>
</tr>
<tr>
<td>Nicotine</td>
<td>29</td>
</tr>
<tr>
<td>Nitrogen dioxide</td>
<td>36</td>
</tr>
<tr>
<td>Nitros oxide</td>
<td>29, 36</td>
</tr>
<tr>
<td>Novel psychoactive substances</td>
<td>29</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>30</td>
</tr>
<tr>
<td>Occupational toxicology</td>
<td>17</td>
</tr>
<tr>
<td>Ocular toxicity</td>
<td>18</td>
</tr>
<tr>
<td>Ondansetron</td>
<td>30</td>
</tr>
<tr>
<td>Opioid maintenance therapy</td>
<td>23</td>
</tr>
<tr>
<td>Opioids</td>
<td>30</td>
</tr>
<tr>
<td>Organochlorine pesticides, general</td>
<td>40</td>
</tr>
<tr>
<td>Organophosphorus insecticides, general</td>
<td>41</td>
</tr>
<tr>
<td>Oxcarbazepine</td>
<td>25</td>
</tr>
<tr>
<td>Oxetorone</td>
<td>32</td>
</tr>
<tr>
<td>Paediatic toxicology</td>
<td>18</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>31</td>
</tr>
<tr>
<td>Parachlorobenzene</td>
<td>36</td>
</tr>
<tr>
<td>Paraphenylenediamine</td>
<td>36</td>
</tr>
<tr>
<td>Paralguet</td>
<td>41</td>
</tr>
<tr>
<td>Pentaobital</td>
<td>27</td>
</tr>
<tr>
<td>Perchlorate</td>
<td>36</td>
</tr>
<tr>
<td>Pesticides and cancer</td>
<td>40</td>
</tr>
<tr>
<td>Pesticides, general</td>
<td>39</td>
</tr>
<tr>
<td>Phenethylamines</td>
<td>30</td>
</tr>
<tr>
<td>Phenol</td>
<td>37</td>
</tr>
<tr>
<td>Phthalates</td>
<td>41</td>
</tr>
<tr>
<td>Plants, general</td>
<td>41</td>
</tr>
<tr>
<td>Poison information centres</td>
<td>20</td>
</tr>
<tr>
<td>Poison ivy</td>
<td>42</td>
</tr>
<tr>
<td>Poisons information</td>
<td>20</td>
</tr>
<tr>
<td>Pollution</td>
<td>33</td>
</tr>
<tr>
<td>Polybrominated diphenyls</td>
<td>37</td>
</tr>
<tr>
<td>Polybrominated biphenyls</td>
<td>37</td>
</tr>
<tr>
<td>Polychlorinated dibenzoxyins</td>
<td>37</td>
</tr>
<tr>
<td>Polychlorinated dibenzodioxins</td>
<td>37</td>
</tr>
<tr>
<td>Polycyclic aromatic hydrocarbons</td>
<td>37</td>
</tr>
<tr>
<td>Polymorphisms</td>
<td>20</td>
</tr>
<tr>
<td>Potassium</td>
<td>32</td>
</tr>
<tr>
<td>Psychiatric aspects</td>
<td>20</td>
</tr>
<tr>
<td>Psychotropic drugs</td>
<td>32</td>
</tr>
<tr>
<td>Pyrethroid insecticides, general</td>
<td>41</td>
</tr>
<tr>
<td>Quaternary ammonium compounds</td>
<td>37</td>
</tr>
<tr>
<td>Quercetin</td>
<td>23</td>
</tr>
<tr>
<td>Quetiapine</td>
<td>26</td>
</tr>
<tr>
<td>Reprotoxicity</td>
<td>20</td>
</tr>
<tr>
<td>Rifaxipentine</td>
<td>26</td>
</tr>
<tr>
<td>Risk assessment</td>
<td>20</td>
</tr>
<tr>
<td>Risperidone</td>
<td>26</td>
</tr>
<tr>
<td>Rivaroxaban</td>
<td>25</td>
</tr>
<tr>
<td>Rodenticides</td>
<td>41</td>
</tr>
<tr>
<td>Scorpionis</td>
<td>42</td>
</tr>
<tr>
<td>Serotonin antagonists</td>
<td>32</td>
</tr>
<tr>
<td>Silicon</td>
<td>37</td>
</tr>
<tr>
<td>Smoke</td>
<td>42</td>
</tr>
<tr>
<td>Snake bites</td>
<td>42</td>
</tr>
<tr>
<td>Sodium formate</td>
<td>37</td>
</tr>
<tr>
<td>Solanum nigrum</td>
<td>42</td>
</tr>
<tr>
<td>Solvents</td>
<td>37</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Soman</td>
<td>41</td>
</tr>
<tr>
<td>Spiders</td>
<td>43</td>
</tr>
<tr>
<td>SSRIs and SNRIs</td>
<td>32</td>
</tr>
<tr>
<td>Steroids</td>
<td>32</td>
</tr>
<tr>
<td>Substance abuse</td>
<td>32</td>
</tr>
<tr>
<td>Suicide</td>
<td>20</td>
</tr>
<tr>
<td>Sulfuraphane</td>
<td>23</td>
</tr>
<tr>
<td>Suvorexant</td>
<td>29</td>
</tr>
<tr>
<td>Synthetic cannabinoids</td>
<td>30</td>
</tr>
<tr>
<td>Synthetic cathinones</td>
<td>30</td>
</tr>
<tr>
<td>Synthetic opioids</td>
<td>30</td>
</tr>
<tr>
<td>Tobacco</td>
<td>37</td>
</tr>
<tr>
<td>Toxic alcohols</td>
<td>37</td>
</tr>
<tr>
<td>Toxicodendron radicans</td>
<td>42</td>
</tr>
<tr>
<td>Toxicology, general</td>
<td>11</td>
</tr>
<tr>
<td>Tricosan</td>
<td>38</td>
</tr>
<tr>
<td>Tricyclic antidepressants</td>
<td>33</td>
</tr>
<tr>
<td>True vipers</td>
<td>43</td>
</tr>
<tr>
<td>Tryptamine</td>
<td>38</td>
</tr>
<tr>
<td>Venlafaxine</td>
<td>32</td>
</tr>
<tr>
<td>Verapamil</td>
<td>27</td>
</tr>
<tr>
<td>Viperinae</td>
<td>43</td>
</tr>
<tr>
<td>Vitamin K1</td>
<td>23</td>
</tr>
<tr>
<td>Vitamins</td>
<td>33</td>
</tr>
<tr>
<td>VX</td>
<td>41</td>
</tr>
<tr>
<td>Water pollution</td>
<td>33</td>
</tr>
<tr>
<td>Wisteria floribunda</td>
<td>42</td>
</tr>
<tr>
<td>Yarrow</td>
<td>41</td>
</tr>
<tr>
<td>Zinc chloride</td>
<td>38</td>
</tr>
</tbody>
</table>

Current Awareness in Clinical Toxicology is produced monthly for the American Academy of Clinical Toxicology by the Birmingham Unit of the UK National Poisons Information Service, with contributions from the Cardiff, Edinburgh, and Newcastle Units.

The NPIS is commissioned by Public Health England.