CURRENT AWARENESS PAPERS OF THE MONTH

Do heroin overdose patients require observation after receiving naloxone?
Willman MW, Liss DB, Schwarz ES, Mullins ME. Clin Toxicol 2016; online early: doi: 10.1080/15563650.2016.1253846:

Context
Heroin use in the US has exploded in recent years, and heroin overdoses requiring naloxone are very common. After awakening, some heroin users refuse further treatment or transport to the hospital. These patients may be at risk for recurrent respiratory depression or pulmonary edema. In those transported to the emergency department, the duration of the observation period is controversial. Additionally, non-medical first responders and lay bystanders can administer naloxone for heroin and opioid overdoses. There are concerns about the outcomes and safety of this practice as well.

Objectives
To search the medical literature related to the following questions: (1) What are the medical risks to a heroin user who refuses ambulance transport after naloxone? (2) If the heroin user is treated in the emergency department with naloxone, how long must they...
be observed prior to discharge? (3) How effective in heroin users is naloxone administered by first responders and bystanders? Are there risks associated with naloxone distribution programs?

Methods

We searched PubMed and GoogleScholar with search terms related to each of the questions listed above. The search was limited to English language and excluded patents and citations. The search was last updated on September 31, 2016. The articles found were reviewed for relevance to our objective questions. Eight out of 1020 citations were relevant to the first 2 questions, 5 of 707 were relevant to the third question and 15 of 287 were relevant to the fourth question. In the prehospital environment, does a heroin user revived with naloxone always require ambulance transport and what are the medical risks if ambulance transport is refused after naloxone? The eight articles were all observational studies done either prospectively or retrospectively. Two studies focused on heroin overdoses and included 1069 patients not transported to the hospital. No deaths occurred in this group. In counting the patients from all eight studies, some of which included non-heroin opioid overdoses, there were 5443 patients treated without transport and four deaths from rebound opioid toxicity. The number needed to transport to save one life (NNT) is 1361. Adverse effects were mostly related to opioid withdrawal. If a heroin user is treated in the ED, how long must the patient stay under observation before being safe for discharge? Five articles addressing the duration of ED observation required for patients treated with naloxone for opioid overdoses. Although a wide range of observation durations were reported, one study supported observing patients for one hour. If after this period the patient mobilizes as usual, has normal vital signs, and a Glasgow Coma Scale of 15, they can be discharged safely.

Conclusions

Patients revived with naloxone after heroin overdose may be safely released without transport to the hospital if they have normal mentation and vital signs. In the absence of co-intoxicants and further opioid use there is very low risk of death from rebound opioid toxicity. For those patients treated in the ED for opioid overdose, an observation period of one hour is sufficient if they ambulate as usual, have normal vital signs and a Glasgow Coma Scale of 15. Patients suffering opioid toxicity can be administered naloxone safely by first responders and trained lay people. Programs that train these individuals are likely safe and beneficial, however further research is necessary.

Full text available from: http://dx.doi.org/10.1080/15563650.2016.1253846

Exposures to traditional automatic dishwashing tablets and a comparison with exposures to soluble film tablets reported to the United Kingdom National Poisons Information Service 2008–2015

Introduction

Traditional automatic dishwashing tablets are contained within an external wrapper that requires removal prior to use.
Objective
To determine the toxicity of traditional tablets and to compare this with our previously reported experience of soluble film dishwashing tablets.

Methods
Telephone enquiries regarding traditional tablets were analysed retrospectively for the period January 2008 to December 2015.

Results
Traditional tablets: There were 503 enquiries relating to 492 patients who had been exposed to a traditional tablet. Most involved children aged 5 years or less (87.4%). The majority (78.6%) of patients did not develop symptoms after exposure; 21.1% developed minor (PSS 1) symptoms while one patient developed moderate features. Exposure occurred predominantly as a result of ingestion (n = 476, 96.7%); the most common feature in symptomatic patients (n = 99, 20.8%) was vomiting (70 [14.7%] cases). Significantly (p < 0.0001) more adults (44.9% of 49 adults; 95% CI = 31.9–58.7) were reported with features than children (18.2% of 434; 95% CI = 14.9–22.1). There were five cases of eye contact which resulted in eye pain in two patients and eye irritation in another. Only one of 11 patients exposed dermally developed features (a rash around the mouth).

Comparison with soluble film exposures: The percentage of patients that were reported with clinical symptoms following ingestion of a soluble film dishwashing tablet (31.7% of 473 patients; 95% CI = 27.7–36.0) was significantly greater (p < 0.0001) than that for a traditional tablet (20.9% of 483 patients; 95% CI = 17.5–24.8). Vomiting was the most commonly reported feature and occurred significantly (p < 0.0001) more frequently amongst patients who had ingested a soluble film tablet (25.5%; 95% CI = 21.8–29.6) than a traditional tablet (14.7%; 95% CI = 11.8–18.1).

Conclusions
Exposure to both traditional and soluble film tablets only rarely produced clinically significant symptoms (PSS ≥2). However, ingestion of a soluble film tablet was significantly more likely to result in clinical features than ingestion of a traditional tablet.

Full text available from: http://dx.doi.org/10.1080/15563650.2016.1264588

Modeling the effect of succimer (DMSA; dimercaptosuccinic acid) chelation therapy in patients poisoned by lead

Context
Kinetic models could assist clinicians potentially in managing cases of lead poisoning. Several models exist that can simulate lead kinetics but none of them can predict the effect of chelation in lead poisoning. Our aim was to devise a model to predict the effect of succimer (dimercaptosuccinic acid; DMSA) chelation therapy on blood lead concentrations.

Materials and methods
We integrated a two-compartment kinetic succimer model into an existing PBPK lead model and produced a Chelation Lead Therapy (CLT) model. The accuracy of the model’s predictions was assessed by simulating clinical observations in patients poisoned by lead and treated with succimer. The CLT model calculates blood lead concentrations as the sum of the background exposure and the acute or chronic lead poisoning. The latter was due either to ingestion of traditional remedies or occupational exposure to lead-polluted ambient air. The exposure duration was known. The blood lead concentrations predicted by the CLT
model were compared to the measured blood lead concentrations.

Results
Pre-chelation blood lead concentrations ranged between 99 and 150 μg/dL. The model was able to simulate accurately the blood lead concentrations during and after succimer treatment. The pattern of urine lead excretion was successfully predicted in some patients, while poorly predicted in others.

Conclusions
Our model is able to predict blood lead concentrations after succimer therapy, at least, in situations where the duration of lead exposure is known.

Full text available from: http://dx.doi.org/10.1080/15563650.2016.1263855

Australian taipan (Oxyuranus spp.) envenoming: clinical effects and potential benefits of early antivenom therapy – Australian Snakebite Project (ASP-25)

Context
Taipans (Oxyuranus spp.) are medically important venomous snakes from Australia and Papua New Guinea. The objective of this study was to describe taipan envenoming in Australian and its response to antivenom.

Methods
Confirmed taipan bites were recruited from the Australian Snakebite Project. Data were collected prospectively on all snakebites, including patient demographics, bite circumstances, clinical effects, laboratory results, complications and treatment. Blood samples were taken and analysed by venom specific immunoassay to confirm snake species and measure venom concentration pre- and post-antivenom.

Results
There were 40 confirmed taipan bites: median age 41 years (2–85 years), 34 were males and 21 were snake handlers. Systemic envenoming occurred in 33 patients with neurotoxicity (26), complete venom induced consumption coagulopathy (VICC) (16), partial VICC (15), acute kidney injury (13), myotoxicity (11) and thrombocytopenia (7). Venom allergy occurred in seven patients, three of which had no evidence of envenoming and one died. Antivenom was given to 34 patients with a median initial dose of one vial (range 1–4), and a median total dose of two vials (range 1–9). A greater total antivenom dose was associated with VICC, neurotoxicity and acute kidney injury. Early antivenom administration was associated with a decreased frequency of neurotoxicity, acute kidney injury, myotoxicity and intubation. There was a shorter median time to discharge of 51 h (19–432 h) in patients given antivenom <4 h post-bite, compared to 175 h (27–1104 h) in those given antivenom >4 h. Median peak venom concentration in 25 patients with systemic envenoming and a sample available was 8.4 ng/L (1–3212 ng/L). No venom was detected in post-antivenom samples, including 20 patients given one vial initially and five patients bitten by inland taipans.

Discussion
Australian taipan envenoming is characterised by neurotoxicity, myotoxicity, coagulopathy, acute kidney injury and thrombocytopenia. One vial of antivenom binds all measurable venom and early antivenom was associated with a favourable outcome.

Full text available from: http://dx.doi.org/10.1080/15563650.2016.1250903
A critical review of the literature to conduct a toxicity assessment for oral exposure to methyl salicylate
Abstract and full text available from: http://dx.doi.org/10.1080/10408444.2016.1236071

Glyphosate epidemiology expert panel review: a weight of evidence systematic review of the relationship between glyphosate exposure and non-Hodgkin's lymphoma or multiple myeloma
Abstract and full text available from: http://dx.doi.org/10.1080/10408444.2016.1214681

Prognostic value of hematological parameters in patients with paraquat poisoning
Abstract and full text available from: http://dx.doi.org/10.1038/srep36235

A systematic review of mancozeb as a reproductive and developmental hazard
Abstract and full text available from: http://dx.doi.org/10.1016/j.envint.2016.11.006

Pregnancy outcomes after maternal varenicline use; analysis of surveillance data collected by the European Network of Teratology Information Services
Abstract and full text available from: http://dx.doi.org/10.1016/j.reprotox.2016.11.010

Focus on cannabinoids and synthetic cannabinoids
Abstract and full text available from: http://dx.doi.org/10.1002/cpt.563
No support for lipid rescue in oral poisoning: a systematic review and analysis of 160 published cases
Abstract and full text available from: http://dx.doi.org/10.1177/0960327116679715

Lung function before and after a large chlorine gas release in Graniteville, South Carolina
Abstract and full text available from: http://dx.doi.org/10.1513/AnnalsATS.201508-525OC

Abstract and full text available from: http://dx.doi.org/10.1016/j.ecoenv.2016.09.001
TOXICOLOGY

General
Role of chronic toxicology studies in revealing new toxicities.

Gosink M.
ToxReporter: viewing the genome through the eyes of a toxicologist.
Database (Oxford) 2016; online early: PMID:27888230:

Jankovic J, Albanese A.
Toxicon 2016; online early: doi: 10.1016/j.toxicon.2016.11.248:

Joks R, Bluth MH.
Clinical toxicology and its relevance to asthma and atopy.

Maddry JK, Ng PC, Sessions D, Bebarta VS.
A prospective observational study of medical toxicology consultation in a U.S. combat theater.
Mil Med 2016; 181: e1666-e1668.

Analytical toxicology
Liquid chromatography-tandem mass spectrometry determination of synthetic cathinones and phenethyllamines in influent wastewater of eight European cities.
Chemosphere 2016; online early: doi: 10.1016/j.chemosphere.2016.10.107:

Bane V, Hutchinson S, Sheehan A, Brosnan B, Barnes P, Lehaney M, Furey A.
LC-MS/MS method for the determination of tetrodotoxin (TTX) on a triple quadruple mass spectrometer.

Bidny S, Gago K, Chung P, Albertyn D, Pasin D.
Simultaneous screening and quantification of basic, neutral and acidic drugs in blood using UPLC-QTOF-MS.

Bluth MH.
Drug testing and toxicology: redefining the plague of darkness.

Carson M, Kerrigan S.
Quantification of suvorexant in urine using gas chromatography/mass spectrometry.

Cechova E, Seifertová M, Kukučka P, Vojta Š, Quaa I, de Cock M, van de Bor M, Kocan A.
An effective clean-up technique for GC/ESI-HRMS determination of developmental neurotoxicants in human breast milk.

Chen F, Hu Z-Y, Parker RB, Laizure SC.
Measurement of caffeine and its three primary metabolites in human plasma by HPLC-ESI-MS/MS and clinical application.
Biomed Chromatogr 2016; online early: doi: 10.1002/bmc.3900:

Modifier-assisted differential mobility-tandem mass spectrometry method for detection and quantification of amphetamine-type stimulants in urine.

Feasel MG, Wohlfarth A, Nilles JM, Pang S, Kristovich RL, Huestis MA.
Metabolism of carfentanil, an ultra-potent opioid, in human liver microsomes and human hepatocytes by high-resolution mass spectrometry.

Goggin MM, Tann C-M, Miller A, Nguyen A, Janis GC.
Catching fakes: new markers of urine sample validity and invalidity.
J Anal Toxicol 2016; online early: doi: 10.1093/jat/bkw119:

Simplifying and expanding analytical capabilities for various classes of doping agents by means of direct urine injection high performance liquid chromatography high resolution/high accuracy mass spectrometry.

Hegstad S, Kristoffersen L, Liane VH, Spigset O.
ETG and ETS in autopsy blood samples with and without putrefaction using UPLC-MS-MS.

Hess C, Krueger L, Unger M, Madea B.
Freeze-and-thaw stability and long-term-stability of 84 synthetic cannabinoids in serum.
Drug Test Anal 2016; online early: doi: 10.1002/dta.2133:

Hulse E, Shihana F, Buckley NA.
Radical 7 co-oximeter inaccuracies: reply.
Clin Toxicol 2016; online early: doi: 10.1080/15563650.2016.1263858:

Kyrilakou C, Marchei E, Scaravelli G, Garcia-Algar O, Supervia A, Graziano S.
Identification and quantification of psychoactive drugs in whole blood using dried blood spot (DBS) by ultrasensitive liquid chromatography tandem mass spectrometry.

Liu C, Jia W, Li T, Hua Z, Qian Z.
Identification and analytical characterization of nine synthetic cathinone derivatives N-ethylhexedrone, 4-CI-pentedrone, 4-Cl-α-EAPP, propylone, N-ethylpentylone, 6-MeO-bk-MDMA, α-PHP, 4-Cl-α-PHP, and 4-F-α-PHP.
Drug Test Anal 2016; online early: doi: 10.1002/dta.2136:

Lu A, Scott KS, Chan-Hosokawa A, Logan BK.
Impact of expanding ELISA screening in DUID investigations to include carisoprodol/meprobamate and zolpidem.

Musshoff F, Fels H, Carli A, Piombino-Maselli D.

Ramirez Fernandez MD, Wille SM, Hill V, Samyn N. Determination of antidepressants in hair via UHPLC-MS/MS as a complementary tool for clinical and forensic toxicological assessments. Ther Drug Monit 2016; 38: 751-60.

Santos MG, Tavares IMC, Barbosa AF, Bettini J, Figueiredo EC. Analysis of tricyclic antidepressants in human plasma using online-restricted access molecularly imprinted solid phase extraction followed by direct mass spectrometry identification/quantification. Talanta 2017; 163: 8-16.

Tsaoun K, Blaauwboer BJ, Hartung T. Evidence-based absorption, distribution, metabolism, excretion (ADME) and its interplay with alternative toxicity methods. ALTEX 2016; 33: 343-58.

Biomarkers

Carcinogenicity

Cardiotoxicity

Gupta PN, Kumar BK, Velappan P, Sudheer MD. Possible complication of bee stings and a review of the cardiac effects of bee stings. BMJ Case Rep 2016; doi: 10.1136/bcr-2015-213974:

Cardiac safety profile of sildenafil: chronotropic, inotropic and coronary vasodilator effects in the canine isolated, blood-perfused heart preparations. J Toxicol Sci 2016; 41: 739-44.

Dermal toxicity

Developmental toxicity

Driving under the influence of alcohol and other drugs

Epidemiology

Clark LL, Taubman SB.
Acetaminophen overdoses, active component, U.S. Armed Forces, 20062015.

Clin Toxicol 2016; online early: doi: 10.1080/15563650.2016.1264588:

Dirlik M, Bostancioglu B. Deaths due to carbon monoxide poisoning in Aydin, western Turkey.
Death Stud 2016; online early: doi: 10.1080/07481187.2016.1259693:

Kim E, Park Y, Ha H, Chung H. Patterns of drugs & poisons in southern area of South Korea in 2014.

Maxim LD, Niebo R, McConnell EE. Bentonite toxicology and epidemiology - a review.

Obstet Gynecol 2016; online early: doi: 10.1097/ADO.0000000000001695:

Przegl Epidemiol 2016; 70: 375-85.

Vakkalanka JP, Charlton NP, Holstege CP. Epidemiologic trends in loperamide abuse and misuse.

Am J Respir Crit Care Med 2016; 194: 577-86.

Forensic toxicology
Andresen-Streichert H, Iwersen-Bergmann S, Mueller A, Anders S.

Attempted drug-facilitated sexual assault-xylazine intoxication in a child.

Carson M, Kerrigan S. Quantification of suvorexant in urine using gas chromatography/mass spectrometry.

Chan TYK. Fatal anaphylactic reactions to lignocaine.

Elliott SP, Burke T, Smith C. Determining the toxicological significance of pregabalin in fatalities.

Kim E, Park Y, Ha H, Chung H. Patterns of drugs & poisons in southern area of South Korea in 2014.

Ramirez Fernandez MD, Wille SM, Hill V, Samyn N. Determination of antidepressants in hair via UHPLC-MS/MS as a complementary informative tool for clinical and forensic toxicological assessments.
Ther Drug Monit 2016; 38: 751-60.

Robinson SD, Safavi-Hemami H. Insulin as a weapon.
Toxicon 2016; 123: 56-61.

Smith MP, Bluth MH. Forensic toxicology: an introduction.

Wohlfarth A, Vikingsson S, Roman M, Andersson M, Kugelberg FC, Green H, Kronstrand R. Looking at flubromazolam metabolism from four different angles: metabolite profiling in human liver microsomes, human hepatocytes, mice and authentic human urine samples with liquid chromatography high-resolution mass spectrometry.

Genotoxicity
da Silva J.
DNA damage induced by occupational and environmental exposure to miscellaneous chemicals. Mutat Res Rev Mutat Res 2016; 770: 170-82.

Hepatotoxicity

Mohammed NEM, Messiha BAS, Abo-Saif AA. Effect of amlodipine, lisinopril and allopurinol on acetaminophen-induced hepatotoxicity in rats. Saudi Pharm J 2016; 24: 635-44.

Inhalation toxicity

Cichocki JA, Morris JB. Inhalation dosimetry modeling provides insights into regional respiratory tract toxicity of inhaled diacetyl. Toxicology 2016; online early: doi: 10.1016/j.tox.2016.11.007:

Kinetics
Gochfeld M.
Sex differences in human and animal toxicology: toxicokinetics.
Toxicol Pathol 2016; online early: doi: 10.1177/0192623316677327:

Pregnancy-associated changes in pharmacokinetics: a systematic review.

Pharmacokinetic drug-drug interactions of mood stabilizers and risperidone in patients under combined treatment.

Mechanisms of toxicity
Quadalti C, Galli C, Lazzari G.
Development of an in vitro test battery for the screening of the receptor-mediated mechanism and the spindle-poilson mode of action of estrogenic compounds.

Medication errors
Cairns R, Brown JA, Buckley NA.
A decade of Australian methotrexate dosing errors.

Snijder RA, Knape JT, Egberts TC, Timmerman AM.
Hypertensive crisis during norepinephrine syringe exchange.
A A Case Rep 2016; online early: doi: 10.1213/XAA.0000000000000458:

Metabolism
Almazroo OA, Miah MK, Venkataramanan R.
Drug metabolism in the liver.

Feasel MG, Wohlfarth A, Nilles JM, Pang S, Kristovich RL, Huestis MA.
Metabolism of carfentanil, an ultra-potent opioid, in human liver microsomes and human hepatocytes by high-resolution mass spectrometry.

Metabolism and toxicity of arsenicals in mammals.

Schwarz DA, George MP, Bluth MH.
Precision medicine in toxicology.

Nephrotoxicity
Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1.

Hosohata K.
Role of oxidative stress in drug-induced kidney injury.

Potential urinary biomarkers of nephrotoxicity in cyclophosphamide-treated rats investigated by NMR-based metabolic profiling.

Mason H, Tan P, Kirkland G, Jose M.
Tiger snake envenomation related severe acute kidney injury: 2 case report.

Mossoba ME, Flynn TJ, Vohra S, Wiesenfeld P, Sprando RL.
Evaluation of "dream herb," Calea zacatechichi, for nephrotoxicity using human kidney proximal tubule cells.
J Toxicol 2016; 2016: 9794570:

Shimizu M, Gois PHF, Volpini RA, Canale D, Luchi WM, Froeder L, Hellberg IP, Seguro AC.
N-acetylcysteine protects against star fruit-induced acute kidney injury.
Ren Fail 2016; online early: doi: 10.1080/0886022X.2016.1256315:

Weidemann DK, Weaver VM, Fadrowski JJ.
Toxic environmental exposures and kidney health in children.

Neurotoxicity
Alberti P.
Chemotherapy-induced peripheral neurotoxicity: outcome measures: the issue.
Expert Opin Drug Metab Toxicol 2016; online early: doi: 10.1080/17425255.2017.1258400:

Asaoka N, Kawai H, Nishitani N, Kinoshita H, Shibui N, Nagayasu K, Shirakawa H, Kaneko S.
A new designer drug 5F-ADB activates midbrain dopaminergic neurons but not serotonergic neurons.

Cechova E, Seifertová M, Kukucka P, Vojaťa Š, Quaak I, de Cock M, van de Bor M, Kocan A.
An effective clean-up technique for GC/EI-HRMS determination of developmental neurotoxins in human breast milk.

Elkharamy SM, Fahmy DM, Galvez-Ruiz A, Asghar N, Bosley TM.
Spectrum of MRI findings in 58 patients with methanol intoxication: long-term visual and neurological correlation.

Fujiwara S, Yoshioka Y, Matsuda T, Nishimoto H, Ogawa A, Ogasawara K, Beppo T.
Relation between brain temperature and white matter damage in subacute carbon monoxide poisoning.

Guariglia SR, Stansfield KH, McGlothan J, Guilarte TR.
Chronic early life lead (Pb(II)) exposure alters presynaptic vesicle pools in hippocampal synapses.
BMC Pharmacol Toxicol 2016; 17: 56.

Occupational toxicology

da Silva J. DNA damage induced by occupational and environmental exposure to miscellaneous chemicals. Mutat Res Rev Mutat Res 2016; 770: 170-82.

Dodge DG, Beck BD. Historical state of knowledge of the health risks of asbestos posed to seamen on merchant ships. Inhal Toxicol 2016; online early: doi: 10.1080/08958378.2016.1244228:

Paediatric toxicology

Aktor F, Aktar S, Yoibas I, Tekin R.
Evaluation of risk factors and follow-up criteria for severity of snakebite in children.
Iran J Pediatr 2016; 26: e5212.

Bogen DL, Whalen BL, Kair LR, Vining M, King BA.
Wide variation found in care of opioid-exposed newborns.

Brinkman EN, Stolwijk LJ, Lemmers PM, van Wolswinkel L, Purvis P, Sury MR, de Graaff JC.
A survey of the dose of inhalational agents used to maintain anaesthesia in infants.

Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1.

Gajda M, Pavkovic M, Alonzón A, Martínez A, López-Ventura D, Medeiros M, Barbier OC, Pérez-Maldonado IN, Sabbisetti VS, Bonventre JV, Vaidya VS.
Environmental exposure and effects on health of children is associated with kidney injury molecule-1.

Gibson KS, Stark MS, Kumar D, Baill JL.
The relationship between gestational age and the severity of neonatal abstinence syndrome.
Addiction 2016; online early: doi: 10.1111/add.13703:

Gleason KM, Valeri L, Shankar AH, Hasan MOSI, Quamruzzaman Q, Rodrigues EG, Christiani DC, Wright RO, Bellinger DC, Mazumdar M.
Stunting is associated with blood lead concentration among Bangladeshi children aged 2-3 years.

Grosso S, Ferranti S, Gaggiano C, Grande E, Loi B, Di Bartolo R.
Massive lamotrigine poisoning. A case report.
Brain Dev 2016; online early: doi: 10.1016/j.braindev.2016.11.003:

Grüne B, Piontek D, Pogarell O, Grüb A, Groß C, Reis O, Zimmermann US, Kraus L.
Acute alcohol intoxication among adolescents—the role of the context of drinking.

Hajjar MJ, Al-Salam A.
Organochlorine pesticide residues in human milk and estimated daily intake (EDI) for the infants from eastern region of Saudi Arabia.

Heard K, Anderson V, Dart RC, Kile D, Lavonas E, Green JL.
Serum acetyaminophen protein adduct concentrations in pediatric emergency department patients.
J Pediatr Gastroenterol Nutr 2016; online early: doi: 10.1097/MPG.0000000000001459:

John A, Marchant AL, Fone DL, McGregor JJ, Dennis MS, Tan JO, Lloyd K.
Recent trends in primary-care antidepressant prescribing to children and young people: an e-cohort study.

Poison prevention practices and medically attended poisoning in young children: multicentre case–control study.

Kluger M, Penrose S, Bjorksten AR, Chalkiadis G.
Accuracy of dispensing tramadol capsules for oral administration in young children.

Kumar S, Choudhary A, Ali M, Gupta V, Muradidharan J, Singh SC.
Sulfonyleurea poisoning in a healthy toddler.

Le Bot B, Lucas J-P, Lacroix F, Giroirenc P.
Exposure of children to metals via tap water ingestion at home: contamination and exposure data from a nationwide survey in France.

Adverse associations of both prenatal and postnatal exposure to organophosphorous pesticides with infant neurodevelopment in an agricultural area of Jiangsu Province, China.
Environ Health Perspect 2016; 124: 1637-43.

Maharaj VR, Paul JF, Finkelstein Y.
Sweet and minty: a 2 year old with a fatal household ingestion.

Martins E, Varea A, Hernández K, Sala M, Girardelli A, Fasano V, Disalvo L.
Blood lead levels in children aged between 1 and 6 years old in La Plata, Argentina. Identification of risk factors for lead exposure.

Myridakis A, Chalkiadaki G, Fotou M, Kogevas M, Chatzi L, Stephanou EG.
Exposure of preschool-age Greek children (RHEA cohort) to bisphenol A, parabens, phthalates, and organophosphates.

Exposure of children to metals via tap water ingestion at home: contamination and exposure data from a nationwide survey in France.

Nielsen ES, Rasmussen L, Poulsen MH, Thomsen PH, Nørgaard M, Laursen T.
Trends in off-label prescribing of sedatives, hypnotics and antidepressants among children and adolescents – a Danish, nationwide register-based study.
Basic Clin Pharmacol Toxicol 2016; online early: doi: 10.1111/bcpt.12706:
Papadopoulou E, Sabaredzovic A, Namork E, Nygaard UC, Granum B, Haug LS.
Exposure of Norwegian toddlers to perfluoroalkyl substances (PFAS): the association with breastfeeding and maternal PFAS levels.
Environ Int 2016; 94: 687-94.

Perlroth NH, Branco CW.
Current knowledge of environmental exposure in children during the sensitive developmental periods.

Rebai H, Ba-Mhamed S, Mouaffak Y, Younous S, Bennis M.
Clinico-epidemiological features of severe scorpion envenomation in a pediatric Moroccan population.

Regina A, Lee D, Sud P, Crevi D.
Flumazenil use for isolated ataxia in a child.

Sheridan DC, Hendrickson RG, Lin AL, Fu R, Horowitz BZ.
Adolescent suicidal ingestion: national trends over a decade.

Torres de Araújo Azí LM, Figueroa DG, Souza Simas AA.
Cardiac arrest after local anesthetic toxicity in a pediatric patient.

Vazquez M, Paul AZ, Tay ET, Tsung JW.
Evaluation and monitoring of a child with hydrocarbon pneumonitis using point-of-care lung ultrasound in the pediatric emergency department.

Neonatal intoxication to vitamin D in premature babies: a series of 16 cases.
Pediatri Nephrol 2016; 31: 1917.

Weidemann DK, Weaver VM, Fadrowski JJ.
Toxic environmental exposures and kidney health in children.
Pediatri Nephrol 2016; 31: 2043-54.

Wu F, Marin SJ, McMillin GA.
Stability of 21 cocaine, opioid and benzodiazepine drug analytes in spiked meconium at three temperatures.
J Anal Toxicol 2016; online early: doi: 10.1093/jat/bkw113:

Ye L, Wang Z.
Establishment of evaluation system of intake doses in children with coumarin derivative rodenticide intoxication: report of 44 cases.

Reprotoxicity
Methylphenidate in pregnancy: a multicenter, prospective, comparative, observational study.

Jeelani R, Bluth MH, Abu-Soud HM.
Toxicology in reproductive endocrinology.

Pregnancy outcomes after maternal variance exposure; analysis of surveillance data collected by the European Network of Teratology Information Services.
Reprod Toxicol 2017; 67: 26-34.

Runkle J, Flocks J, Economos D, Dunlop AL.
A systematic review of mancozeb as a reproductive and developmental hazard.
Environ Int 2016; online early: doi: 10.1016/j.envint.2016.11.006:

Wang A, Padula A, Sirota M, Woodruff TJ.
Environmental influences on reproductive health: the importance of chemical exposures.

Association between ambient particulate matter exposure and semen quality in Wuhan, China.
Environ Int 2016; online early: doi: 10.1016/j.envint.2016.11.013:

Risk assessment
Cochran RC, Ross JH.
A method for quantitative risk appraisal for pesticide risk assessments.

Ingre-Khans E, Ågerstrand M, Beronisius A, Rudén C.
Transparency of chemical risk assessment data under REACH.

Suicide
Almeida OP, McCaul K, Hankey GJ, Yeap BB, Golledge J, Flicker L.
Suicide in older men: the health in men cohort study (HIMS).

Alves VM, Francisco LC, de Melo AR, Novaes CR, Belo FM, Nardi AE.
Trends in suicide attempts at an emergency department.

Arensman E, Bennardi M, Larkin C, Wall A, McAuliffe C, McCarthy J, Williamson E, Perry IJ.
Suicide among young people and adults in Ireland: method characteristics, toxicological analysis and substance abuse histories compared.

Ho CSH, Ong YL, Tan GHN, Yeo SN, Ho RCM.
Profile differences between overdose and non-overdose suicide attempts in a multi-ethnic Asian society.

Metz TD, Rovner P, Hoffman MC, Allhouse AA, Beckwith KM, Binswanger IA.
Obstet Gynecol 2016; online early: doi: 10.1097/AOG.0000000000001695:

MANAGEMENT

General

Antidotes

Acetylcysteine

Antivenom

Chelating agents

Hydroxocobalamin

Idarucizumab

Lipid emulsion therapy

Activated charcoal hemoperfusion in the treatment of experimental amitriptyline poisoning in pigs - the effect on amitriptyline plasma concentration and hemodynamic parameters.
Basic Clin Pharmacol Toxicol 2016; online early:
doi: 10.1111/bcpt.12704:

Plasmapheresis
Disel NR, Ackalin A, Kokec Z, Sebe A.
Utilization of plasmapheresis for organophosphate intoxication: a case report.

Methadone maintenance therapy
Methadone complications amongst opioid-dependent patients in Malaysia: a case series.
Drug Alcohol Rev 2016; online early:
doi: 10.1111/dar.12456:

Manfredini D.
Methadone maintenance treatment may be associated with bruxism in male prisoners.

Rosiglitazone
Protective effect of rosiglitazone against acetaminophen-induced acute liver injury is associated with down-regulation of hepatic NADPH oxidases.

Uridine triacetate
Santos C, Morgan BW, Geller RJ.
The successful treatment of 5-fluorouracil (5-FU) overdose in a patient with malignancy and HIV/AIDS with uridine triacetate.
Am J Emerg Med 2016; online early:
doi: 10.1016/j.ajem.2016.11.038:

DRUGS

General
Almazroo OA, Miah MK, Venkataramanan R.
Drug metabolism in the liver.

Bluth MH.
Drug testing and toxicology: redefining the plague of darkness.

The characteristics and clinical outcome of drug-induced liver injury in a Chinese hospital: a retrospective cohort study.
Medicine 2016; 95: e4683.

Goggin MM, Tann C-M, Miller A, Nguyen A, Janis GC.
Catching fakes: new markers of urine sample validity and invalidity.
The anatomical mummies of Mombello: detection of cocaine, nicotine, and caffeine in the hair of psychiatric patients of the early 20th century.

J Anal Toxicol 2016; online early: doi: 10.1093/jat/bkw119:

ACE inhibitors

Enalapril

Acetaminophen (see paracetamol)

Acetazolamide

Amfetamines and MDMA (ecstasy)

Modifier-assisted differential mobility-tandem mass spectrometry method for detection and quantification of amphetamine-type stimulants in urine.

Anaesthetics

Anticoagulants

Warfarin

Flecainide

Antibiotics

Ciprofloxacin

Metronidazole

Trimethoprim-sulfamethoxazole

Vancomycin

Anticholinergic drugs

Anticoagulants

Apixaban

Dabigatran

Warfarin

Anticonvulsants

Lamotrigine

Pregabalin

Antidepressants

Ramirez Fernandez MD, Wille SM, Hill V, Samyn N. Determination of antidepressants in hair via UHPLC-MS/MS as a complementary informative tool for clinical and forensic toxicological assessments. Ther Drug Monit 2016; 38: 751-60.

Antifungal drugs

Butenafine

Antihistamines

Diphenhydramine

Antimalarial drugs

Hydroxychloroquine

Mefloquine

Antineoplastic drugs

Cyclophosphamide

Fluorouracil

Methotrexate

Ozeki T, Fujita Y. Asymptomatic colitis induced by low-dose methotrexate. BMJ Case Rep 2016; doi: 10.1136/bcr-2016-217771:

Paclitaxel

Antipsychotics

Chlorpromazine

Clozapine

Quetiapine
Smolders DME, Smolders WAP. Case report and review of the literature: cardiomyopathy in a young woman on high-dose quetiapine.
Acute and chronic effects of cannabinoids on effort-related decision-making and reward learning: an evaluation of the cannabis 'amotivational' hypotheses. Psychopharmacology 2016; 233: 3537-52.

Cocaine
Williamson J, Bonello M, Simpson M, Jacob A. Spinal cord infarction after cocaine use. Pract Neurol 2016; online early: doi: 10.1136/practneurol-2016-001518:

Colchicine

Digoxin

Dimethyl fumarate

Glucagon

Herbal medicines, ethnic remedies and dietary supplements
Brown AC.

Heroin (diacetylmorphine)

Sitaglaptin

Sulfonylurea

Ibogaine

Insulin

Ketamine

Kratom

Singh D, Narayanan S, Vicknasingam B. Traditional and non-traditional uses of Mitragynine (Kratom): a survey of the literature.

Levetiracetam

Loperamide

Mephedrone

Methylphenidate

Minoxidil

Mood stabilisers

Nerve block adjuvants

Nicotine

Nicotine and carbonyl emissions from popular electronic cigarette products: correlation to liquid composition and design characteristics.

Nicotine Tob Res 2016; online early:
doi: 10.1093/ntr/mtw289:

Lee H, Chung S, Noh J.

Maternal nicotine exposure during late gestation and lactation increases anxiety-like and impulsive decision-making behavior in adolescent offspring of rat.

Electronic-cigarette use and respiratory symptoms in adolescents.

Am J Respir Crit Care Med 2016; online early:
doi: 10.1164/rcrm.201604-0804OC:

Norepinephrine

Snijder RA, Knape JT, Egberts TC, Timmerman AM.

Hypertensive crisis during norepinephrine syruping exchange.

A A Case Rep 2016; online early:
doi: 10.1213/XAA.0000000000000458:

Novel psychoactive substances

Liquid chromatography-tandem mass spectrometry determination of synthetic cathinones and phenethylamines in influent wastewater of eight European cities.

Chemosphere 2016; online early:
doi: 10.1016/j.chemosphere.2016.10.107:

Meacher M, Clegg N.

How changes to drug prohibition could be good for the UK—an essay by Molly Meacher and Nick Clegg.

Designer benzodiazepines

Wohlfarth A, Vikingsson S, Roman M, Andersson M, Kugelberg FC, Green H, Kronstrand R.

Looking at flubromazolam metabolism from four different angles: metabolite profiling in human liver microsomes, human hepatocytes, mice and authentic human urine samples with liquid chromatography high-resolution mass spectrometry.

Forensic Sci Int 2016; online early:
doi: 10.1016/j.forsciint.2016.10.021:

Phenethylamines

Grey matter abnormalities in methcathinone abusers with a Parkinsonian syndrome.

Brain Behav 2016; 6: e00539.

Synthetic cannabinoids

Asaoka N, Kawai H, Nishitani N, Kinoshita H, Shibui N, Nagayasu K, Shirakawa H, Kaneko S.

A new designer drug 5F-ADB activates midbrain dopaminergic neurons but not serotonergic neurons.

Carlier J, Diao X, Wohlforth A, Scheidweiler K, Huestis MA.

In vitro metabolite profiling of ADB-FUBINACA, a new synthetic cannabinoid.

Curr Neuropharmacol 2016; online early: PMID:27829332:

Hess C, Krueger L, Unger M, Madea B.

Freeze-and-thaw stability and long-term-stability of 84 synthetic cannabinoids in serum.

Drug Test Anal 2016; online early:
doi: 10.1002/dta.2133:

Kak M, Mikhail F, Yano ST, Guan R, Lukas RV.

Buzz juice: neurological sequelae of synthetic cannabinoids.

J Clin Neurosci 2016; online early:
doi: 10.1016/j.jocn.2016.10.046:

Le Boisselier R, Alexandre J, Lelong-Boulouard V, Debruyne D.

Focus on cannabinoids and synthetic cannabinoids.

Clin Pharmacol Ther 2016; online early:
doi: 10.1002/cpt.563:

Synthetic cathinones

Liu C, Jia W, Li T, Hua Z, Qian Z.

Identification and analytical characterization of nine synthetic cathinone derivatives α-ethylhexedrone, 4-CI-pentedrone, 4-Cl-α-EAPP, propylene, α-ethylpentylone, 6-MeO-bk-MDMA, α-PHPP, 4-Cl-α-PHPP, and 4-F-α-PHPP.

Drug Test Anal 2016; online early: doi: 10.1002/dta.2136:

Synthetic opioids

McIntyre IM, Gary RD, Joseph S, Stablye R.

A fatality related to the synthetic opioid U-47700: postmortem concentration distribution.

NSAIDs

Diclofenac

Pfeiffer H, Herbst L, Schwarze B, Eckstein R, Weisbach V.

Massive intoxication with rivaroxaban, phenprocoumon, and diclofenac: a case report.

Medicine (Baltimore) 2016; 95: e5343.

Opioids

Bogen DL, Whalen BL, Kair LR, Vining M, King BA.

Wide variation found in care of opioid-exposed newborns.

Acad Pediatr 2016; online early:
doi: 10.1016/j.acap.2016.10.003:

Burkes R, Pfister G, Quinn B, Cavallazzi R.

Opioid overdose leading to intensive care unit admission: epidemiology and outcomes.

J Crit Care 2016; online early:
doi: 10.1016/j.jcrc.2016.10.024:

Chang Y, Compton P.

Opioid misuse/abuse and quality persistent pain management in older adults.

George P, Vicknasingam B, Thurairajasingam S, Ramasamy P, Yusof HM, Yasin MABM, Shah ZUBS.

Methadone complications amongst opioid-dependent patients in Malaysia: a case series.

Drug Alcohol Rev 2016; online early:
doi: 10.1111/dar.12456:

Gibson KS, Stark MS, Kumar D, Bailit JL.

The relationship between gestational age and the severity of neonatal abstinence syndrome.
Addiction 2016; online early: doi: 10.1111/add.13703:

Carfentanil

Fentanyl

Methadone

Oxycodone

Tramadol

Paracetamol (acetaminophen)

Lee SKY, Quinonez RB, Chuang A, Munz SM, Dabiri D.

Mohammed NEM, Messiha BAS, Abo-Salif AA. Effect of amiodopine, lisinopril and allopurinol on acetaminophen-induced hepatotoxicity in rats. Saud Pharm J 2016; 24: 635-44.

Psychotropic drugs

Salicylates

Sedatives

Suvorexant

Xylazine

Sildenafil

SSRIs and SNRIs

Escitalopram

Fluoxetine

Venlafaxine

Substance abuse

Giorgetti R, Tagliabacci A, Schifano F, Zaami S, Marinelli E, Busarò FP. When "chems" meet sex: a rising phenomenon called "ChemSex". Curr Neuropharmacol 2016; online early; PMID:27855594:

Papp LM, Kouros CD. Predicting young adults' risk for engaging in prescription drug misuse in daily life from individual, partner, and relationship factors. Subst Abus 2016; online early; doi: 10.1080/08897077.2016.1263590:

Pichini S, Busarò FP, Gregori A, Berretta P, Gentili S, Pacifici R. Purity and adulterant analysis of some recent drug seizures in Italy. Drug Test Anal 2016; online early; doi: 10.1002/dta.2134:

Pilgrim JL, Dorward R, Drummer OH. Drug-caused deaths in Australian medical practitioners and health-care professionals. Addiction 2016; online early; doi: 10.1111/add.13619:

Tricyclic antidepressants
Santos MG, Tavares IMC, Barbosa AF, Bettini J, Figueiredo EC. Analysis of tricyclic antidepressants in human plasma using online-restricted access molecularly imprinted solid phase extraction followed by direct mass spectrometry identification/quantification. Talanta 2017; 163: B-16.

 Amitriptyline

Varenicline

Vitamins
Calciferol

Vitamin A
Rousselle C. Opinion of the Scientific Committee on consumer safety (SCCS) - Final version of the Opinion on Vitamin A (retinol, retinyl acetate and retinyl palmitate) in cosmetic products. Regul Toxicol Pharmacol 2016; online early; doi: 10.1016/j.yrtph.2016.11.017:

CHEMICAL INCIDENTS AND POLLUTION
Air pollution

Chemical incidents

Pollution and hazardous waste

Water pollution

CHEMICALS

General

da Silva J. DNA damage induced by occupational and environmental exposure to miscellaneous chemicals. Mutat Res Rev Mutat Res 2016; 770: 170-82.

2,4-dichlorophenol

Alcohol (ethanol)

Anionic methacrylate copolymer

Asbestos

Dodge DG, Beck BD. Historical state of knowledge of the health risks of asbestos posed to seamen on merchant ships. Inhal Toxicol 2016; online early: doi: 10.1080/08958378.2016.1244228:

Barium chloride

Bentonite

Bisphenol A

Bongkrekic acid

Carbon monoxide
Dirlik M, Bostancioglu B. Deaths due to carbon monoxide poisoning in Aydin, western Turkey. Death Stud 2016; online early; doi: 10.1080/07481187.2016.1259693:

Chlorine

Chlorormequat

Chloroform

Contrast media
Semelka RC, Commander CW, Jay M, Burke LMB, Ramalho M. Presumed gadolinium toxicity in subjects with normal renal function: a report of 4 cases. Invest Radiol 2016; 51: 661-5.

Cosmetics

Rousselle C. Opinion of the Scientific Committee on consumer safety (SCCS) - Final version of the Opinion on Vitamin A (retinol, retinyl acetate and retinyl palmitate) in cosmetic products. Regul Toxicol Pharmacol 2016; online early: doi: 10.1016/j.yrtph.2016.11.017:

Decamethylcyclopentasiloxane

Detergents

Diacetyl
Cichocki JA, Morris JB. Inhalation dosimetry modeling provides insights into regional respiratory tract toxicity of inhaled diacetyl. Toxicology 2016; online early: doi: 10.1016/j.tox.2016.11.007:

Dichloromethane

Disinfectants

Dust

E-cigarettes and e-liquids

Ethylene glycol

Flame retardants

Szabo DT, Pathmasiri W, Sumner S, Birnbaum LS. Serum metabolomic profiles in neonatal mice following oral brominated flame retardant exposures to hexabromocyclododecane (HBCD) alpha, gamma, and commercial mixture. Environ Health Perspect 2016; online early: doi: 10.1289/EHP242, 02 Dec 16:

Fluoride
Food colourings

Formaldehyde
Cheng J, Zhang L, Tang Y, Li Z.

Fragrance chemicals
Hydrocarbons
Vazquez M, Paul AZ, Tay ET, Tsung JW.

Hydrocarbons
Vazquez M, Paul AZ, Tay ET, Tsung JW.

Hydrogen sulphide
Barbera N, Montana A, Indorato F, Arbouche N, Romano G.

Methanol
Elkhawary SM, Fahmy DM, Galvez-Ruiz A, Asghar N, Bosley TM.

Methyl salicylate
Greene T, Rogers S, Franzen A, Gentry R.

Nanoparticles
Bostan HB, Rezaee R, Valokala K, Tsarouhas K, Golokhvast K, Tsatsakis AM, Karimi G.

Naphthalene
Kidyoor Y, Rai S, Bakkannavar SM, Nayak VC, James RI, Patil N, Saravu K.

Perfluorinated compounds
Papadopoulou E, Sabarezovic A, Namork E, Nygaard UC, Granum B, Haug LS.
Exposure of Norwegian toddlers to perfluoralkyl substances (PFAS): the association with breastfeeding and maternal PFAS concentrations. Environ Int 2016; 94: 687-94.

Periodate salts
Lent EM, Crouse LC, Eck WS.

Phenoxyethanol
Lilienblum W.

Phthalate esters
Occupational phthalate exposure and health outcomes among hairdressing apprentices.
Hum Exp Toxicol 2016; online early: doi: 10.1177/0960327116678295:

Polyvinyl chloride
Guardiola JJ, Beier JI, Falkner KC, Wheeler B, McClain CJ, Cave M.
Occupational exposures at a polyvinyl chloride production facility are associated with significant changes to the plasma metabolome.

Radiation
Oskan F, Becker G, Bleef M.
Specific toxicity after stereotactic body radiation therapy to the central chest: a comprehensive review.

Rhododendrol
Clinical and epidemiological analysis in 149 cases of rhododendrol-induced leukodema.

Sodium azide
Downes MA, Taliana KE, Muscat TM, Whyte IM.
Sodium azide ingestion and secondary contamination risk in healthcare workers.

Sodium benzoate
O'Connor R, McCarthy S, Murphy M, Bourke J.
Airborne contact urticaria resulting from occupational exposure to sodium benzoate.
Contact Derm 2016; 75: 101.

Styrene
Lima JJ, Aguilar A, Sánchez FG, Díaz AN.
Enantiomeric fraction of styrene glycol as a biomarker of occupational risk exposure to styrene.
Chemosphere 2016; online early: doi: 10.1016/j.chemosphere.2016.10.120:

Tobacco
Al-Sheyab NA, Al-Fuqha RA, Kheirallah KA, Khabour OF, Alzoubi KH.
Anthropometric measurements of newborns of women who smoke waterpipe during pregnancy: a comparative retrospective design.

Evaluation of the tobacco heating system 2.2. Part 7: systems toxicological assessment of a mentholated version revealed reduced cellular and molecular exposure effects compared with mentholated and non-mentholated cigarette smoke.
Regul Toxicol Pharmacol 2016; online early: doi: 10.1016/j.yrtph.2016.11.001:

Lopez AA, Eissenberg T, Jaafar M, Afifi R.
Now is the time to advocate for interventions designed specifically to prevent and control waterpipe tobacco smoking.

Martin F, Talikka M, Ivanov NV, Haziza C, Hoeng J, Peitsch MC.
Evaluation of the tobacco heating system 2.2. part 9: application of systems pharmacology to identify exposure response markers in peripheral blood of smokers switching to THS2.2.
Regul Toxicol Pharmacol 2016; online early: doi: 10.1016/j.yrtph.2016.11.011:

Evaluation of the tobacco heating system 2.2. Part 6: 90-day OECD 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects of a mentholated version compared with mentholated and non-mentholated cigarette smoke.
Regul Toxicol Pharmacol 2016; online early: doi: 10.1016/j.yrtph.2016.11.004:

Differential effects between cigarette total particulate matter and cigarette smoke extract on blood and blood vessel.

Rosenberry ZR, Pickworth WB, Koszowski B.
Large cigars: smoking topography and toxicant exposure.
Nicotine Tob Res 2016; online early: doi: 10.1093/ntr/ntw289:

Evaluation of the tobacco heating system 2.2 (THS2.2). Part 5: microRNA expression from a 90-day rat inhalation study indicates that exposure to THS2.2 aerosols causes reduced effects on lung tissue compared with cigarette smoke.
Regul Toxicol Pharmacol 2016; online early: doi: 10.1016/j.yrtph.2016.11.018:

Toluene
Silveira AT, Albuquerque AC, Lepera JS, Martins I.
Diazepam influences urinary biomarker of occupational toluene exposure.

Yasar S, Yildirim E, Koklu M, Gursoy E, Celik M, Yuksel UC.
A case of reversible cardiomyopathy associated with acute toluene exposure.

Water
Lee LC, Noronha M.
When plenty is too much: water intoxication in a patient with a simple urinary tract infection.
BMJ Case Rep 2016; doi: 10.1136/bcr-2016-216882:

Welding fumes
Parental occupational exposure to heavy metals and welding fumes and risk of testicular germ cell tumors in offspring: a registry-based case-control study.
Cancer Epidemiol Biomarkers Prev 2016; 25: 1426-34.

METALS
General
Aneni EC, Escolar E, Lamas GA.
Chronic toxic metal exposure and cardiovascular disease: mechanisms of risk and emerging role of chelation therapy.

Ferrero ME.
Rationale for the successful management of EDTA chelation therapy in human burden by toxic metals.

E-cigarettes as a source of toxic and potentially carcinogenic metals.
Environ Res 2016; 152: 221-5.

Iwegbue CM, Emakunu OS, Nwajei GE, Bassey FI, Martinich BG.
Evaluation of human exposure to metals from some commonly used bathing soaps and shower gels in Nigeria.
Regul Toxicol Pharmacol 2017; 83: 38-45.

Le Bot B, Lucas J-P, Lacroix F, Gliorenc P.
Exposure of children to metals via tap water ingestion at home: contamination and exposure data from a nationwide survey in France.

Nersesyan A, Kundu M, Waldherr M, Setayesh T, Miliš M, Wultsch G, Filipic M, Mazurazin Barcelos GR, Knasmueller S.
Results of micronucleus assays with individuals who are occupationally and environmentally exposed to mercury, lead and cadmium.

Parental occupational exposure to heavy metals and welding fumes and risk of testicular germ cell tumors in offspring: a registry-based case-control study.
Cancer Epidemiol Biomarkers Prev 2016; 25: 1426-34.

Arsenic
Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1.

Dyer O.
Johnson & Johnson is ordered to pay $1bn over faulty hip implants.

Gadolinium
Semelka RC, Commander CW, Jay M, Burke LMB, Ramalho M.
Presumed gadolinium toxicity in subjects with normal renal function: a report of 4 cases.
Invest Radiol 2016; 51: 661-5.

Lead
Azizi A, Ferguson K, Dluzewski S, Hussain T, Klein M.
Chronic lead poisoning in an Iranian opium smoker resident in London.
BMJ Case Rep 2016; doi: 10.1136/bcr-2016-215965:

Chambial S, Bhardwaj P, Mahdi AA, Sharma P.
Lead poisoning due to herbal medications.

The analysis of blood lead levels changeability over the 5-year observation in workers occupationally exposed to lead.
Toxicol Ind Health 2016; online early: doi: 10.1177/0748233716674380:

Gleason KM, Valeri L, Shankar AH, Hasan MOSI, Quarmuzzaman A, Rodrigues EG, Christiani DC, Wright RO, Bellinger DC, Mazumdar M.
Stunting is associated with blood lead concentration among Bangladeshi children aged 2-3 years.

Guariglia SR, Stansfield KH, McGlathlan J, Guilarte TR.
Chronic early life lead (Pb⁺⁺) exposure alters presynaptic vesicle pools in hippocampal synapses.
BMC Pharmacol Toxicol 2016; 17: 56.

Kalahasthi R, Barman T.
Effect of lead exposure on the status of reticulocyte count indices among workers from lead battery manufacturing plant.

Martins E, Varea A, Hernández K, Sala M, Girardelli A, Fasano V, Disalvo L.
Blood lead levels in children aged between 1 and 6 years old in La Plata, Argentina. Identification of risk factors for lead exposure.

van Eijkeren JCH, Olle JDN, Bradberry SM, Vale JA, de Vries I, Clewell HI, III, Meulenbelt J, Hunault CC.
Modeling the effect of succimer (DMSA; dimercaptosuccinic acid) chelation therapy in patients poisoned by lead.
Clin Toxicol 2016; online early: doi: 10.1080/15563650.2016.1263855:
Mercury

de Jesus LF, Moreira FR.
Impact of exposure to low levels of mercury on the health of dental workers.

Mercury poisoning caused by Chinese folk prescription (CFP): a case report and analysis of both CFP and quackery.
Medicine (Baltimore) 2016; 95: e5162.

Roda E, Giampreti A, Vecchio S, Apostoli P, Coccini T.
Mercury vapour long-lasting exposure: lymphocyte muscarinic receptors as neurochemical markers of accidental intoxication.

Silver

Scientific Committee on Consumer Safety (SCCS), Rousselle C.
Opinion of the Scientific Committee on Consumer Safety (SCCS)—Final version of the opinion on decamethylcyclopentasiloxane (cyclopentasiloxane, D5) in cosmetic products.
Regul Toxicol Pharmacol 2016; online early: doi:10.1016/j.yrtph.2016.11.016:

Silicon

Scientific Committee on Consumer Safety (SCCS), Rousselle C.
Opinion of the Scientific Committee on Consumer Safety (SCCS)—Final version of the opinion on decamethylcyclopentasiloxane (cyclopentasiloxane, D5) in cosmetic products.
Regul Toxicol Pharmacol 2016; online early: doi:10.1016/j.yrtph.2016.11.016:

Silicon

Scientific Committee on Consumer Safety (SCCS), Rousselle C.
Opinion of the Scientific Committee on Consumer Safety (SCCS)—Final version of the opinion on decamethylcyclopentasiloxane (cyclopentasiloxane, D5) in cosmetic products.
Regul Toxicol Pharmacol 2016; online early: doi:10.1016/j.yrtph.2016.11.016:

Silver

Sarnat-Kucharczyk M, Pojda-Wilczek D, Mrukowa-Kominek E.
Diagnostic methods in ocular argyrosis: case report.

Uranium

Corlin L, Rock T, Cordova J, Woodin M, Durant JL, Gute DM, Ingram J, Brugge D.
Health effects and environmental justice concerns of exposure to uranium in drinking water.

Zinc

Lee Y-R, Kang M-H, Park H-M.
Treatment of zinc toxicosis in a dog with chelation using D-penicillamine.

PESTICIDES

General

Akoto O, Azuure AA, Adotey KD.
Pesticide residues in water, sediment and fish from Tono Reservoir and their health risk implications.
Springerplus 2016; 5: 1849.

Cochran RC, Ross JH.
A method for quantitative risk appraisal for pesticide risk assessments.

Donald CE, Scott RP, Blaustein KL, Halbleib ML, Sarr M, Jepson PC, Anderson KA.
Silicone wristbands detect individuals' pesticide exposures in West Africa.

Mitra D, Vg A.
Genotoxic effect of pesticides on human leukocyte culture: a review.

Environmental exposure and effects on health of children from a tobacco-producing region.

J Affect Disord 2016; 208: 418-23.

Pesticides and cancer

Acquavella J, Garabrant D, Marsh G, Sorahan T, Weed DL.
Glyphosate epidemiology expert panel review: a weight of evidence systematic review of the relationship between glyphosate exposure and non-Hodgkin's lymphoma or multiple myeloma.

Carbamate insecticides

General

Vale JA, Bradberry SM.
Organophosphorus and carbamate insecticides.

Fungicides

Mancozeb

Runkle J, Flocks J, Economos J, Dunlop AL.
A systematic review of mancozeb as a reproductive and developmental hazard.
Environ Int 2016; online early: doi:10.1016/j.envint.2016.11.006:

Herbicides

Bradberry SM, Vale JA.
Chlorothenoxy herbicides.

Glyphosate

Acquavella J, Garabrant D, Marsh G, Sorahan T, Weed DL.
Glyphosate epidemiology expert panel review: a weight of evidence systematic review of the relationship between glyphosate exposure and non-Hodgkin's lymphoma or multiple myeloma.

Propanil

Hulse E, Shihana F, Buckley NA.
Radical 7 co-oximeter inaccuracies: reply.
Clin Toxicol 2016; online early: doi:10.1080/15563650.2016.1263858:
Insecticides

Amitraz
Agrawal I, Ahmad S, Kumar M, Akram M.
Amitraz poisoning: an unusual cause of respiratory and peripheral circulatory failure.

Indoxacarb
Firoozabadi AS, Nasri-Nasrabadi Z, Marashi SM.
Management of indoxacarb poisoning in a regional setting.

Organochlorine pesticides

General
Hajjar MJ, Al-Salam A.
Organochlorine pesticide residues in human milk and estimated daily intake (EDI) for the infants from eastern region of Saudi Arabia.

In utero exposure to organochlorine pesticides and early menarche in the Avon Longitudinal Study of Parents and Children.
Environ Int 2016; 94: 467-72.

Organophosphorus insecticides

General
Hiremath P, Rangappa P, Jacob I, Rao K.
Pseudocholinesterase as a predictor of mortality and morbidity in organophosphorus poisoning.

Adverse associations of both prenatal and postnatal exposure to organophosphorous pesticides with infant neurodevelopment in an agricultural area of Jiangsu Province, China.
Environ Health Perspect 2016; 124: 1637-43.

Vale JA, Bradberry SM.
Organophosphorus and carbamate insecticides.

Trichlorfon
Diel NR, Ackalin A, Kekec Z, Sebe A.
Utilization of plasmapheresis for organophosphate intoxication: a case report.

Pyrethroid insecticides

Cyhalothrin
Locomotor activity and tissue levels following acute administration of lambda- and gamma-cyhalothrin in rats.

Rodenticides
Ye L, Wang Z.
Establishment of evaluation system of intake doses in children with coumarin derivative rodenticide intoxication: report of 44 cases.

Strychnine
Singhapricha T, Pomerleau AC.
A case of strychnine poisoning from a southeast Asian herbal remedy.

CHEMICAL WARFARE, BIOLOGICAL WARFARE AND RIOT CONTROL AGENTS

Chemical warfare

Mustard gas
Panahi Y, Aslani J, Hajihashemi A, Kalhorani M, Ghanei M, Sahebkar A.
Effect of Aloe vera and pantoprazole on gastroesophageal reflux symptoms in mustard gas victims: a randomized controlled trial.

Nerve agents
Iyengar ARS, Pande AH.
Organophosphate-hydrolyzing enzymes as first-line of defence against nerve agent-poisoning: perspectives and the road ahead.

PLANTS

General

Averrhoa carambola (Star fruit)
Shimizu MHM, Gois PHF, Volpini RA, Canale D, Luchi WM, Froeder L, Heilberg IP, Seguro AC.
N-acetylcysteine protects against star fruit-induced acute kidney injury.
Ren Fail 2016; online early: doi: 10.1080/0886022X.2016.1256315:
Rauvolfia spp.
Death related to consumption of *Rauvolfia* sp. powder mislabeled as *Tabernanthe iboga*.
Forensic Sci Int 2016; 266: e38-e42.

ANIMALS

Bee stings
Gupta PN, Kumar BK, Velappan P, Sudheer MD.
Possible complication of bee stings and a review of the cardiac effects of bee stings.
BMJ Case Rep 2016; doi: 10.1136/bcr-2015-213974:

Fish/marine poisoning
Saggiomo SL, Zelenka C, Seymour J.
Relationship between food and venom production in the estuarine stonefish *Synanceia horrida*.
Toxicon 2017; 125: 19-23.

Ciguatera
Armstrong P, Murray P, Nesdale A, Peckler B.
Ciguatera fish poisoning.

Palytoxin
Thakur LK, Jha KK.
Palytoxin-induced acute respiratory failure.
Respir Med Case Rep 2017; 20: 4-6.

Tetrodotoxin
Bane V, Hutchinson S, Sheehan A, Brosnan B, Barnes P, Lehane M, Furey A.
LC-MS/MS method for the determination of tetrodotoxin (TTX) on a triple quadruple mass spectrometer.

Scorpions
Cajado-Carvalho D, Kuniyoshi AK, Duzzi B, Iwai LK, de Oliveira UC, Junqueira de Azevedo IdLM, Kondama RT, Portoaro FV.
Insights into the hypertensive effects of *Tityus serrulatus* scorpion venom: purification of an angiotensin-converting enzyme-like peptidase.
Toxins (Basel) 2016; 8: 348.

Rebahi H, Bahmamed S, Mouaffak Y, Younous S, Bennis M.
Clinico-epidemiological features of severe scorpion envenomation in a pediatric Moroccan population.

Snake bites
Aktar F, Akter S, Yolbas I, Tekin R.
Evaluation of risk factors and follow-up criteria for severity of snakebite in children.
Iran J Pediatr 2016; 26: e5212.

Hu Y, Yang L, Yang H, He S, Wei J-F.
Identification of snake venom allergens by two-dimensional electrophoresis followed by immunoblotting.

Mallick S, Singh SR, Sahoo S, Mohanty MK.
Ornament induced complications in snake bites: revisiting the "Do it RIGHT" approach.
PMCS084587.

Ramanath KV, Anitha C, Juned S.
Study on snake bite poisoning and its outcomes in a rural tertiary care hospital.

Crotalinae (Pit vipers)
Cañas CA, Vallejo A.
Envenomation by *Bothrops punctatus* in southwestern Colombia.

Emswiler MP, Griffith FP, Cumpston KL.
Clinically significant envenomation from postmortem Copperhead (*Agkistrodon contortrix*).

Félix-Silva J, Gomes JAS, Xavier-Santos JB, Passos JGR, Silva-Junior AA, Tambourgi DV, Fernandes-Pedrosa MF.
Inhibition of local effects induced by *Bothrops erythromelas* snake venom: Assessment of the effectiveness of Brazilian polyvalent bothropic antivenom and aqueous leaf extract of *Jatropha gossypifolia*.
Toxicon 2016; online early: doi: 10.1016/j.toxicon.2016.11.260:

Jorge RJB, Jorge ARC, de Menezes RRBP, Mello CP, Lima DB, Silveira JAdM, Alves NTQ, Marinho AD, Ximenes RM, Netto CC, Machado LG, Zingali RB, Martins AMC, Monteiro HSA.
Differences between renal effects of venom from two *Bothrops jararaca* populations from southeastern and southern Brazil.
Toxicon 2017; 125: 84-90.

Menaldo DL, Bernardes CP, Jacob-Ferreira AL, Nogueira-Santos CG, Casare-Ogasawara TM, Pereira-Crott LS, Sampaio SV.
Effects of *Bothrops atrox* venom and two isolated toxins on the human complement system: modulation of pathways and generation of anaphylatoxins.

Steuerwald MT, Gabbard SR, Beauchamp GA, Riddle MK, Otten EJ.
Administration of CroFab antivenom by a helicopter emergency medical service team.

Elapidae
Johnston CI, Ryan NM, O'Leary MA, Brown SGA, Isbister GK.
Australian taipan (*Oxyuranus spp.*) envenoming: clinical effects and potential benefits of early antivenom therapy – Australian Snakebite Project (ASP-25).
Clin Toxicol 2016; online early: doi: 10.1080/15563650.2016.1250903:

Mason H, Tan P, Kirkland G, Jose M.
Tiger snake envenomation related severe acute kidney injury: 2 case report.

Spiders
Rueda A, Realepe E, Uribe A.
Toxicity evaluation and initial characterization of the venom of a Colombian *Latrodectus* sp.
INDEX

2,4-dichlorophenol .. 27
ACE inhibitors .. 18
Acetaminophen .. 24
Acetazolamide .. 18
Acetylcysteine .. 16
Air pollution .. 26
Alprazolam .. 21
Amfetamines .. 18
Amiodarone .. 19
Amitraz .. 34
Amitriptyline .. 26
Anaesthetics .. 19
Analgesics .. 19
Analytical toxicology 7
Animals, general 35
Anionic methacrylate copolymer 28
Antiarhythmic drugs 19
Antibiotics .. 19
Anticholinergic drugs 19
Anticoagulants .. 19
Anticonvulsants 20
Antidepressants 20
Antidotes .. 16
Antifungal drugs 20
Antihistamines .. 20
Antimalarial drugs 20
Antineoplastic drugs 20
Antipsychotics ... 20
Antivenom .. 16
Antiviral drugs .. 21
Apixaban .. 19
Arsenic .. 32
Asbestos .. 28
Averrhoa carambola 34
Ayahuasca .. 21
Barium chloride 28
Bee stings .. 35
Benzonite .. 28
Benzodiazepines 21
Biological warfare 34
Biomarkers .. 8
Biphenol A .. 28
Bongkrekic acid 16
Butenafine .. 20
Caffeine .. 21
Calciferol .. 26
Calcium channel blockers 21
Cannabis .. 21
Carbamate insecticides 33
Carbon monoxide 28
Carcinogenicity 8
Cardiotoxicity 8
Carfentanil .. 24
Chelating agents 16
Chemical incidents 27
Chemical warfare, general 34
Chemicals, general 27
Chlorine .. 28
Chlormequat .. 28
Chloroform .. 28
Chlorpromazine 20
Chromium .. 32
Ciguatera .. 35
Ciprofloxacin .. 19
Clozapine .. 20
Cocaine .. 21
Colchicine .. 21

Contrast media .. 28
Corticosteroids 17
Cosmetics .. 28
Crotalataenia .. 35
Cyclophosphamide 20
Dabigatran .. 19
Decamethylocyclopentasiloxane 29
Dermal toxicity 9
Designer benzodiazepines 23
Detergents .. 29
Developmental toxicity 9
Diacyctel .. 29
Diacyethylmorphine 22
Diazepam .. 21
Dichloromethane 29
Dicrofenac .. 23
Dietary supplements 21
Digoxin .. 21
Dimethyl fumarate 21
Diphenhydramine 20
Diquat .. 34
Disinfectants .. 29
Driving under the influence 17
Dust .. 29
E-cigarettes and e-liquids 29
Ecstasy .. 18
Elapidae .. 35
Enaleapril .. 18
Epideomiology 17
Escitalopram .. 25
Ethanol .. 27
Ethnic remedies 21
Ethylene glycol 29
Extracorporeal treatments 17
Fentanyl .. 24
Fish/marine poisoning 35
Flame retardants 29
Flecainide .. 19
Fluoride .. 29
Fluorouracil ... 20
Fluoxetine .. 25
Food colourings 30
Forensic toxicology 18
Formaldehyde .. 30
Fragrance chemicals 30
Fungicides .. 33
Furfural .. 30
Glyphosate .. 33
Haemodialysis .. 17
Haemoperfusion 17
Hazardous waste 27
Hepatotoxicity 11
Herbal medicines 21
Herbicides .. 33
Heroin .. 22
Household products 30
Hydrocarbons 30
Hydrogen sulphide 30
Hydroxocobalamin 15
Hydroxychloroquine 20
Ibogaine .. 22
Idarucizumab .. 16
Indoxacarb .. 34
Inhalation toxicity 11
<table>
<thead>
<tr>
<th>Chemical/Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pesticides</td>
<td>34</td>
</tr>
<tr>
<td>Insulin</td>
<td>22</td>
</tr>
<tr>
<td>Ketamine</td>
<td>22</td>
</tr>
<tr>
<td>Kinetics</td>
<td>12</td>
</tr>
<tr>
<td>Kratom</td>
<td>22</td>
</tr>
<tr>
<td>Lamotrigine</td>
<td>20</td>
</tr>
<tr>
<td>Lead</td>
<td>32</td>
</tr>
<tr>
<td>Levetiracetam</td>
<td>22</td>
</tr>
<tr>
<td>Lignocaine</td>
<td>19</td>
</tr>
<tr>
<td>Lipid emulation therapy</td>
<td>16</td>
</tr>
<tr>
<td>Loperamide</td>
<td>22</td>
</tr>
<tr>
<td>Management, general</td>
<td>16</td>
</tr>
<tr>
<td>Mancoveb</td>
<td>33</td>
</tr>
<tr>
<td>Marijuana</td>
<td>21</td>
</tr>
<tr>
<td>MDMA</td>
<td>18</td>
</tr>
<tr>
<td>Mechanisms</td>
<td>12</td>
</tr>
<tr>
<td>Medication errors</td>
<td>12</td>
</tr>
<tr>
<td>Mefloquine</td>
<td>20</td>
</tr>
<tr>
<td>Mephedrone</td>
<td>22</td>
</tr>
<tr>
<td>Mercury</td>
<td>33</td>
</tr>
<tr>
<td>Metabolism</td>
<td>12</td>
</tr>
<tr>
<td>Metals, general</td>
<td>32</td>
</tr>
<tr>
<td>Methadone</td>
<td>24</td>
</tr>
<tr>
<td>Methadone maintenance therapy</td>
<td>17</td>
</tr>
<tr>
<td>Methanol</td>
<td>30</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>20</td>
</tr>
<tr>
<td>Methyl salicylate</td>
<td>30</td>
</tr>
<tr>
<td>Methylenepidate</td>
<td>22</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>19</td>
</tr>
<tr>
<td>Minoxidil</td>
<td>22</td>
</tr>
<tr>
<td>Mood stabilisers</td>
<td>22</td>
</tr>
<tr>
<td>Mustard gas</td>
<td>34</td>
</tr>
<tr>
<td>Naloxone</td>
<td>17</td>
</tr>
<tr>
<td>Nanoparticles</td>
<td>30</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>30</td>
</tr>
<tr>
<td>Neostigmine</td>
<td>17</td>
</tr>
<tr>
<td>Nephrotoxicity</td>
<td>12</td>
</tr>
<tr>
<td>Nerve agents</td>
<td>34</td>
</tr>
<tr>
<td>Nerve block adjuvants</td>
<td>22</td>
</tr>
<tr>
<td>Neurotoxicity</td>
<td>12</td>
</tr>
<tr>
<td>Nicotine</td>
<td>22</td>
</tr>
<tr>
<td>Norepinephrine</td>
<td>23</td>
</tr>
<tr>
<td>Novel psychoactive substances</td>
<td>23</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>23</td>
</tr>
<tr>
<td>Occupational toxicology</td>
<td>13</td>
</tr>
<tr>
<td>Ocular toxicity</td>
<td>13</td>
</tr>
<tr>
<td>Opioids</td>
<td>23</td>
</tr>
<tr>
<td>Organochlorine pesticides, general</td>
<td>34</td>
</tr>
<tr>
<td>Organophosphorus insecticides, general</td>
<td>34</td>
</tr>
<tr>
<td>Oximes</td>
<td>17</td>
</tr>
<tr>
<td>Oxycodeone</td>
<td>24</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>20</td>
</tr>
<tr>
<td>Paediatric toxicology</td>
<td>14</td>
</tr>
<tr>
<td>Palytoxin</td>
<td>35</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>24</td>
</tr>
<tr>
<td>Paraquat</td>
<td>34</td>
</tr>
<tr>
<td>Perfluorinated compounds</td>
<td>30</td>
</tr>
<tr>
<td>Peridate salts</td>
<td>30</td>
</tr>
<tr>
<td>Pesticides and cancer</td>
<td>33</td>
</tr>
<tr>
<td>Pesticides, general</td>
<td>33</td>
</tr>
<tr>
<td>Phenethylamines</td>
<td>23</td>
</tr>
<tr>
<td>Phenoxylethanol</td>
<td>30</td>
</tr>
<tr>
<td>Phthalate esters</td>
<td>30</td>
</tr>
<tr>
<td>Pit vipers</td>
<td>35</td>
</tr>
<tr>
<td>Plants, general</td>
<td>34</td>
</tr>
<tr>
<td>Plasmapheresis</td>
<td>17</td>
</tr>
<tr>
<td>Pollution</td>
<td>27</td>
</tr>
<tr>
<td>Polyvinyl chloride</td>
<td>31</td>
</tr>
<tr>
<td>Premabalin</td>
<td>20</td>
</tr>
<tr>
<td>Propanil</td>
<td>33</td>
</tr>
<tr>
<td>Psychotropic drugs</td>
<td>25</td>
</tr>
<tr>
<td>Pyrethroid insecticides, general</td>
<td>34</td>
</tr>
<tr>
<td>Quetiapine</td>
<td>20</td>
</tr>
<tr>
<td>Radiation</td>
<td>31</td>
</tr>
<tr>
<td>Rauwolfia spp.</td>
<td>35</td>
</tr>
<tr>
<td>Reprotoxicity</td>
<td>15</td>
</tr>
<tr>
<td>Rhododendrul</td>
<td>31</td>
</tr>
<tr>
<td>Risk assessment</td>
<td>15</td>
</tr>
<tr>
<td>Risperdone</td>
<td>21</td>
</tr>
<tr>
<td>Rodenticides</td>
<td>34</td>
</tr>
<tr>
<td>Rosiglitazone</td>
<td>17</td>
</tr>
<tr>
<td>Salicylates</td>
<td>25</td>
</tr>
<tr>
<td>Scorpions</td>
<td>35</td>
</tr>
<tr>
<td>Sedatives</td>
<td>35</td>
</tr>
<tr>
<td>Sildenafil</td>
<td>25</td>
</tr>
<tr>
<td>Silicon</td>
<td>33</td>
</tr>
<tr>
<td>Silver</td>
<td>33</td>
</tr>
<tr>
<td>Sitagliptin</td>
<td>22</td>
</tr>
<tr>
<td>Snake bites</td>
<td>35</td>
</tr>
<tr>
<td>Sodium azide</td>
<td>31</td>
</tr>
<tr>
<td>Sodium benzate</td>
<td>31</td>
</tr>
<tr>
<td>Spiders</td>
<td>35</td>
</tr>
<tr>
<td>SSRIs and SNRIs</td>
<td>25</td>
</tr>
<tr>
<td>Star fruit</td>
<td>34</td>
</tr>
<tr>
<td>Strychnine</td>
<td>34</td>
</tr>
<tr>
<td>Styrene</td>
<td>31</td>
</tr>
<tr>
<td>Substance abuse</td>
<td>25</td>
</tr>
<tr>
<td>Suicide</td>
<td>15</td>
</tr>
<tr>
<td>Sulfonylurea</td>
<td>22</td>
</tr>
<tr>
<td>Suvorexant</td>
<td>25</td>
</tr>
<tr>
<td>Synthetic cannabinoids</td>
<td>23</td>
</tr>
<tr>
<td>Synthetic cathinones</td>
<td>23</td>
</tr>
<tr>
<td>Synthetic opioids</td>
<td>23</td>
</tr>
<tr>
<td>Tenofovir</td>
<td>21</td>
</tr>
<tr>
<td>Tetrodoxin</td>
<td>35</td>
</tr>
<tr>
<td>Tobacco</td>
<td>31</td>
</tr>
<tr>
<td>Toluene</td>
<td>31</td>
</tr>
<tr>
<td>Toxicology, general</td>
<td>7</td>
</tr>
<tr>
<td>Tramadol</td>
<td>24</td>
</tr>
<tr>
<td>Trichlorfon</td>
<td>34</td>
</tr>
<tr>
<td>Tricyclic antidepressants</td>
<td>26</td>
</tr>
<tr>
<td>Trimethoprim-sulfamethoxazole</td>
<td>19</td>
</tr>
<tr>
<td>Uranium</td>
<td>33</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>19</td>
</tr>
<tr>
<td>Varenicline</td>
<td>26</td>
</tr>
<tr>
<td>Venlafaxine</td>
<td>25</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>26</td>
</tr>
<tr>
<td>Vitamins</td>
<td>26</td>
</tr>
<tr>
<td>Water</td>
<td>31</td>
</tr>
<tr>
<td>Water pollution</td>
<td>27</td>
</tr>
<tr>
<td>Welding fumes</td>
<td>31</td>
</tr>
<tr>
<td>Xylazine</td>
<td>25</td>
</tr>
<tr>
<td>Zinc</td>
<td>33</td>
</tr>
</tbody>
</table>

Current Awareness in Clinical Toxicology is produced monthly for the American Academy of Clinical Toxicology by the Birmingham Unit of the UK National Poisons Information Service, with contributions from the Cardiff, Edinburgh, and Newcastle Units.

The NPIS is commissioned by Public Health England.