Acute toxicity profile of tolperisone in overdose: observational poison centre-based study

Introduction
Tolperisone is a centrally acting muscle relaxant that acts by blocking voltage-gated sodium and calcium channels. There is a lack of information on the clinical features of tolperisone poisoning in the literature. The aim of this study was to investigate the demographics, circumstances and clinical features of acute overdoses with tolperisone.

Methods
An observational study of acute overdoses of tolperisone, either alone or in combination with one non-steroidal anti-inflammatory drug in a dose range not expected to cause central nervous system effects, in adults and children (< 16 years), reported to our poison centre between 1995 and 2013.
Results

75 cases were included: 51 females (68%) and 24 males (32%); 45 adults (60%) and 30 children (40%). Six adults (13%) and 17 children (57%) remained asymptomatic, and mild symptoms were seen in 25 adults (56%) and 10 children (33%). There were nine adults (20%) with moderate symptoms, and five adults (11%) and three children (10%) with severe symptoms. Signs and symptoms predominantly involved the central nervous system: somnolence, coma, seizures and agitation. Furthermore, some severe cardiovascular and respiratory signs and symptoms were reported. The minimal dose for seizures and severe symptoms in adults was 1500 mg. In 11 cases the latency between the ingestion and the onset of symptoms was known and was reported to be 0.5–1.5 h.

Conclusions

The acute overdose of tolperisone may be life-threatening, with a rapid onset of severe neurological, respiratory and cardiovascular symptoms. With alternative muscle relaxants available, indications for tolperisone should be rigorously evaluated.

Full text available from: http://dx.doi.org/10.3109/15563650.2015.1022896

Scorpion-related cardiomyopathy: clinical characteristics, pathophysiology, and treatment

Context

Scorpion envenomation is a threat to more than 2 billion people worldwide with an annual sting number exceeding one million. Acute heart failure presenting as cardiogenic shock or pulmonary edema, or both is the most severe presentation of scorpion envenomation accounting for 0.27% lethality rate.

Objective

The purpose of this review is to characterize the scorpion-related cardiomyopathy, clarify its pathophysiological mechanisms, and describe potentially useful treatments in this particular context.

Methods

We searched major databases on observational or interventional studies (whether clinical or experimental) on the cardiorespiratory consequences of scorpion envenomation and their treatment. No limit of age or language was imposed. A critical appraisal of the literature was conducted in order to provide a pathophysiological scheme that reconciles reported patterns of cardiovascular toxicity and hypotheses and assumptions made so far.

Results

Early cardiovascular dysfunction is related to the so-called "vascular phase" of scorpion envenomation, which is related to a profound catecholamine-related vasoconstriction leading to a sharp increase in left ventricular (LV) afterload, thereby impeding LV emptying, and increasing LV filling pressure. Following this vascular phase, a myocardial phase occurs, characterized by a striking alteration in LV contractility (myocardial stunning), low cardiac output, and hypotensive state. The right ventricle involvement is symmetric to that of LV with a profound and reversible alteration in right ventricular performance. This phase is unique in that it is reversible spontaneously or under inotropic treatment. Scorpion myocardiopathy combines the features of takotsubo myocardiopathy (or stress myocardiopathy) which is linked to a massive release in catecholamines leading to myocardial ischemia through coronary vasomotor abnormalities (epicardial coronary spasm
and/or increase in coronary microvascular resistance). Treatment of pulmonary edema due
to scorpion envenomation follows the same principles as those applied for the treatment of
cardiogenic pulmonary edema in general: this begins with oxygen supplementation targeting
an oxygen saturation of 92% or more, by oxygen mask, continuous positive airway
pressure, noninvasive ventilation, or conventional mechanical ventilation. Dobutamine
effectively improves hemodynamic parameters and may reduce mortality in severe scorpion
envenomation.

Conclusion
Scorpion cardiomyopathy is characterized by a marked and reversible alteration in
biventricular performance. Supportive treatment relying on ventilatory support and
dobutamine infusion is a bridge toward recovery in the majority of patients.

Full text available from: http:dx.doi.org/10.3109/15563650.2015.1030676

Comparison of lisdexamfetamine and dextroamphetamine exposures reported to U.S. poison centers

Context
Lisdexamfetamine is a pro-drug stimulant that requires the enzymatic hydrolysis of lysine
from dexamphetamine for pharmacologic effects. There is limited information comparing
non-therapeutic lisdexamfetamine and dextroamphetamine exposures.

Objective
The objective was to compare lisdexamfetamine exposures with dextroamphetamine/
amphetamine extended release and dextroamphetamine/amphetamine immediate release.

Methods
A retrospective observational case series of single-substance exposures to lisdexamfetamine,
dextroamphetamine/amphetamine extended release, or dextroamphetamine/amphetamine
immediate release reported to the National Poison Data System from 2007 to 2012 was
performed. Data were analyzed for demographics, reason, clinical effects, management site,
and outcomes.

Results
There were 23,553 exposures: lisdexamfetamine (7,113), dextroamphetamine/amphetamine extended release (6,245), and dextroamphetamine/amphetamine immediate release (10,195). The most frequent clinical effects observed for lisdexamfetamine, dextroamphetamine/amphetamine extended release, and dextroamphetamine/amphetamine immediate release were agitation (19.8%, 21.7%, and 25.1%, respectively) and tachycardia (19.2%, 22.8%, and 23.9%, respectively). The reason was most often exploratory (93.4%) in children < 6 years and therapeutic error (65.6%) in children aged 6-12 years. In adolescents and adults most common reasons were suicide attempts (28.4%) followed by abuse (19.5%) and therapeutic errors (18.8%). Overall, 61.6% of cases were managed in a health care facility, with the majority treated in the emergency department only. The majority of cases (76.0%) experienced no or minor effects. More serious outcomes (moderate/major/death) occurred in 21.2% of lisdexamfetamine, 24.7% of dextroamphetamine/amphetamine extended release, and 25.5% of dextroamphetamine/amphetamine immediate release. There were 4 deaths (1 dextroamphetamine/amphetamine extended release and 3 dextroamphetamine/amphetamine immediate release). In patients aged 6 years and more, abuse/misuse was more frequently reported for dextro-
amphetamine/amphetamine immediate release (32.5%) and dextroamphetamine/amphetamine extended release (23.0%) than that for lisdexamfetamine (13.5%). The odds of abuse/misuse was 2.3 (95% confidence interval [CI]: 2.0-2.4) times higher for dextroamphetamine/amphetamine immediate release than that for lisdexamfetamine and dextroamphetamine/amphetamine extended release combined; the odds of dextroamphetamine/amphetamine extended release abuse/misuse was 1.9 (95% CI: 1.7-2.2) times higher than lisdexamfetamine. In 2011, the number of lisdexamfetamine abuse/misuse cases exceeded dextroamphetamine/amphetamine extended release by approximately 26% and plateaued in 2012, but was significantly lower (approximately 75%) than dextroamphetamine/amphetamine immediate release.

Conclusions
Toxic effects were similar for all three drugs. Although the majority of cases were treated at health care facilities, the majority of patients experienced no effects or minor toxicity. Serious outcomes occurred in approximately 21% of lisdexamfetamine and 25% of dextroamphetamine/amphetamine extended release and dextroamphetamine/amphetamine immediate release. Lisdexamfetamine may have less abuse potential, especially compared with the immediate-release dextroamphetamine/amphetamine formulation.

Full text available from: http://dx.doi.org/10.3109/15563650.2015.1027903

2-Methyl-4-chlorophenoxyacetic acid and bromoxynil herbicide death

Case report
We report a fatal case of a 37 year old gentleman who ingested a MCPA/bromoxynil co-formulation herbicide. Although clinically well on initial examination, our patient declined dramatically over his 18 h admission with increasing CO₂ production, hyperthermia and metabolic derangement to eventually die from cardiac asystole 20 h post ingestion. Two hours after ingestion the MCPA concentration was 83.9 µg/mL and bromoxynil concentration was 137 µg/mL.

Discussion
The patients' mechanism of death appeared to be uncoupling of oxidative phosphorylation, excess CO₂ production and hyperthermia. There is limited knowledge on the acute toxicity of these herbicides, in particular bromoxynil, and this case highlights the relentless progression of severe toxicity in humans.

Full text available from: http://dx.doi.org/10.3109/15563650.2015.1030025

Fab fragments of ovine antibody to colchicine enhance its clearance in the rat

Context
Colchicine is an anti-inflammatory alkaloid used for the treatment of acute gout, but has a narrow therapeutic index. Colchicine overdoses are relatively rare, but have high mortality requiring rapid treatment.

Objective
To evaluate the ability of a newly available ovine fragment antigen-binding (Fab) antibody to colchicine (ColchiFab™) to protect rats against renal and other injury 24 h after colchicine ingestion.

Materials and methods
Rats were gavaged with colchicine (5 mg/kg), then 2 h later injected intraperitoneally with 5 ml of sterile saline, or Fab anti-colchicine, a newly available ovine antibody to colchicine. Samples of blood were taken at 1, 2, 5 and 24 h after gavage, and urine was collected from 5 to 24 h after gavage. Concentrations of colchicine in tissue, blood and urine were measured by liquid chromatography/mass spectrometry, concentrations of Fab anti-colchicine, urinary neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 or KIM-1 by enzyme-linked immunosorbent assay or ELISA, while concentrations of creatine kinase and creatinine (Cr) were measured enzymatically.

Results
Colchicine equilibrated rapidly throughout the body and increased serum creatine kinase. Fab anti-colchicine also rapidly redistributed to the blood and remained at high concentrations over 24 h. Fab anti-colchicine caused a rapid 7.1-fold increase in serum colchicine level, followed by excretion of both colchicine and Fab anti-colchicine through the urine. This was associated with the accumulation of colchicine in the kidney, a reversal of colchicine-induced diarrhoea, and increasing urinary NGAL level; from 168 ± 48 to 477 ± 255 ng/mmol Cr [mean ± standard deviation or SD].

Discussion
Fab anti-colchicine greatly increased the clearance of colchicine, although increasing NGAL level suggested the presence of mild kidney damage.

Conclusion
These data suggest clinical utility for Fab anti-colchicine in the treatment of colchicine overdose.

Full text available from: http://dx.doi.org/10.3109/15563650.2015.1030026

Hospital outcomes and economic costs from poisoning cases in Illinois

Krajewski AK, Friedman LS. Clin Toxicol 2015; online early: doi: 10.3109/15563650.2015.1030677:

Context
Since 2009, poisonings have been the leading cause of fatal injuries in the United States (US) and remain a continuing public health issue. Because of the varying definitions for what constitutes a poisoning case, there are inconsistencies in the annual number of cases reported among national health surveys.

Objectives
The main objective of this study was to describe poisonings treated in Illinois hospitals by type of exposure, as well as to detail demographic characteristics, acute outcomes, and general cost estimates for those exposed to poisoning. We also compared a broad definition for poisoning used in our analysis with the definitions used by four national health surveys in order to assess the adequacy of various definitions in capturing poisonings for surveillance.
Material and methods

We conducted a comprehensive analysis of outpatients and inpatients treated in Illinois hospitals in 2010 using the Illinois hospital database. Age-adjusted incidence rates were calculated.

Results

In Illinois, 425,491 patients were treated in hospitals for poisoning in 2010, of whom 222,339 were inpatients. The age-adjusted incidence rate was 3,189 per 100,000 persons, with an average length of stay among inpatients of 5.5 days. The cumulative hospital charges were $7.9 billion.

Discussion and conclusion

The definitions used in national surveys miss 60–90% of poisoning cases. Poisoning is the leading cause of fatal injuries in the U.S., but as this study shows broadening the definition for poisoning may provide a more accurate representation of the direct and indirect effects of poisoning in the US.

Full text available from: http://dx.doi.org/10.3109/15563650.2015.1030677

Initiation of a medical toxicology consult service at a tertiary care children's hospital

Currently, only 10% of board-certified medical toxicologists are pediatricians. Yet over half of poison center calls involve children < 6 years, poisoning continues to be a common pediatric diagnosis and bedside toxicology consultation is not common at children's hospitals. In collaboration with executive staff from Department of Pediatrics and Emergency Medicine, regional poison center, and our toxicology fellowship, we established a toxicology consulting service at our tertiary-care children's hospital. There were 139 consultations, and the service generated 13 consultations in the first month; median of 11 consultations per month thereafter (range 8–16). The service increased pediatric cases seen by the fellowship program from 30 to 94. The transition to a consult service required a culture change. Historically, call center advice was the mainstay of consulting practice and the medical staff was not accustomed to the availability of bedside medical toxicology consultations. However, after promotion of the service and full attending and fellowship coverage, consultations increased. In collaboration with toxicologists from different departments, a consultation service can be rapidly established. The service filled a clinical need that was disproportionately utilized for high acuity patients, immediately utilized by the medical staff and provided a robust pediatric population for the toxicology fellowship.

Full text available from: http://dx.doi.org/10.3109/15563650.2015.1013196

Global incidence of rhabdomyolysis after cooked seafood consumption (Haff disease)

Context

Haff disease is a syndrome of myalgia and rhabdomyolysis that occurs after consuming cooked seafood.
Objectives
(1) To identify the most common seafood vectors of Haff disease worldwide. (2) To describe and to compare the most commonly recurring clinical and laboratory manifestations of Haff disease. (3) To compare the Haff disease toxidrome with other similar toxidromes.

Methods
Internet search engines were queried with the keywords, and selected articles were stratified by reporting Old World or New World nations. Continuous variables were reported as means with standard deviations; categorical values were reported as proportions.

Results
Over 1,000 cases of Haff disease were initially described in Eastern Europe and Sweden during and following the ingestion of several species of cooked freshwater fish including burbot, pike, freshwater eel, and whitefish. More recent case reports followed consumption of cooked freshwater pomfret and boiled crayfish in China, and cooked or raw boxfish in Japan. There were 29 case reports of Haff disease in the United States with most following consumption of buffalo fish, crayfish, or Atlantic salmon.

Conclusion
The consumption of several species of cooked fish has caused Haff disease outbreaks worldwide. The bioaccumulation of a new heat-stable, fresh, and/or brackish/salt-water algal toxin in seafood, similar to palytoxin, but primarily myotoxic and not neurotoxic, is suspected for causing Haff disease.

Full text available from: http://dx.doi.org/10.3109/15563650.2015.1016165

Reducing the harm of opioid overdose with the safe use of naloxone: a pharmacologic review
Abstract and full text available from: http://dx.doi.org/10.1517/14740338.2015.1037274

Characterization of the toxicological hazards of hydrocarbon solvents
Abstract and full text available from: http://dx.doi.org/10.3109/10408444.2015.1016216

Glyphosate-based herbicides potently affect cardiovascular system in mammals: review of the literature
Abstract and full text available from: http://dx.doi.org/10.1007/s12012-014-9282-y

Metabolism of classical cannabinoids and the synthetic cannabinoid JWH-018
Abstract and full text available from: http://dx.doi.org/10.1002/cpt.114

Metals in cosmetics: implications for human health
Abstract and full text available from: http://dx.doi.org/10.1002/jat.3129

Paralytic shellfish poisonings resulting from an algal bloom in Nicaragua
Abstract and full text available from: http://dx.doi.org/10.1186/s13104-015-1012-4

Tetanus after envenomations caused by freshwater stingrays
Abstract and full text available from: http://dx.doi.org/10.1016/j.toxicon.2014.12.001

Showering effectiveness for human hair decontamination of the nerve agent VX
Abstract and full text available from: http://dx.doi.org/10.1016/j.cbi.2015.03.010

First trimester exposure to topiramate and the risk of oral clefts in the offspring: a systematic review and meta-analysis
Abstract and full text available from: http://dx.doi.org/10.1016/j.reprotox.2015.03.003

Exposure to nitrofurantoin during early pregnancy and congenital malformations: a systematic review and meta-analysis
TOXICOLOGY

General

Hulla JE, Kinter LB, Kelman B. A standard of knowledge for the professional practice of toxicology. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408643:

Analytical toxicology

Biomarkers

Body packers

Carcinogenicity
Risk of female breast cancer and serum concentrations of organochlorine pesticides and polychlorinated biphenyls: a case-control study in Tunisia.

Binazzi A, Ferrante P, Marinaccio A.
Occupational exposure and sinonasal cancer: a systematic review and meta-analysis.

Claxton LD.
The history, genotoxicity, and carcinogenicity of carbon-based fuels and their emissions. Part 3: diesel and gasoline.
Mutat Res Rev Mutat Res 2015; 763: 30-85.

Claxton LD.
The history, genotoxicity, and carcinogenicity of carbon-based fuels and their emissions: part 5. Summary, comparisons, and conclusions.
Mutat Res Rev Mutat Res 2015; 763: 103-47.

Claxton LD.
The history, genotoxicity and carcinogenicity of carbon-based fuels and their emissions: part 4 - Alternative fuels.

Occupational exposure to N-nitrosamines and pesticides and risk of pancreatic cancer.
Oncol Environ Med 2015; online early: doi: 10.1136/oemed-2014-102522:

Greim H, Saltmiras D, Mostert V, Strupp C.
Evaluation of carcinogenic potential of the herbicide glyphosate, drawing on tumor incidence data from fourteen chronic/carcinogenicity rodent studies.

Cardiotoxicity
Abroug F, Souheil E, Ouanes I, Dachraoui F, Fekih-Hassen M, Ouanes Besbes L.
Scorpion-related cardiomyopathy: clinical characteristics, pathophysiology, and treatment.
Clin Toxicol 2015; online early: doi: 10.3109/15563650.2015.1030676:

Abuzeid W, Al-Lawati H, Fam N.
Acute myocardial infarction after switching from warfarin to dabigatran.

Cardiotoxicity of intravenous haloperidol–An update.
Naunyn Schmiedebergs Arch Pharmacol 2015; 388: S32.

Calvert R, Vohra S, Ferguson M, Wiesenfeld P.
A beating heart cell model to predict cardiotoxicity: effects of the dietary supplement ingredients higenamine, phenylethylamine, ephedrine and caffeine.

Cortes J, Hall B, Redden D.
Profound symptomatic bradycardia requiring transvenous pacing after a single dose of tizanidine.

Gress S, Lemoine S, Séralini G-E, Puddu PE.
Glyphosate-based herbicides potently affect cardiovascular system in mammals: review of the literature.

Lee F-Y, Chen W-K, Lin C-L, Kao C-H.
Carbon monoxide poisoning and subsequent cardiovascular disease risk: a nationwide population-based cohort study.
Medicine (Baltimore) 2015; 94: e624.

Neki NS.
Acute myocardial infarction in snake bite envenomation - A case report.

Sidhu MS, Desai KP, Lynch RN, Rhomberg LR, Beck BD, Venditti FJ.
Toxicology 2015; online early: doi: 10.1016/j.tox.2015.02.008:

Spinner HL, Lonardo NW, Mulamalla R, Stehlik J.
Ventricular tachycardia associated with high-dose chronic loperamide use.

Dermal toxicity
Alloo A, Sheu J, Butrynski JE, DeAngelo DJ, George S, Murphy GF, LeBoeuf NR.
Ponatinib-induced pityriasisiform, folliculocentric and ichthyosiform cutaneous toxicities.

Bregnbak D, Thysen JP, Zachariae C, Menné T, Johansen JD.
Association between cobalt allergy and dermatitis caused by leather articles – A questionnaire study.
Contact Derm 2015; 72: 106-14.

Breslin ME, Garcia-Lloret M, Braskell M.
A fatal case of drug reaction with eosinophilia and systemic symptoms (DRESS)-Stevens Johnson (SJS)/toxic epidermal necrolysis (TEN) in the setting of strongyloides infection: treatment considerations.

Burches E, Revert A, Martin J, Iturralde A.
Occupational systemic allergic dermatitis caused by sevoflurane.

Jakasa I, Kezic S, Boogaard PJ.
Dermal uptake of petroleum substances.
Toxicol Lett 2015; online early: doi: 10.1016/j.toxlet.2015.03.012:

Kneuer C, Wend K, Lütte S, Herzler M, Martin S, Niemann L, Solecki R.
Naunyn Schmiedebergs Arch Pharmacol 2015; 388: S89.
Severity and functional disability of patients with occupational contact dermatitis: validation of the German version of the Occupational Contact Dermatitis Disease Severity Index.

Developmental toxicology

Levy RJ. Carbon monoxide pollution and neurodevelopment: a public health concern. Neurotoxicol Teratol 2015; online early: doi: 10.1016/j.ntt.2015.03.001:

Driving under the influence of alcohol and other drugs

Epidemiology

Geier DA, King PG, Hooker BS, Dórea JG, Kern JX, Sykes LK, Geier MR. Thimerosal: clinical, epidemiologic and biochemical studies.

Kim S-Y, Sheppard L, Larson TV, Kaufman JD, Vedal S. Combining PM2.5 component data from multiple sources: data consistency and characteristics relevant to epidemiological analyses of predicted long-term exposures. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1307744:

Krajewski AK, Friedman LS. Hospital outcomes and economic costs from poisoning cases in Illinois. Clin Toxicol 2015; online early: doi: 10.3109/15563650.2015.1030677:

Rogers RG, Boardman JD, Pendergast PM, Lawrence EM. Drinking problems and mortality risk in the United States. Drug Alcohol Depend 2015; online early: doi: 10.1016/j.drugalcdep.2015.02.039:

Viana FSL, de Oliveira MZ, Sanseverino MTV, Moreto EF, Neto DLR, Lopez-Camelo J, Camey SA, Schuler-Faccini L. Pharmacoepidemiology and thalidomide embryopathy surveillance in Brazil. Reprod Toxicol 2015; online early: doi: 10.1016/j.reprotox.2015.03.007:

Forensic toxicology

Zhang T, Chen X, Yang R, Xu Y.

Genotoxicity

Claxton LD.
The history, genotoxicity, and carcinogenicity of carbon-based fuels and their emissions. Part 3: diesel and gasoline.
Mutat Res Rev Mutat Res 2015; 763: 30-85.

Claxton LD.
The history, genotoxicity, and carcinogenicity of carbon-based fuels and their emissions: part 5. Summary, comparisons, and conclusions.
Mutat Res Rev Mutat Res 2015; 763: 103-47.

Claxton LD.
The history, genotoxicity and carcinogenicity of carbon-based fuels and their emissions: part 4 - Alternative fuels.

Jasso-Pineda Y, Díaz-Barriga F, Yáñez-Estrada L, Pérez-Vázquez FJ, Pérez-Maldonado IN.
DNA damage in Mexican children living in high-risk contaminated scenarios.

Koller VJ, Ferk F, Al-Serori H, Mišk M, Nersesyan A, Auwärter V, Grummt T, Knasmüller S.
Genotoxic properties of representatives of alkylindazoles and aminoalkyl-indoles which are consumed as synthetic cannabinoids.

Radiation-induced changes in DNA methylation and their relationship to chromosomal aberrations in nuclear power plant workers.

Moitra S, Chakraborty K, Bhattacharyya A, Sahu S.
Impact of occupational cadmium exposure on spirometry, sputum leukocyte count, and lung cell DNA damage among Indian goldsmiths.

Mrakovcic M, Meindl C, Leitinger G, Roblegg E, Fröhlich E.
Carboxylated short single-walled carbon nanotubes but not plain and multi-walled short carbon nanotubes show in vitro genotoxicity.

Santovito A, Cervella P, Del Pero M.
Evidence of genotoxicity in lymphocytes of non-smoking alcoholics.

Syberg K, Binderup M-L, Cedergreen N, Rank J.
Mixture genotoxicity of 2,4-dichlorophenoxyacetic acid, acrylamide, and maleic hydrazide on human caco-2 cells assessed with comet assay.

Hepatotoxicity

Successful detoxification and liver transplantation in a severe poisoning with a chemical wood preservative containing chromium, copper, and arsenic.
Transplantation 2015; 99: e29-e30.

Carrascosa MF, Salcines-Cavedies JR, Lucena MI, Andrade RJ.

Features and outcomes of 889 patients with drug-induced liver injury: the DILIN prospective study.

Eser M, Basyigit S, Asilturk Z, Nazligul Y.
Propylthiouracil induced asymptomatic toxic hepatitis.
Hepatol Int 2015; 9 Suppl 1: S146.

Comparative analysis of portal hepatic infiltrating leucocytes in acute drug-induced liver injury, idiopathic autoimmune and viral hepatitis.

Freire C, Kolfman RJ, Kolfman S.
Hematological and hepatic alterations in Brazilian population heavily exposed to organochlorine pesticides.

Grove JJ, Althal GP.
Human leucocyte antigen genetic risk factors of drug-induced liver toxicity.

Jeong R, Lee YS, Sohn C, Jeon J, Ahn S, Lim KS.
Model for end-stage liver disease score as a predictor of short-term outcome in patients with drug-induced liver injury.

Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain.

Bimodal peaks of liver stiffness in a case of drug-induced liver injury.
Hepatol Int 2015; 9 Suppl 1: S149.

Kuroda H, Kasai K, Takikawa Y.
Early monitoring for detection of antitubeculous drug induced hepatotoxicity.
Hepatol Int 2015; 9 Suppl 1: S146.
Drug-induced liver injury with serious multiform exudative erythema following the use of an over-the-counter medication containing ibuprofen.

Weiler S, Merz M, Kullak-Ublick GA.

Drug-induced liver injury: the dawn of biomarkers?

F1000Prime Rep 2015; 7: 34.

Welch MA, Kock K, Urban TJ, Brouwer KL, Swaan PW.

Towards predicting drug-induced liver injury (DILI): parallel computational approaches to identify MRP4 and BSEP inhibitors.

Drug Metab Dispos 2015; online early: doi: 10.1124/dmd.114.062539:

Wise J.

True risks of paracetamol may be underestimated, say researchers.

Analysis of 90 cases of antithyroid drug-induced severe hepatotoxicity over 13 years in China.

Thyroid 2015; 25: 278-83.

Inhalation toxicity

Khan AW, Moshammer HM, Kundi M.

Industrial hygiene, occupational safety and respiratory symptoms in the Pakistani cotton industry.

Kinetics

Eggleston W, Nacca N, Marraffo JM.

Loperamide toxicokinetics: serum concentrations in the overdose setting.

Clin Toxicol 2015; online early: doi: 10.3109/15563650.2015.1026971:

Pharmacokinetic modelling of dialytic clearance in a case of acyclovir intoxication.

Manini AF, Yiannoulos G, Bergamaschi MM, Hernandez S, Jutras-Aswad D, Huestis MA, Hurd YL.

Safety and pharmacokinetics of oral cannabidiol when administered concomitantly with intravenous fentanyl in humans.

J Addict Med 2015; online early: doi: 10.1097/ADM.0000000000000118:

Rochat B, Dahmane E, Zaman K, Caqia C.

Improved investigations in drug safety by more in-depth individual pharmacokinetics using high-resolution mass spectrometry.

Ther Drug Monit 2015; 37: 141-6.

Skinner K, Saiaco A, Mostafa A, Soderstrom J, Medley G, Roberts MS, Isbister GK.

Isoniazid poisoning: pharmacokinetics and effect of hemodialysis in a massive ingestion.

Hemodial Int 2015; online early: doi: 10.1111/hdi.12293:

Valcke M, Haddad S.
Assessing human variability in kinetics for exposures to multiple environmental chemicals: a physiologically based pharmacokinetic modeling case study with dichloromethane, benzene, toluene, ethylbenzene, and m/xylene.

Mechanisms of toxicity
Hughes TB, Miller GP, Swamidass SJ.
Site of reactivity models predict molecular reactivity of diverse chemicals with glutathione.
Chem Res Toxicol 2015; online early: doi: 10.1021/acs.chemrestox.5b00017:

Mokarizadeh A, Faryabi MR, Rezvanfar MA, Abdollahi M.
A comprehensive review of pesticides and the immune dysregulation: mechanisms, evidence and consequences.

Metabolism
Su M, Seely KA, Moran JH, Hoffman RS.
Metabolism of classical cannabinoids and the synthetic cannabinoid JWH-018.

Nephrotoxicity
Circulating tumor necrosis factor receptors 1 and 2 predict contrast-induced nephropathy and progressive renal dysfunction: a prospective study.
Nephrology 2015; online early: doi: 10.1111/nep.12448:

Fadda V, Maratea D, Trippoli S, Messori A.
Gastrointestinal and renal side effects of bisphosphonates: differentiating between no proof of difference and proof of no difference.

Haider M, Yessayan L, Venkat KK, Goggins M, Patel A, Karthikeyan V.
Incidence of contrast-induced nephropathy in kidney transplant recipients.

Havali C, Güçiyener K, Buyan N, Yılmaz Ü, Gürkay A, Gülbahar Ö, Demir E, Serdaroglu A.
Does nephrotoxicity exist in pediatric epileptic patients on valproate or carbamazepine therapy?

Homma-Takeda S, Kitahara K, Suzuki K, Blyth BJ, Suya N, Konishi T, Terada Y, Shimada Y.
Cellular localization of uranium in the renal proximal tubules during acute renal uranium toxicity.
J Appl Toxicol 2015; online early: doi: 10.1002/jat.3126:

Lozano R.
Renal toxicity of long-term lithium treatment for mild cognitive impairment.

Ndagije H, Nambasi V, Namagala E, Nassali H, Kagungu D, Sematiko G, Olsson S, Pal S.
Targeted spontaneous reporting of suspected renal toxicity in patients undergoing highly active anti-retroviral therapy in two public health facilities in Uganda.

Ozkaya-Parlakay A, Kara A, Cengiz AB.
Increased risk of nephrotoxicity: side effect of colistin use in paediatric patients.

Pal S, Sarkar A, Pal P, Sil PC.
Protective effect of arjunic acid against atorvastatin induced hepatic and renal pathophysiology via MAPK, mitochondria and ER dependent pathways.
Biochimie 2015; online early: doi: 10.1016/j.biochi.2015.02.016:

Rango T, Jeuland M, Manthrihalke H, McCormick P.
Nephrotoxic contaminants in drinking water and urine, and chronic kidney disease in rural Sri Lanka.

Stefanovic V, Toncheva D, Polenakovic M.
Balkan nephropathy.

Wise J.
True risks of paracetamol may be underestimated, say researchers.

Neurotoxicity
Increased DNA damage and oxidative stress among silver jewelry workers.

Barbosa DJ, Capela JP, Feio-Azevedo R, Teixeira-Gomes A, Bastos ML, Carvalho F.
Mitochondria: key players in the neurotoxic effects of amphetamines.
Arch Toxicol 2015; online early: doi: 10.1007/s00204-015-1478-9:

Berrios VO, Boukili NM, Rodriguez JW, Negraes PD, Schwindt TT, Trujillo CA, Oliveira SLB, Cubano LA, Ferrhmin PA, Eterovic VA, Ulrich H, Martins AH.
Paraaxon and pyridostigmine interfere with neural stem cell differentiation.
Neurochem Res 2015; online early: doi: 10.1007/s11064-015-1548-7:

Chen P, Chakraborty S, Peres TV, Bowman AB, Aschner M.
Manganese-induced neurotoxicity: from C. elegans to humans.

Muscle Nerve 2015; online early: doi: 10.1002/mus.24647:

Demel SL, Jovin TG, Jadhav AP.
Metronidazole toxicity presenting with acute onset of aphasia and right sided weakness.

Desrosiers NA, Ramakers JG, Chauchard E, Grellicke DA, Huestis MA.
Smoked cannabis' psychomotor and neurocognitive effects in occasional and frequent smokers.
J Anal Toxicol 2015; online early:
organophosphate pesticides caused by mitochondria in differential regional.

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Respiratory health status and its predictors: a cross-sectional study among coal-based sponge iron plant workers in Barjora, India.

De Boer J, Antelo A, van der Veen I, Brandsma S, Lammertse N.

Tricresyl phosphate and the aerotoxic syndrome of flight crew members – Current gaps in knowledge.

Dudley SE, Morriss AP.

Will the Occupational Safety and Health Administration’s proposed standards for occupational exposure to respirable crystalline silica reduce workplace risk?

Risk Anal 2015; online early: doi: 10.1111/rsa.12341:

Friis UF, Menné T, Flyvholm M-A, Bondé JPE, Johansen JD.

Difficulties in using material safety data sheets to analyse occupational exposures to contact allergens.

Contact Derm 2015; 72: 147-53.

Khan AW, Moshhammer HM, Kundi M.

Industrial hygiene, occupational safety and respiratory symptoms in the Pakistani cotton industry.

Khan AW, Neresyan A, Knasmüller S, Moshhammer H, Kundi M.

Nuclear anomalies in exfoliated buccal cells in Pakistani cotton weavers.

Mutagenesis 2015; online early: doi: 10.1039/mutage/gev022:

The relationship between low-level benzene exposure and blood cell counts in Korean workers.

Occup Environ Med 2015; online early: doi: 10.1136/oemed-2014-102227:

Krishnatryya M, Katak KC, Sharma JD, Lahkar K.

A retrospective analysis of occupational exposure to pesticides as a possible risk factor for non-melanoma skin cancers.

Radiation-induced changes in DNA methylation and their relationship to chromosome aberrations in nuclear power plant workers.

Martinez CH, Delcos GL.

Occupational exposures and chronic obstructive pulmonary disease. Causality established, time to focus on effect and phenotypes.

Mocvevic E, Kristiansen P, Bondé JH.

Risk of ischemic heart disease following occupational exposure to welding fumes: a systematic review with meta-analysis.

Int Arch Occup Environ Health 2015; 88: 259-72.

Molitra S, Chakraborty K, Bhattacharyya A, Sahu S.

Impact of occupational cadmium exposure on spirometry, sputum leucocyte count, and lung cell DNA damage among Indian goldsmiths.

Early hematological and immunological alterations in gasoline station attendants exposed to benzene.

Nicoli LM, McFarlane PA, Hirani N, Reid PT.

Six cases of silicosis: implications for health surveillance of stonemasons.

Nigatu AW, Bratrove M, Deressa W, Moen BE.

Respiratory symptoms, fractional exhaled nitric oxide & endotoxin exposure among female flower farm workers in Ethiopia.

Severity and functional disability of patients with occupational contact dermatitis: validation of the German version of the Occupational Contact Dermatitis Disease Severity Index.

High exposure of California firefighters to polybrominated diphenyl ethers.

Occupational exposures are associated with worse morbidity in patients with chronic obstructive pulmonary disease.

Robitaille C, Boulet L-P.

Occupational asthma after exposure to ortho-phthalaldehyde (OPA).

Occup Environ Med 2015; online early: doi: 10.1136/oemed-2015-102847:

Rosenman K.

Occupational diseases in individuals exposed to metal working fluids.

Salu A, Adebayo O, Kofoworola O, Babatunde O, Ismail A.

Comparative assessment of blood lead levels of automobile technicians in organised and roadside garages in Lagos, Nigeria.

Lead toxicity among traffic wardens: a high risk group exposed to atmospheric lead, is it still a cause for concern?

Tohong HG, Fayomi B, Valcke M, Copperseters Y, Boulard C.

BTEX air concentrations and self-reported common health problems in gasoline sellers from Cotonou, Benin.

A large, nationwide, longitudinal study of central nervous system diseases among Korean workers exposed to manganese.

Ocular toxicity

Faure C, Audo J, Zeitz C, Letessier J-B, Robert MP.

Aniriprazole-induced choriotretnopathy: multimodal imaging and electrophysiologica features.

Doc Ophthalmol 2015; online early: doi: 10.1007/s10633-015-9494-x:

Galvez-Ruiz A, Elkahamy SM, Asghar N, Bosley TM.

Cupping of the optic disk after methanol poisoning.

Br J Ophthalmol 2015; online early: doi: 10.1136/bjophthalmol-2014-306354:

Common synonymous variants in ABCA4 are protective for chloroquine induced maculopathy (toxic maculopathy).

Vignesh AP, Srinivasan R, Karanth S.

A case report of severe corneal toxicity following 0.5% topical moxifloxacin use.

Retinal toxicity, in vivo and in vitro, associated with inhibition of nicotinamide phosphoribosyltransferase.

Paediatric toxicology

Akers DB, Maccarthy MF, Cunningham JA, Annis J, Mihelciuc JR.

Lead (Pb) contamination of self-supply groundwater systems in coastal Madagascar and predictions of blood lead levels in exposed children.

Al-Malky G, Dawson SJ, Sirimanna T, Bagkeris E, Suri R.

High-frequency audiometry reveals high prevalence of aminoglycoside ototoxicity in children with cystic fibrosis.

Alhamdani M, Brown B, Narula P.

Abru poisoning in an 18-month-old child.

Alsaad AMS, Chaudhry SA, Koren G.

First trimester exposure to topiramate and the risk of oral clefts in the offspring: a systematic review and meta-analysis.

Bada HS, Sithisarn T, Gibson J, Garlitz K, Caldwell R, Capilouto G, Li Y, Leggus M, Breheny P.

Morphine versus clonidine for neonatal abstinence syndrome.

Phthalate metabolites in urine samples from school children in Taipei, Taiwan.

Arch Environ Contam Toxicol 2015; online early: doi: 10.1007/s00244-015-0146-7:

Best KM, Boullita JI, Curley MAQ.

Risk factors associated with iatrogenic opioid and benzodiazepine withdrawal in critically ill pediatric patients: a systematic review and conceptual model.

Bilgen Sivri B, Ozpulat F.

Mothers' knowledge levels related to poisoning.

Brandt L, Fischberger S, Jagsch R, Fischer G.

Effects of maternal opioid maintenance therapy on neonatal outcomes: methadone vs. buprenorphine.

Bush SP, Kinlaw SB.

Management of a pediatric snake envenomation after presentation with a tight tourniquet.

Wilderness Environ Med 2015; online early: doi: 10.1016/j.wem.2015.01.005:

Health risk assessment of various metal(loid)s via multiple exposure pathways on children living near a typical lead-acid battery plant, China.

Environ Pollut 2015; 200: 16-23.

Levels and source apportionment of children's lead exposure: could urinary lead be used to identify the levels and sources of children's lead pollution?

Chen J, Li M, Lv Q, Chen G, Li Y, Li S, Mo Y, Ou S, Yuan Z, Huang M, Jiang Y.

Blood lead level and its relationship to essential elements in preschool children from Nanning, China.

Cohen G.

Harmful chemicals: poisoning our children one life-saving device at a time.

Explore 2015; online early: doi: 10.1016/j.explore.2015.02.014:

Perinatal exposure to chlordecone, thyroid hormone status and neurodevelopment in infants: the Timoun cohort study in Guadeloupe (French West Indies).

Crosslin K, Tsai R, Massey-Stokes M.

Forcelli PA. Short- and long-term neurological and psychiatric sequelae of developmental exposure to antiepileptic and anesthetic drugs. Front Neurol 2015; 6: 41.

Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1308005.

Maccani JZJ, Koesterl DC, Lester B, Houseman EA, Armstrong DA, Kelsey KT, Marsit CJ.
Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408561:

Mahmood I.

Mehra N, Lal BB, Khanna R, Rawat D, Alam S.
Spectrum of drug induced liver injury in children–concern regarding cases with concomitant hepatotropic viral infection. Hepatol Int 2015; 9 Suppl 1: S149.

Moore C, Crowley E, Doyle J, Okafor I, McNamara R, Deiratany S, Nicholson AJ.

Blood pressure, left ventricular geometry, and systolic function in children exposed to inorganic arsenic. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1307327:

Parajuli RP, Umezaki M, Fujivara T, Watanabe C.
Association of cord blood levels of lead, arsenic, and zinc and home environment with children neurodevelopment at 36 months living in Chitwan valley, Nepal. PLoS ONE 2015; 10: e0120992.

Pedersen W, von Soest T.

Rahman SM, Kippler M, Ahmed S, Palm B, El Arifeen S, Vahter M.

Exposure to traffic and early life respiratory infection: a cohort study.

Saroyan JM, Evans EA, Segoshi A, Vosburg SK, Miller-Sultz D, Sullivan MA.

Severtson SG, Martinez EM, Green JL, Dart RC, Lavonas EJ.

Stanwick R.

Stromberg PE, Burt MH, Rose SR, Cumpston KL, Emswiler MP, Wills BK.

Sullivan EM, Annest JL, Simon TR, Luo F, Dahlberg LL.

Turner SD, Gomes T, Camacho X, Yao Z, Guttmann A, Mamdani MM, Juurlink DN, Dhalla IA.

Vang SI, Schmiegelow K, Frandsen T, Rosthaj S, Nersting J.
Mercaptopurine metabolite levels are predictors of bone marrow toxicity following high-dose methotrexate therapy of childhood acute lymphoblastic leukaemia. Cancer Chemother Pharmacol 2015; online early: doi: 10.1007/s00280-015-2717-8:

Verner M-A, Hart JE, Sagiv SK, Bellinger DC, Altshul LM, Korrick SA.
Measured prenatal and estimated postnatal levels of polychlorinated biphenyls (PCBs) and ADHD-related behaviors in 8-year-old children. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408084:

Voepep-Lewis T, Wagner D, Tait AR.

Wang GS, Monte A, Hatten B, Brent J, Buchanan J, Heard KJ.

Weerdenburg K, Finkelstein Y.

Woo Y, Kim HE, Chung S, Park BJ.
Pediatric medication error reports in Korea adverse event reporting system database, 1989-2012: comparing with adult reports.

Yin S, Behrman A, Colvin J.
Laundry pack exposures in children 0-5 years evaluated at a single pediatric institution.

Poisons information and poisons information centres
Vaida AJ.
The Institute for Safe Medication Practices and Poison Control Centers: collaborating to prevent medication errors and unintentional poisonings.

Psychiatric aspects
Cannabis use and treatment resistance in first episode psychosis: a natural language processing study.
Lancet 2015; 385 Supplement 1: S79.

Reprotoxicity
Axelsson J, Rylander L, Rignell-Hydbom A, Lindh CH, Jönsson BAG, Giwercman A.
Prenatal phthalate exposure and reproductive function in young men.
Environ Res 2015; 138: 264-70.

Exposure to emissions from municipal solid waste incinerators and miscarriages: a multisite study of the MONITER Project.
Environ Int 2015; 78: 51-60.

Dodge LE, Williams PL, Williams MA, Missmer SA, Toth TL, Calafat AM, Hauser R.
Paternal urinary concentrations of parabens and other phenols in relation to reproductive outcomes among couples from a fertility clinic.
Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408605:

Forster R, Spézia F, Papineau D, Sabadie C, Erdelmeier I, Moutet M, Yadan J-C.
Reproductive safety evaluation of L-Ergothioneine.

Male reproductive disorders, diseases, and costs of exposure to endocrine-disrupting chemicals in the European Union.
J Clin Endocrinol Metab 2015; online early: doi: 10.1210/jc.2014-4325:

Petersen MS, Halling J, Weihe P, Jensen TK, Grandjean P, Nielsen F, Jørgensen N.
Spermatogenic capacity in fertile men with elevated exposure to polychlorinated biphenyls.

Risk assessment
Health risk assessment of various metal(loid)s via multiple exposure pathways on children living near a typical lead-acid battery plant, China.
Environ Pollut 2015; 200: 16-23.

Human exposure and risk assessment associated with mercury contamination in artisanal gold mining areas in the Brazilian Amazon.

Mass concentration and health risk assessment of heavy metals in size-segregated airborne particulate matter in Changsha.

Mdl AK, Kovovich M, Liong M, Finley BL, Paustenbach DJ, Oberdörster G.
Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants part II: importance of physicochemical properties and dose in animal and In vitro studies as a basis for risk assessment.
Nanomedicine 2015; online early: doi: 10.1016/j.nano.2015.02.006:

Monnot AD, Christian WV, Abramson MM, Follansbee MH.
An exposure and health risk assessment of lead (Pb) in lipstick.
Food Chem Toxicol 2015; online early: doi: 10.1016/j.fct.2015.03.022:

Sauer JM, Hartung T, Leist M, Knudsen TB, Hoeng J, Hayes AW.

Evaluation of the ToxRTool's ability to rate the reliability of toxicological data for human health hazard assessments.
Regul Toxicol Pharmacol 2015; online early: doi: 10.1016/j.yrtph.2015.03.005:

Sidhu MS, Desai KP, Lynch HN, Rhomberg LR, Beck BD, Venditti FJ.
Toxicology 2015; online early: doi: 10.1016/j.tox.2015.02.008:

Suicide
Behera C, Swain R, Mridha AR, Pooniya S.
Suicide by injecting lispro insulin with an intravenous cannula.

Risk of suicide following deliberate self-poisoning.
JAMA Psychiatry 2015; online early:

MANAGEMENT

General

Antidotes

Acetylcysteine

Antivenom

Lipid emulsion therapy

Oximes

Beta-blockers

Extracorporeal treatments

Haemodialysis

Plasma exchange

Koziolek MJ, Patschan D, Desel H, Wallbach M, Callizo J.

Methylphenidate

Monoclonal antibodies

Opioid maintenance therapy

Naloxone

Naltrexone

DRUGS General

Acetaminophen (see paracetamol)

Amfetamines and MDMA (ecstasy)

Harris AC, LeSage MG, Shelley D, Perry JL, Pentel PR, Owens SM.

Anabolic steroids

Anesthetics

Cortázár EV, Olaso JO, Lekuona DE, Fernández-Urién I. Acute toxicity due to local anesthetics. Rev Esp Anestesiol Reanim 2015; online early: doi: 10.1016/j.redar.2015.03.002:

Forcelli PA. Short- and long-term neurological and psychiatric sequelae of developmental exposure to antiepileptic and anesthetic drugs. Front Neurol 2015; 6: 41.

Sevoflurane

Antiarrhythmic drugs

Amiodarone

Dronedarone

Procainamide

Antibiotics

Aminoglycosides

Colistin

Metronidazole
Demel SL, Jovin TG, Jadhav AP.
Metronidazole toxicity presenting with acute onset of aphasia and right sided weakness.

Moxifloxacin
Vignesh AP, Srinivasan R, Karanth S.
A case report of severe corneal toxicity following 0.5% topical moxifloxacin use.

Nitrofurantoin
Goldberg O, Moretti M, Levy A, Koren G.
Exposure to nitrofurantoin during early pregnancy and congenital malformations: a systematic review and meta-analysis.

Vancomycin
Koppula S, Ruben S, Bangash F, Szerlip HM.
Pitfalls in dosing vancomycin.

Anticoagulants
Edrich T, Frendl G, Michaud G, Paschalidis IC.
Heparin requirements for full anticoagulation are higher for patients on dabigatran than for those on warfarin - A model-based study.

Dabigatran
Abuzeid W, Al-Lawati H, Fam N.
Acute myocardial infarction after switching from warfarin to dabigatran.

Warfarin
Akgedik R, Günyaydin ZY, Kızıllırmak D, Gürel YE.
Spontaneous isolated pericardial tamponade associated with warfarin.

Toxicity
Rowe CJ, Robertson I, James D, McMeniman E.
Warfarin-induced erythroderma.

Anticonvulsants
Forcelli PA.
Short- and long-term neurological and psychiatric sequelae of developmental exposure to antiepileptic and anesthetic drugs.
Front Neurol 2015; 6: 41.

Gabapentin
Ziaaddini H, Ziaaddini A, Asghari N, Nakhaee N, Eslam M.

Tiagabine
Spiller HA, Wiles D, Russell JL, Casavant MJ.
Review of toxicity and trends in the use of tiagabine as reported to US poison centers from 2000 to 2012.
Hum Exp Toxicol 2015; online early: doi: 10.1177/0960327115579206:

Topiramate
Alasad AMS, Chaudhry SA, Koren G.
First trimester exposure to topiramate and the risk of oral clefts in the offspring: a systematic review and meta-analysis.

Valproate
Havali C, Güzelyener K, Buyan N, Yılmaz Ü, Gürkäs E, Gölbaşar Ö, Demir E, Serdaroğlu A.
Does nephrotoxicity exist in pediatric epileptic patients on valproate or carbamazepine therapy?

Spectrum of drug induced liver injury in children–concern regarding cases with concomitant hepatotropic viral infection.
Hepatol Int 2015; 9 Suppl 1: S149.

Singh PK, Kumar MK, Kumar D, Kumar P.
Morphological pattern of cutaneous adverse drug reactions due to antiepileptic drugs in Eastern India.

Antidepressants
Gadot Y, Koren G.
The use of antidepressants in pregnancy: focus on maternal risks.

Antiemetics

Granisetron

Antifungal drugs

Voriconazole

Antimalarial drugs

Chloroquine

Antineoplastics

Bleomycin

Methotrexate

Nilotinib

Ponatinib

Sunitinib

Vincristine

Antipsychotics

Aripiprazole

Haloperidol

Quetiapine

Antithyroid drugs

Propylthiouracil

Antituberculous drugs

Kim TH, Lee CM, Lee SS, Ha CY, Kim HJ, Jung WT, Lee OJ.
Early monitoring for detection of antituberculous drug induced hepatotoxicity. Hepatol Int 2015; 9 Suppl 1: S149.

Isoniazid
Miyazawa S, Matsuoka S, Hamana S, Nagai S, Nakamura H, Nirei K, Moriyama M.

Skinner K, SaiA A, Mostafa A, Soderstrom J, Medley G, Roberts MS, Isbister GK.
Isoniazid poisoning: pharmacokinetics and effect of hemodialysis in a massive ingestion. Hemodial Int 2015; online early: doi: 10.1111.hdi.12293:

Antiviral drugs
Ndagije H, Namgba V, Namagala E, Nassali H, Kajungu D, Sematiko G, Olsson S, Pal S.

Acyclovir
Gentry J, Peterson C.

Kissling S, Fuchs A, Gobin N, Vogt B, Burnier M, Decosterd LA, Bucin T, Livio F.

Ganciclovir
Wittebole X, Morelle J, Vincent M-F, Hantzson P.

Benzodiazepines
Best KM, Boullata JI, Curley MAQ.

Ista E, Tibboel D, van Dijk M.

Alprazolam

Etizolam
O’Connell CW, Sadler CA, Tolia VM, Ly BT, Saitman AM, Fitzgerald RL.

Lormetazepam
Prevel R, Garcon P, Philipart F.

Bisphosphonates
Fadda V, Maratea D, Trippoli S, Messori A.

Butanediols
Corkery JM, Loi B, Claridge H, Goodair C, Coraza O, Elliott S, Schifano F.
Gamma hydroxybutyrate (GHB), gamma butyrolactone (GBL) and 1,4 butanediol (1,4-BD): a literature review with a focus on UK fatalities related to non-medical use. Neurosci Biobehav Rev 2015; online early: doi: 10.1016/j.neubiorev.2015.03.012:

Caffeine
Bonar EE, Cunningham RM, Polshkova S, Chermsack ST, Blow FC, Walton MA.

Peacock A, Cash C, Bruno R.

Vida K, RácZ J.

Gamma hydroxybutyrate (GHB), gamma butyrolactone (GBL) and 1,4 butanediol (1,4-BD)
Miyazawa S, Matsuoka S, Hamana S, Nagai S, Nakamura H, Nirei K, Moriyama M.

Cannabis (marijuana)
Ansell EB, Laws HB, Roche MJ, Sinha R.

Bolognini D, Ross RA.

Desrosiers NA, Rameakers JG, Chauchard E, Gorelick DA, Huestis MA.

Colchicine

Demirkol D, Karacabey BN, Aygun F. Plasma exchange treatment in a case of colchicine intoxication. Ther Apheresis Dial 2015; 19: 95-7:

Cytotoxic drugs

Designer drugs

25C-NBOMe

Ephedrone

Methyline

Synthetic cannabinoids

E-cigarettes
Fairchild AL, Beyer R. Smoke and fire over e-cigarettes: as nations adopt regulatory measures for e-cigarettes, it is imperative to understand how approaches to risk, cost-benefit, and trade-offs have shaped interpretations of evidence. Science 2015; 347: 375-6.

Mephedrone

Synthetic cathinones

Gamma hydroxybutyrate (GHB, GBH)
Corkery JM, Loi B, Claridge H, Goodair C, Corazza O, Elliott S, Schifano F. Gamma hydroxybutyrate (GHB), gamma butyrolactone (GBL) and 1,4 butanediol (1,4-BD; BDO): a literature review with a focus on UK fatalities related to non-medical use. Neurosci Biobehav Rev 2015; online early: doi: 10.1016/j.neubiorev.2015.03.012:

Gamma-butyrolactone
Corkery JM, Loi B, Claridge H, Goodair C, Corazza O, Elliott S, Schifano F. Gamma hydroxybutyrate (GHB), gamma butyrolactone (GBL) and 1,4 butanediol (1,4-BD; BDO): a literature review with a focus on UK fatalities related to non-medical use. Neurosci Biobehav Rev 2015; online early: doi: 10.1016/j.neubiorev.2015.03.012:
Hallucinogens

Bufotenine

LSD

Psilocin

Herbal medicines, ethnic remedies and dietary supplements

Heroin (diacetylmorphine)

Hypoglycaemics

Glyburide

Immunosuppressants

Tacrolimus

Insulin

Isotretinoin

Ketamine

Lithium

Loparanide

Memantine

Mepronizine

Methcathinone

Methylphenidate

Muscle relaxants
Tizanidine

Tolperisone

Nicotine

Fairchild AL, Bayer R. Smoke and fire over e-cigarettes: as nations adopt regulatory measures for e-cigarettes, it is imperative to understand how approaches to risk, cost-benefit, and trade-offs have shaped interpretations of evidence. Science 2015; 347: 375-6.

NSAIDs
Clopidogrel
Wu C-W, Wu Y-J, Wu C-C.

Opioids

A novel measure of assessing the frequency and route of administration of various substances of abuse.
Drug Alcohol Depend 2015; 146: e53.

Sandstrom LE, Coplan P, Chilcoat H, Brason FW, Leukefeld C, Morris LA.
Brief guide to prevent overdose fatality for prescription opioid abusers: a harm reduction initiative.
Drug Alcohol Depend 2015; 146: e89.

Turner SD, Gomes T, Camacho X, Yao Z, Guttmann A, Mamdani MM, Juurlink DN, Dhalla IA.
Neonatal opioid withdrawal and antenatal opioid prescribing.

Voepel-Lewis T, Wagner D, Tait AR.
Leftover prescription opioids after minor procedures: an unwitting source for accidental overdose in children.

Wallely AY, Krupitsky E, Cheng DM, Quinn EK, Wulach L, Coffin PO, Samet J.
Fatal and non-fatal overdose after narcology hospital discharge among HIV-infected Russians.

Winstanley El, Clark A.
Risk factors associated with overdose among patients seeking treatment for opioid dependence.

Ziaaddini H, Ziaaddini A, Aghhari N, Nakhaee N, Esfami M.
Trial of tramadol plus gabapentin for opioid detoxification.
Iran Red Crescent Med J 2015; 17: e18202.

Buprenorphine
Bier JB, Finger AS, Bier BA, Johnson TA, Coyle MG.
Growth and developmental outcome of infants with in-utero exposure to methadone vs buprenorphine.
J Perinatol 2015; online early: doi: 10.1038/jp.2015.22:

Buprenorphine/naloxone abuse and diversion: film rates are less than tablet rates.
Drug Alcohol Depend 2015; 146: e257.

Gunderson EW.
Recognizing potential buprenorphine medication misuse: product packaging does not degrade with laundering.
Subst Abuse 2015; online early: doi: 10.1080/08897077.2015.1007201:

Severtson SG, Martinez EM, Green JL, Dart RC, Lavonas EJ.
Buprenorphine/naloxone pediatric ingestion: exposure rates differ between film and tablet formulations.
Drug Alcohol Depend 2015; 146: e95.

Codeine
Lazaryan M, Shasha-Zigelman C, Dagan Z, Berkovitch M.
Codeine should not be prescribed for breastfeeding mothers or children under the age of 12.

Fentanyl
Kucuk H, Kucuk U, Kolcu Z, Balta S, Demirkol S.
Misuse of fentanyl transdermal patch mixed with acute coronary syndrome.
Hum Exp Toxicol 2015; online early: doi: 10.1177/0960327115577516:

Safety and pharmacokinetics of oral cannabidiol when administered concomitantly with intravenous fentanyl in humans.
J Addict Med 2015; online early: doi: 10.1097/ADM.0000000000000118:

Methadone
Aghabiklooei A, Hassanian-Moghaddam H, Zamani N.
Comment on “Effectiveness of naltrexone in the prevention of delayed respiratory arrest in opioid-naive methadone-intoxicated patients”.

Bier JB, Finger AS, Bier BA, Johnson TA, Coyle MG.
Growth and developmental outcome of infants with in-utero exposure to methadone vs buprenorphine.
J Perinatol 2015; online early: doi: 10.1038/jp.2015.22:

Chaudhari S, Wankhedkar K, Popis-Matejak B, Baumstein D.
Methadone for fun sake... kidneys are at stake!!!
Am J Ther 2015; online early: doi: 10.1097/MJT.0000000000000172:

Sofuoglu M, Babusciio T, Carroll KM.
Carvedilol treatment reduces cocaine use in methadone-maintained cocaine users.
Drug Alcohol Depend 2015; 146: e103.

Turner SD, Gomes T, Camacho X, Yao Z, Guttmann A, Mamdani MM, Juurlink DN, Dhalla IA.
Neonatal opioid withdrawal and antenatal opioid prescribing.

Morphine
Gaydos SJ, Kelley AM, Grandizio CM, Athy JR, Walters PL.
Comparison of the effects of ketamine and morphine on performance of representative military tasks.

Naloxone
Dahlem CHY, Horstman MJ, Williams BC.
Development and implementation of intranasal naloxone opioid overdose response protocol at a homeless health clinic.
J Am Assoc Nurse Pract 2015; online early: doi: 10.1097/ADM.0000000000000118:

Buprenorphine/naloxone abuse and diversion: film rates are less than tablet rates.
Drug Alcohol Depend 2015; 146: e257.

Severtson SG, Martinez EM, Green JL, Dart RC, Lavonas EJ.
Buprenorphine/naloxone pediatric ingestion: exposure rates differ between film and tablet formulations.
Drug Alcohol Depend 2015; 146: e95.

Tramadol

Paracetamol (acetaminophen)

Salicylate

Salvia divinorum (Diviner's sage)

Sodium nitroprusside

SSRIs and SNRIs

Sertraline

Statins

Atorvastatin

Substance abuse

Chaudhari S, Wankhedkar K, Popis-Matejak B, Baumstein D. Methadone for fun sake... kidneys are at stake!!! Am J Ther 2015; online early: doi: 10.1097/MJT.0000000000000172:

Forray A, Merry B, Lin H, Ruger JP, Yonkers KA. Perinatal substance use: a prospective evaluation of abstinence and relapse. Drug Alcohol Depend 2015; online early:
doj: 10.1016/j.drugalcdep.2015.02.027:

King VL, Peirce JM, Brooner RK, Kidorf MS. Illicit drug use harms response to psychiatric treatment. Drug Alcohol Depend 2015; 146: e159.

Theophylline

Tobacco

Veterinary products
Closantel

CHEMICAL INCIDENTS AND POLLUTION
Air pollution

Environ Health Perspect 2015; online early: doi:10.1289/ehp.1308005:

Kim S-Y, Sheppard L, Larson TV, Kaufman JD, Vedal S. Combining PM1 component data from multiple sources: data consistency and characteristics relevant to epidemiological analyses of predicted long-term exposures. Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1307744:

Exhaust fumes

PM10
Adamkiewicz L, Gayer A, Mucha D, Badyda AJ, Dabrowiecki P, Grabski P.

Pollution and hazardous waste

Pollution and hazardous waste

Water pollution

CHEMICALS
General

Acrolein

Alcohol (ethanol)

Energy drink use by adolescents and emerging adults seeking care in the emergency department: alcohol, drugs, and other risk behaviors.
Drug Alcohol Depend 2015; 146: e226.

Rogers RG, Boardman JD, Pendergast PM, Lawrence EM. Drinking problems and mortality risk in the United States. Drug Alcohol Depend 2015; online early: doi: 10.1016/j.drugalcdep.2015.02.039:

Aldehydes

Bisphenol A

Brominated diphenyl ethers

Bronopol
Trivisano M, Carapelle E, Martino T, Specchio LM. Bilateral putaminal necrosis and bronopol toxicity. BMJ Case Rep 2015; doi: 10.1136/bcr-2014-206405:

Carbon

Carbon black

Carbon monoxide

Levy RJ. Carbon monoxide pollution and neurodevelopment: a public health concern. Neurotoxicology 2015; online early: doi: 10.1016/j.ntt.2015.03.001:

Carbon-based fuels

Cement

Ceramics

Chlorine

Clay

Coal dust

Contrast media

Corrosives

Cosmetics

Crotonaldehyde

Cyanide

Detergents

Dexmedetomidine

Dichloroethane

Diethyhexyl phthalate
Cohen G. Harmful chemicals: poisoning our children one life-saving device at a time. Explore 2015; online early: doi: 10.1016/j.explore.2015.02.014:

Dioxin

Dyes

E-cigarettes

Fairchild AL, Bayer R. Smoke and fire over e-cigarettes: as nations adopt regulatory measures for e-cigarettes, it is imperative to understand how approaches to risk, cost-benefit, and trade-offs have shaped interpretations of evidence. Science 2015; 347: 375-6.

Gebhart F. E-cig poisonings spike; APhA calls for stricter regulations. Drug Topics 2015;

Endocrine disrupting chemicals

Essential oils

Eucalyptus oil

Higgins C, Palmer A, Nixon R.
Eucalyptus oil: contact allergy and safety.

Ethyl carbamate

Castel N, Soon-Sutton T, Depta1a P, Flaherty A, Parsa FD.
Polyurethane-coated breast implants revisited: a 30-year follow-up.
Arch Plast Surg 2015; 42: 186-93.

Ethylene glycol

Garg D, Lim T, Irani M.
A rare case of fatal stroke after ethylene glycol toxicity.
BMJ Case Rep 2015; doi: 10.1136/bcr-2014-208855:

Fluoride

Caliskan Tur F, Aksay E.
Hydrofluoric acid exposure.

Household products

Crosslin K, Tsai R.
Unintentional ingestion of cleaners and other substances in an immigrant Mexican population: a qualitative study.
Injury Prev 2015; online early: doi: 10.1136/injuryprev-2014-041446:

Hydrocarbons

McKee RH, Adenuga MD, Carrillo JC.
Characterization of the toxicological hazards of hydrocarbon solvents.

Pain O, Herd C, Morrison KE, Jagielski AC, Wheatley K, Thomas GN, Clarke CE.
Systematic review and meta-analysis of hydrocarbon exposure and the risk of Parkinson’s disease.

Petersen H, Lewe D.
Chemical purity and toxicology of pigments used in tattoo inks.

Hydrochloric acid

Ganapathy VP, Das RR, Chinnakkannnan S, Panda SS.
An unusual presentation of hydrochloric acid ingestion: a mystery unraveled.

Hydrofluoric acid

Caliskan Tur F, Aksay E.
Hydrofluoric acid exposure.

Pulmonary alveolar proteinosis induced by hydrofluoroc acid exposure during fire extinguisher testing.

Hydrogen sulphide

Bos EM, Van Goor H, Joles JA, Whiteman M, Leuvenink HGD.
Hydrogen sulfide: physiological properties and therapeutic potential in ischaemia.

Ink

Agnello M, Fontana M.
Survey on European studies of the chemical characterisation of tattoo ink products and the measurement of potentially harmful ingredients.

Petersen H, Lewe D.
Chemical purity and toxicology of pigments used in tattoo inks.

Isopropyl alcohol

Meng X, Paul S, Federman DJ.
Metabolic acidosis in a patient with isopropyl alcohol intoxication: a case report.

L-ergothioneine

Forster R, Spézia F, Papineau D, Sabadie C, Erdelmeier I, Moutet M, Yadon J-C.
Reproductive safety evaluation of L-Ergothioneine.

Metal working fluids

Rosenman K.
Occupational diseases in individuals exposed to metal working fluids.

Roux LN, Brooks JD, Yeatts JL, Baynes RE.
Skin absorption of six performance amines used in metalworking fluids.

Methacrylate

Madhyastha PS, Naik DG, Kotian R, Padma D, Srikant N, Bhat KM.
Evaluation of cytotoxicity of silorane and methacrylate based dental composites using human gingival fibroblasts.

Methanol

Galvez-Ruiz A, Elkhamary SM, Asghar N, Bosley TM.
Cupping of the optic disk after methanol poisoning.
Br J Ophthalmol 2015; online early: doi: 10.1136/bjophthalmol-2014-306354:

Lee SM, Moon JM, Chun BJ, Song KH.
Unusual intracranial hemorrhage in severe methanol intoxication.

Mirakbari SM.
Methyl alcohol poisoning causing putamen necrosis.

Uca AU, Kozak HH, Altas M.
An uncovered health threat in Turkey: transdermal methanol intoxication.

Methylenecyclopropylglycine

Pulla P.
Toxicology. A child-killing toxin emerges from shadows.
N-nitrosamines
Occupational exposure to N-nitrosamines and pesticides and risk of pancreatic cancer.
Occup Environ Med 2015; online early: doi: 10.1136/oemed-2014-102522:

Nitrogen dioxide
Effect of indoor nitrogen dioxide on lung function in urban environment.
Environ Res 2015; 138: 8-16.

Nitrosamines
Herrmann SS, Duedahl-Olesen L, Christensen T, Olesen PT, Granby K.
Dietary exposure to volatile and non-volatile N-nitrosamines from processed meat products in Denmark.

Organophosphorus esters
Matsukami H, Tue NM, Suzuki G, Somey M, Tuyen LH, Viet PH, Takahashi S, Tanabe S, Takigami H.
Flame retardant emission from e-waste recycling operation in northern Vietnam: environmental occurrence of emerging organophosphorus esters used as alternatives for PBDEs.

Ozone
Chang C-C, Chiu H-F, Yang C-Y.
Fine particulate air pollution and outpatient department visits for headache in Taipei, Taiwan.

Parabens
Dodge LE, Williams PL, Williams MA, Missmer SA, Toth TL, Calafat AM, Hauser R.
Paternal urinary concentrations of parabens and other phenols in relation to reproductive outcomes among couples from a fertility clinic.
Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408605:

Perfluorinated compounds
Miralles-Marco A, Harrad S.
Perfluorooctane sulfonate: a review of human exposure, biomonitoring and the environmental forensics utility of its chirality and isomer distribution.

Petrol (gasoline) and petroleum oils
Jakasa I, Kezic S, Boogaard PJ.
Dermal uptake of petroleum substances.
Toxicol Lett 2015; online early: doi: 10.1016/j.toxlet.2015.03.012:

Tohon HG, Fayomi B, Valcke M, Coppieters Y, Bouland C.
BTEX air concentrations and self-reported common health problems in gasoline sellers from Cotonou, Benin.

Benzene
The relationship between low-level benzene exposure and blood cell counts in Korean workers.
Occup Environ Med 2015; online early: doi: 10.1136/oemed-2014-102227:

Early hematological and immunological alterations in gasoline station attendants exposed to benzene.

Phosphate
Biological effects of inorganic phosphate: potential signal of toxicity.

Phosphine
Acute phosphine poisoning on board a bulk carrier: analysis of factors leading to a fatal case.

Phosphorus
Basheer A, Mookkappan S, Padhi S, Iqbal N.
Selective myelosuppression following yellow phosphorus ingestion.

Phthalate esters
Axelsson J, Rylander L, Rignell-Hydbom A, Lindh CH, Jönsson BAG, Giwercman A.
Prenatal phthalate exposure and reproductive function in young men.
Environ Res 2015; 138: 264-70.

Phthalate metabolites in urine samples from school children in Taipei, Taiwan.
Arch Environ Contam Toxicol 2015; online early: doi: 10.1007/s00244-015-0146-7:

Phthalate concentrations in personal care products and the cumulative exposure to female adults and infants in Shanghai.

Cohen G.
Harmful chemicals: poisoning our children one life-saving device at a time.
Explore 2015; online early: doi: 10.1016/j.explore.2015.02.014:

Robitaille C, Boulet L-P.
Occupational asthma after exposure to ortho-phthalaldehyde (OPA).
Occup Environ Med 2015; online early: doi: 10.1136/oemed-2015-102847:
Polybrominated diphenyl ethers

High exposure of California firefighters to polybrominated diphenyl ethers.

Poon S, Aleksa K, Carnevale A, Kapur B, Goodyer C, Koren G.
Evaluating external contamination of polybrominated diphenyl ethers in human hair: clinical and research implications.
Ther Drug Monit 2015; 37: 270-4.

Polychlorinated biphenyls

Risk of female breast cancer and serum concentrations of organochlorine pesticides and polychlorinated biphenyls: a case-control study in Tunisia.

Associations of organochlorine pesticides and polychlorinated biphenyls with total, cardiovascular, and cancer mortality in elders with differing fat mass.

Genome-wide association study of plasma levels of polychlorinated biphenyls disclose an association with the CYP2B6 gene in a population-based sample.

Petersen MS, Halling J, Weihe P, Jensen TK, Grandjean P, Nielsen F, Jørgensen N.
Spermatogenic capacity in fertile men with elevated exposure to polychlorinated biphenyls.

Verner M-A, Hart JE, Sagiv SK, Bellinger DC, Altschul LM, Korrick SA.
Measured prenatal and estimated postnatal levels of polychlorinated biphenyls (PCBs) and ADHD-related behaviors in 8-year-old children.
Environ Health Perspect 2015; online early: doi: 10.1289/ehp.1408084:

Polyurethane

Polyurethane-coated breast implants revisited: a 30-year follow-up.
Arch Plast Surg 2015; 42: 186-93.

Radiation

Hayes JT, David EA, Qi LH, Chen AM, Daly ME.
Risk of pneumonitis after stereotactic body radiation therapy in patients with previous anatomic lung resection.
Clin Lung Cancer 2015; online early: doi: 10.1016/j.clc.2015.01.006:

Radiation-induced changes in DNA methylation and their relationship to chromosome aberrations in nuclear power plant workers.

Resin cements

Arslan Malkoç M, Demir N, Sengün A, Bozkurt SB, Hakki SS.
Cytotoxicity evaluation of luting resin cements on bovine dental pulp-derived cells (bDPCs) by real-time cell analysis.

Silica

Dudley SE, Morriss AP.
Will the Occupational Safety and Health Administration's proposed standards for occupational exposure to respirable crystalline silica reduce workplace risk?
Risk Anal 2015; online early: doi: 10.1111/risa.12341:

Smoke

Wanniarchige D.
Where there's smoke, there's respiratory risk.

Sodium nitroprusside

Udeh CI, Ting M, Arango M, Mick S.
Delayed presentation of nitroprusside-induced cyanide toxicity.

Solvents

Mckee RH, Adenuga MD, Carrillo JC.
Characterization of the toxicological hazards of hydrocarbon solvents.

Sulphur dioxide

Chang CC, Chiu H-F, Yang C-Y.
Fine particulate air pollution and outpatient department visits for headache in Taipei, Taiwan.

Talc

Gerrits EG, Schnoug JB.
An unusual craving!

Tetrachlorobenzoquinone

Tetrachlorobenzoquinone activates Nrf2 signaling by Keap1 cross-linking and ubiquitin translocation, but not Keap1-Cullin3 complex dissociation.
Chem Res Toxicol 2015; online early: doi: 10.1021/tr500513v:

Titanium dioxide

Azim SA, Darwish HA, Rizk MZ, Ali SA, Kadry MO.
Amelioration of titanium dioxide nanoparticles-induced liver injury in mice: possible role of some antioxidants.
Exp Toxicol Pathol 2015; online early: doi: 10.1016/j.etp.2015.02.001:

Tobacco

Afridi HI, Talpur FN, Kazi TG, Brabazon D. Estimation of toxic elements in the samples of different cigarettes and their effect on the essential elemental status in the biological samples of Irish smoker rheumatoid arthritis consumers. Environ Monit Assess 2015; 187: 4353.

Toluene

Tricresyl phosphate

Welding fumes

METALS

General

Afridi HI, Talpur FN, Kazi TG, Brabazon D. Estimation of toxic elements in the samples of different cigarettes and their effect on the essential elemental status in the biological samples of Irish smoker rheumatoid arthritis consumers. Environ Monit Assess 2015; 187: 4353.

Aluminium

Arsenic

Cadmium

Matovic V, Buha A, Dukic-Cosic D, Bulat Z. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem Toxicol 2015; 78: 130-40.

Chromium

Cobalt

Mads AK, Kovochich M, Liong M, Finley BL, Paustenbach DJ, Oberdörster G.

Copper

Gold

Indium

Iron

Lead

Matovic V, Buha A, Dukic-Cosic D, Bulat Z. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem Toxicol 2015; 78: 130-40.

Lead exposure and increased food allergic sensitization in U.S. children and adults.

Min K-B, Min J-Y.
Environmental lead exposure and increased risk for total and allergen-specific IgE in US adults.

Monnot AD, Christian WV, Abramson MM, Follansbee MH.
An exposure and health risk assessment of lead (Pb) in lipstick.
Food Chem Toxicol 2015; online early: doi: 10.1016/j.fct.2015.03.022:

Rafati-Rahimzadeh M, Rafati-Rahimzadeh M, Kazemi S, Moghadamnia AA.
An update on lead poisoning.

Salu A, Adebayo O, Kofoworola O, Babatunde O, Ismail A.
Comparative assessment of blood lead levels of automobile technicians in organised and roadside garages in Lagos, Nigeria.

Lead toxicity among traffic wardens: a high risk group exposed to atmospheric lead, is it still a cause for concern?

Shrestha A, Lama T, Kasypa A, Karki S.
Chronic lead poisoning: hepatologist's perspective.
Hepatol Int 2015; 9 Suppl 1: S147.

Environmental lead exposure, catalase gene, and markers of antioxidant and oxidative stress relation to hypertension: an analysis based on the EGAT study.

Wronks-Nofer T, Pisarska A, Trzcinka L, Lu L, Pan Y, Zheng W.
Scintigraphic assessment of renal function in steel plant workers occupationally exposed to lead.

Zhang L-L, Lu L, Pan Y-J, Ding C-G, Xu D-Y, Huang C-F, Pan X-F, Zheng W.
Baseline blood levels of manganese, lead, cadmium, copper, and zinc in residents of Beijing suburb.

Lithium

Non-fatal lithium intoxication with 5.5 mmol/L serum level.

Reversible posterior leukoencephalopathy syndrome after withdrawal of antipsychotic medication in the context of lithium intoxication.
Gen Hosp Psychiatry 2015; online early: doi: 10.1016/j.genhosppsych.2015.02.011:

Lozano R.
Renal toxicity of long-term lithium treatment for mild cognitive impairment.

Manganese

Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: arsenic, manganese, fluoride, iron, and uranium.

C. elegans-induced neurotoxicity: from C. elegans to humans.

Impact of ferromanganese alloy plants on household dust manganese levels: implications for childhood exposure.

Manganese exposure through drinking water during pregnancy and size at birth: a prospective cohort study.
Reprod Toxicol 2015; online early: doi: 10.1016/j.reprotox.2015.03.008:

Yoon J-H, Ahn Y-S.
A large, nationwide, longitudinal study of central nervous system diseases among Korean workers exposed to manganese.

Zhang L-L, Lu L, Pan Y-J, Ding C-G, Xu D-Y, Huang C-F, Pan X-F, Zheng W.
Baseline blood levels of manganese, lead, cadmium, copper, and zinc in residents of Beijing suburb.

Mercury

Human exposure and risk assessment associated with mercury contamination in artisanal gold mining areas in the Brazilian Amazon.

Sex differences in the relationship between blood mercury concentration and metabolic syndrome risk.

Diringer SE, Feingold BJ, Ortiz EJ, Gallis JA, Araújo-Flores JM, Berky A, Pan WKY, Hsu-Kim H.
River transport of mercury from artisanal and small-scale gold mining and risks for dietary mercury exposure in Madre de Dios, Peru.
Elli L, Rossi V, Conte D, Ronchi A, Tomba C, Passoni M, Bardella MT, Roncoroni L, Guzzi G.
Increased mercury levels in patients with celiac disease following a gluten-free regimen.

Freeman MP.
Beware of methylmercury during pregnancy!

Galluccio M, Pochini L, Peta V, Ianni M, Scalise M, Indiveri C.
Functional and molecular effects of mercury compounds on the human OCTN1: cation transporter: C50 and C136 are the targets for potent inhibition.

Geir DA, King PG, Hooker BS, Dörea JG, Kern JK, Sykes LK, Geier MR.
Thimerosal: clinical, epidemiologic and biochemical studies.

Gilman CL, Soon R, Sauvage L, Ralston NVC, Berry MJ.
Umbilical cord blood and placental mercury, selenium and selenoprotein expression in relation to maternal fish consumption.

Jacobson JL, Muckle G, Ayotte P, Dewailly É, Jacobson SW.
Relation of prenatal methylmercury exposure from environmental sources to childhood IQ.

Human exposure to mercury in a compact fluorescent lamp manufacturing area: by food (rice and fish) consumption and occupational exposure.

Maccani JZJ, Koesterl DC, Lester B, Houseman EA, Armstrong DA, Kelsey KT, Marist CJ.
Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes.

Mohan V, Das S, Rao SB.
Hydroxytyrosol, a dietary phenolic compound forestalls the toxic effects of methylmercury-induced toxicity in IMR-32 human neuroblastoma cells.

Evaluation of blood and urinary mercury in pemphigus vulgaris and pemphigus foliaceus patients and its comparison with control group.
Indian J Dermatol Venereol Leprol 2015; 81: 225.

Sun BB, Lan J, Zhai LF, Sun CW, Liu WL, Li ZF, Dong LB, Fan SY.
EEG spectral analysis and its clinical significance for patients with non-occupational chronic mercury poisoning.

Tang Y, Wang X, Jia J.
Mercury poisoning presenting as sporadic Creutzfeldt-Jakob disease: a case report.

Methylmercury impairs canonical dopamine metabolism in rat undifferentiated pheochromocytoma (PC12) cells by indirect inhibition of aldehyde dehydrogenase.

Uzunhisarcıklı M, Aslanturk A, Kalender S, Apaydın FG, Bas H.
Mercuric chloride induced hepatotoxic and hematologic changes in rats: the protective effects of sodium selenite and vitamin E.
Toxicol Ind Health 2015; online early: doi: 10.1177/0748233715572561:

Nickel

Zeneli L, Sekovanic A, Daci N.
Chronic exposure to aluminium, nickel, thallium and uranium and their relationship with essential elements in human whole blood and blood serum.

Selenium

Gilman CL, Soon R, Sauvage L, Ralston NVC, Berry MJ.
Umbilical cord blood and placental mercury, selenium and selenoprotein expression in relation to maternal fish consumption.

Silver

Increased DNA damage and oxidative stress among silver jewelry workers.

Percutaneous penetration of silver from a silver containing garment in healthy volunteers and patients with atopic dermatitis.

Pulmonary effects of silver nanoparticle size, coating, and dose over time upon intratracheal instillation.

Thallium

Zeneli L, Sekovanic A, Daci N.
Chronic exposure to aluminium, nickel, thallium and uranium and their relationship with essential elements in human whole blood and blood serum.

Uranium

Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: arsenic, manganese, fluoride, iron, and uranium.

Homma-Takeda S, Kitahara K, Suzuki K, Blyth BJ, Suya N, Konishi T, Terada Y, Shimada Y.
Cellular localization of uranium in the renal proximal tubules during acute renal uranium toxicity.

Zinc

PESTICIDES

General

Pesticides and cancer

Aluminium phosphide

Carbamate insecticides

Carbofuran

Mancozeb

Fungicides

Cyproconazole

Prochloraz

Herbicides

Glyphosate

Insecticides

Fipronil

Phenylpyrazole

Badgujar PC, Pawar NN, Chandrate GA, Telang AG, Sharma AK.

Neonicotinoids

Imidacloprid

Ding F, Peng W.

Organochlorine pesticides

General

Anand M, Agarwal P, Singh L, Tanjia A.

Persistent organochlorine pesticides and oxidant/antioxidant status in the placental tissue of the women with full-term and pre-term deliveries. Toxicol Res (Camb) 2015; 4: 326-32.

Freire C, Koifman RJ, Koifman S.

Chlordecone

Perinatal exposure to chlordecone, thyroid hormone status and neurodevelopment in infants: the Timoun cohort study in Guadeloupe (French West Indies). Environ Res 2015; 138: 271-8.

DDT

Wong LIL, Labrecque MP, Ibuki N, Cox ME, Elliott JE, Beischlag TV.

p,p'-dichlorodiphenylvinyltrichloroethene (p,p'-DDT) and p,p'-dichlorodiphenylvinylchloroethylene (p,p'-DDE) repress prostate specific antigen levels in human prostate cancer cell lines. Chem Biol Interact 2015; 230: 40-9.

Pentachlorophenol

Organophosphorus insecticides

General

Carr RL, Dail MB, Chambers HW, Chambers JE.

De Felice A, Scattoni ML, Riccieri L, Calamandrei G.

John H, Breyer F, Schmidt C, Mizaikoff B, Worek F, Thiermann H.

Ramírez-Santana M, Zúñiga L, Corral S, Sandoval R, Scheepers PTJ, Van der Velden K, Roeleveld N, Pancetti F.

Assessing biomarkers and neuropsychological outcomes in rural populations exposed to organophosphate pesticides in Chile - Study design and protocol. BMC Public Health 2015; 15: 1463.

Paraoxon

Berríos VO, Boukli NM, Rodriguez JW, Negraes PD, Schwindt TT, Trujillo CA, Oliveira SLB, Cubano LA, Ferchmin PA, Eterovic VA, Ulrich H, Martins AH.

Paraquat and diquat

Hu L, Hong G, Ma J, Wang X, Chen H.

Li G, Yuzhen L, Yi C, Xiaoxiang C, Wei Z, Changqing Z, Shuang Y.

Yamada A, Aki T, Unuma K, Funakoshi T, Uemura K.

Paraquat induces epithelial-mesenchymal transition-like cellular response resulting in fibrogenesis and the prevention of apoptosis in human pulmonary epithelial cells.

The significance of serum uric acid level in humans with acute paraquat poisoning.

PYRETHRIN INSECTICIDES

General
Kim D, Moon J, Chun B.
The initial hyperglycemia in acute type II pyrethroid poisoning.

Romero A, Ares I, Ramos E, Castellano V, Martínez M, Martínez-Larrañaga MR, Anadón A, Martínez MA.
Evidence for dose-additive effects of a type II pyrethroid mixture. In vitro assessment.

Yavuz O, Aksoy A, Das YK, Gulbahar MY, Guvenc D, Atmaca E, Yarım FG, Cenesiz M.
Subacute oral toxicity of combinations of selected synthetic pyrethroids, piperonyl butoxide, and tetramethrin in rats.

Pyrethroid insecticides

CYPHERMETHIN

Mandarapu R, Prakhya BM.
In vitro myelotoxic effects of cypermethrin and mancozeb on human hematopoietic progenitor cells.

Rodenticides

Bhat S, Kenchetty KP.
N-acetyl cysteine in the management of rodenticide consumption – Life saving?

Zeneli L, Sekovanic A, Daci N.
Chronic exposure to aluminium, nickel, thallium and uranium and their relationship with essential elements in human whole blood and blood serum.

ROTHENONE

Worth AJ, Gillespie KP, Mesaros C, Guo L, Basu SS, Snyder NW, Blair IA.
Rotenone stereospecifically increases (S)-2-hydroxyglutarate in SH-SY5Y neuronal cells.

Thallium

Zeneli L, Sekovanic A, Daci N.
Chronic exposure to aluminium, nickel, thallium and uranium and their relationship with essential elements in human whole blood and blood serum.

CHEMICAL WARFARE, BIOLOGICAL WARFARE AND RIOT CONTROL AGENTS

Chemical warfare

General
Alkylating agent (sulfur mustard) induced calcium influx is TRPA1 dependent.
Naunyn Schmiedebergs Arch Pharmacol 2015; 388: S8-S9.

Agent orange
Park W, Yang SH, Yang SY, Kim TG, Yoo WS, Kim DY, Lim TK.
Hepatitis C virus infection and risk of lymphoma whether exposed to agent orange.
Hepatol Int 2015; 9 Suppl 1: S269.

Yang SH, Park WH, Yang SY, Kim DY, Yoo WS, Kim TG, Kim SH.
Association of hepatitis C virus infection with diabetes mellitus focus on whether exposed to agent orange.
Hepatol Int 2015; 9 Suppl 1: S266.

Riot control agents

Alkylating agent (sulfur mustard) induced calcium influx is TRPA1 dependent.
Naunyn Schmiedebergs Arch Pharmacol 2015; 388: S8-S9.

Chlorobenzylidene malononitrile (Tear gas)

Brvar M.
Chlorobenzylidene malononitrile tear gas exposure: rinsing with amphoteric, hypertonic, and chelating solution.

Mustard gas (Sulphur mustard)

Pashandi Z, Saraygord-Afshari N, Naderi-Manesh H, Naderi M.
Comparative proteomic study reveals the molecular aspects of delayed ocular symptoms induced by sulfur mustard.

Alkylating agent (sulfur mustard) induced calcium influx is TRPA1 dependent.
Naunyn Schmiedebergs Arch Pharmacol 2015; 388: S8-S9.

Nerve agents

Housman KJ, Swift AT, Oyler JM.
Fragmentation pathways and structural characterization of 14 nerve agent compounds by electrospray ionization tandem mass spectrometry.

John H, Breyer F, Schmidt C, Mizaikoff B, Worek F, Thiermann H.
Small-scale purification of butyrylcholinesterase from human plasma and implementation of a mulLC-UV/ESI MS/MS method to detect its organophosphorus adducts.
Drug Test Anal 2015; online early:
Mushrooms

Sarin

Soman

Tabun

VX

PLANTS
General

Abrus precatorius (Jequirity bean)

Datura stramonium (Jimson weed)

Litchi chinensis (Lychee)

Mycotoxins

ANIMALS
Birds

Varanus komodoensis (Komodo dragon)

Microorganisms
Botulism

Sabatini D, Papetti L, Lonati D, Anniballi F, Auricchio B, Properzi E, Grassi MC.
Fish/marine poisoning

Diaz JH. Global incidence of rhabdomyolysis after cooked seafood consumption (Haff disease).

Torrez PPQ, Quiroga MM, Said R, Abati PAM, França FOS. Tetanus after envenomations caused by freshwater stingrays.

Toxicon 2015; 97: 32-5.

Potential threats posed by new or emerging marine biotoxins in UK waters and examination of detection methodology used in their control: brevetoxins.

Ciguatera

Chan TY.

Emergence and epidemiology of ciguatera in the coastal cities of Southern China.

Mar Drugs 2015; 13: 1175-84.

Scorpions

Abroug F, Souheil E, Ouanes I, Dachraoui F, Fekih-Hassen M, Ouanes Besbes L.

Scorpion-related cardiomyopathy: clinical characteristics, pathophysiology, and treatment.

Snake bites

Al-Sadoon MK.

Snake bite envenomation in Riyadh province of Saudi Arabia over the period (2005–2010).

Bush SP, Kinlaw SB.

Management of a pediatric snake envenomation after presentation with a light tourniquet.

Wilderness Environ Med 2015; online early: doi: 10.1016/j.wem.2015.01.005:

Perinecrotal gangrene after a snake bite: a case report.

Tin SS, Wiwanitkit V.

Predictors of mortality in poisonous snake bite.

Witham WR, McNeil C, Patel S.

Rebound coagulopathy in patients with snakebite presenting with marked initial coagulopathy.

Wilderness Environ Med 2015; online early: doi: 10.1016/j.wem.2014.11.019:

Adders

Hange BL, Hedegaard SK, Cederström S, Nielsen H.

Hospital contacts after bite by the European adder (Vipera berus).

Rattlesnake

Abdelmalek D, Arroyo-Plascencia A, Schwarz ES, Weber J, Sampson CS, Thornton SL, Mullins ME.

Factitious snake envenomation and narcotic seeking behavior.

Vipers

Neki NS.

Acute myocardial infarction in snake bite envenomation - A case report.

INDEX

2SC-NBOMe .. 30
Abras precatorius .. 52
Acetaminophen ... 35
Acetylcysteine .. 22
Acrolein ... 37
Acyclovir ... 28
Adders ... 53
Agent orange .. 51
Air pollution .. 36
Alcohol ... 37
Aldehydes .. 38
Alprazolam .. 28
Aluminum .. 44
Aluminum phosphide ... 49
Amanita mushrooms ... 52
Aminetamines .. 24
Aminoglycosides .. 25
Amiodarone .. 25
Anabolic steroids .. 25
Anaesthetics .. 25
Analytical toxicology .. 9
Animals, general .. 52
Antiarrhythmic drugs .. 25
Antibiotics .. 25
Anticoagulants ... 26
Anticonvulsants ... 26
Antidepressants ... 26
Antidotes .. 22
Antiemetics ... 27
Antifungal drugs .. 27
Antimalarial drugs .. 27
Antineoplastics ... 27
Antipsychotics .. 27
Antithyroid drugs .. 27
Antituberculous drugs ... 27
Antiviral drugs ... 28
Aripiprazole .. 27
Arsenic ... 44
Atorvastatin .. 35
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baclofen</td>
<td>22</td>
</tr>
<tr>
<td>Benzene</td>
<td>42</td>
</tr>
<tr>
<td>Benzo diazepines</td>
<td>28</td>
</tr>
<tr>
<td>Benzy alcohol</td>
<td>22</td>
</tr>
<tr>
<td>Beta-blockers</td>
<td>22</td>
</tr>
<tr>
<td>Biological warfare</td>
<td>51</td>
</tr>
<tr>
<td>Biomarkers</td>
<td>9</td>
</tr>
<tr>
<td>Birds</td>
<td>52</td>
</tr>
<tr>
<td>Bisphenol A</td>
<td>38</td>
</tr>
<tr>
<td>Bisphosphonates</td>
<td>28</td>
</tr>
<tr>
<td>Bleomycin</td>
<td>27</td>
</tr>
<tr>
<td>Body packers</td>
<td>9</td>
</tr>
<tr>
<td>Botulism</td>
<td>52</td>
</tr>
<tr>
<td>Brominated diphenyl ethers</td>
<td>38</td>
</tr>
<tr>
<td>Bronopol</td>
<td>39</td>
</tr>
<tr>
<td>Bufotenine</td>
<td>31</td>
</tr>
<tr>
<td>Buprenorphine</td>
<td>34</td>
</tr>
<tr>
<td>Butanediols</td>
<td>28</td>
</tr>
<tr>
<td>Cadmium</td>
<td>45</td>
</tr>
<tr>
<td>Caffeine</td>
<td>28</td>
</tr>
<tr>
<td>Cannabis</td>
<td>39</td>
</tr>
<tr>
<td>Carbamate insecticides</td>
<td>49</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>26</td>
</tr>
<tr>
<td>Carbofuran</td>
<td>49</td>
</tr>
<tr>
<td>Carbon</td>
<td>39</td>
</tr>
<tr>
<td>Carbon black</td>
<td>39</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>39</td>
</tr>
<tr>
<td>Carbon-based fuels</td>
<td>39</td>
</tr>
<tr>
<td>Carcinogenicity</td>
<td>10</td>
</tr>
<tr>
<td>Cardiotoxicity</td>
<td>10</td>
</tr>
<tr>
<td>Cement</td>
<td>39</td>
</tr>
<tr>
<td>Ceramics</td>
<td>39</td>
</tr>
<tr>
<td>Chemical warfare, general</td>
<td>51</td>
</tr>
<tr>
<td>Chemicals, general</td>
<td>37</td>
</tr>
<tr>
<td>Chlorodecone</td>
<td>50</td>
</tr>
<tr>
<td>Chlorine</td>
<td>39</td>
</tr>
<tr>
<td>Chlorobenzylidene malononitrile</td>
<td>51</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>27</td>
</tr>
<tr>
<td>Chromium</td>
<td>45</td>
</tr>
<tr>
<td>Ciguatera</td>
<td>53</td>
</tr>
<tr>
<td>Clay</td>
<td>39</td>
</tr>
<tr>
<td>Clopidogrel</td>
<td>32</td>
</tr>
<tr>
<td>Closantel</td>
<td>36</td>
</tr>
<tr>
<td>Coal dust</td>
<td>39</td>
</tr>
<tr>
<td>Cobalt</td>
<td>45</td>
</tr>
<tr>
<td>Cocaine</td>
<td>29</td>
</tr>
<tr>
<td>Codeine</td>
<td>34</td>
</tr>
<tr>
<td>Colchicine</td>
<td>29</td>
</tr>
<tr>
<td>Colistin</td>
<td>25</td>
</tr>
<tr>
<td>Contrast media</td>
<td>39</td>
</tr>
<tr>
<td>Copper</td>
<td>46</td>
</tr>
<tr>
<td>Corrosives</td>
<td>40</td>
</tr>
<tr>
<td>Cosmetics</td>
<td>40</td>
</tr>
<tr>
<td>Crotonaldehyde</td>
<td>40</td>
</tr>
<tr>
<td>Cyanide</td>
<td>40</td>
</tr>
<tr>
<td>Cypermethrin</td>
<td>51</td>
</tr>
<tr>
<td>Cypracozonole</td>
<td>49</td>
</tr>
<tr>
<td>Cytotoxic drugs</td>
<td>29</td>
</tr>
<tr>
<td>Dabigatran</td>
<td>26</td>
</tr>
<tr>
<td>Datura stramonum</td>
<td>52</td>
</tr>
<tr>
<td>DDT</td>
<td>50</td>
</tr>
<tr>
<td>Dermal toxicity</td>
<td>10</td>
</tr>
<tr>
<td>Designer drugs</td>
<td>29</td>
</tr>
<tr>
<td>Detergents</td>
<td>40</td>
</tr>
<tr>
<td>Developmental toxicity</td>
<td>11</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>40</td>
</tr>
<tr>
<td>Diacetylmorphine</td>
<td>31</td>
</tr>
<tr>
<td>Dichloroethane</td>
<td>50</td>
</tr>
<tr>
<td>Dietary supplements</td>
<td>31</td>
</tr>
<tr>
<td>Diethylhexyl phthalate</td>
<td>40</td>
</tr>
<tr>
<td>Dioxin</td>
<td>40</td>
</tr>
<tr>
<td>Diquat</td>
<td>50</td>
</tr>
<tr>
<td>Diviner's sage</td>
<td>35, 52</td>
</tr>
<tr>
<td>Driving under the influence</td>
<td>11</td>
</tr>
<tr>
<td>Dronedarone</td>
<td>25</td>
</tr>
<tr>
<td>Drugs, general</td>
<td>23</td>
</tr>
<tr>
<td>Dyes</td>
<td>40</td>
</tr>
<tr>
<td>E-cigarettes</td>
<td>30, 40</td>
</tr>
<tr>
<td>Ecstasy</td>
<td>40</td>
</tr>
<tr>
<td>Endocrine disrupting chemicals</td>
<td>40</td>
</tr>
<tr>
<td>Ephedrine</td>
<td>30</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>11</td>
</tr>
<tr>
<td>Ergot</td>
<td>52</td>
</tr>
<tr>
<td>Essential oils</td>
<td>41</td>
</tr>
<tr>
<td>Ethanol</td>
<td>37</td>
</tr>
<tr>
<td>Ethnic remedies</td>
<td>34</td>
</tr>
<tr>
<td>Ethyl carbamate</td>
<td>41</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>41</td>
</tr>
<tr>
<td>Etizolam</td>
<td>28</td>
</tr>
<tr>
<td>Eucalyptus oil</td>
<td>41</td>
</tr>
<tr>
<td>Exhaust fumes</td>
<td>36</td>
</tr>
<tr>
<td>Extracorporeal treatments</td>
<td>22</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>34</td>
</tr>
<tr>
<td>Fipronil</td>
<td>49</td>
</tr>
<tr>
<td>Fish/marine poisoning</td>
<td>53</td>
</tr>
<tr>
<td>Fluoride</td>
<td>41</td>
</tr>
<tr>
<td>Forensic toxicology</td>
<td>12</td>
</tr>
<tr>
<td>Fungicides</td>
<td>49</td>
</tr>
<tr>
<td>Gabapentin</td>
<td>16</td>
</tr>
<tr>
<td>Gamma hydroxybutyrate</td>
<td>30</td>
</tr>
<tr>
<td>Gamma-butyrolactone</td>
<td>30</td>
</tr>
<tr>
<td>Ganciclovir</td>
<td>28</td>
</tr>
<tr>
<td>Gasoline</td>
<td>42</td>
</tr>
<tr>
<td>GBH</td>
<td>30</td>
</tr>
<tr>
<td>Genotoxicity</td>
<td>13</td>
</tr>
<tr>
<td>GHB</td>
<td>30</td>
</tr>
<tr>
<td>Glyburide</td>
<td>31</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>49</td>
</tr>
<tr>
<td>Gold</td>
<td>46</td>
</tr>
<tr>
<td>Granisetron</td>
<td>27</td>
</tr>
<tr>
<td>Haemodialysis</td>
<td>22</td>
</tr>
<tr>
<td>Hallucinogens</td>
<td>31</td>
</tr>
<tr>
<td>Haloperidol</td>
<td>27</td>
</tr>
<tr>
<td>Hazardous waste</td>
<td>37</td>
</tr>
<tr>
<td>Hepatotoxicity</td>
<td>13</td>
</tr>
<tr>
<td>Herbal medicines</td>
<td>31</td>
</tr>
<tr>
<td>Herbicides</td>
<td>49</td>
</tr>
<tr>
<td>Heroin</td>
<td>31</td>
</tr>
<tr>
<td>Household products</td>
<td>41</td>
</tr>
<tr>
<td>Hydrocarbons</td>
<td>41</td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td>41</td>
</tr>
<tr>
<td>Hydrofluoric acid</td>
<td>41</td>
</tr>
<tr>
<td>Hydrogen sulphide</td>
<td>41</td>
</tr>
<tr>
<td>Hypoglycaemics</td>
<td>31</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>50</td>
</tr>
<tr>
<td>Immunosuppressants</td>
<td>31</td>
</tr>
<tr>
<td>Indium</td>
<td>46</td>
</tr>
<tr>
<td>Inhalation toxicity</td>
<td>14</td>
</tr>
<tr>
<td>Ink</td>
<td>41</td>
</tr>
<tr>
<td>Insecticides</td>
<td>49</td>
</tr>
<tr>
<td>Insulin</td>
<td>31</td>
</tr>
<tr>
<td>Iron</td>
<td>46</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>28</td>
</tr>
<tr>
<td>Isopropyl alcohol</td>
<td>41</td>
</tr>
<tr>
<td>Isotretinoin</td>
<td>31</td>
</tr>
<tr>
<td>Jequity bean</td>
<td>52</td>
</tr>
<tr>
<td>Jimson weed</td>
<td>52</td>
</tr>
<tr>
<td>Ketamine</td>
<td>31</td>
</tr>
<tr>
<td>Kinetics</td>
<td>14</td>
</tr>
<tr>
<td>Komodo dragon</td>
<td>52</td>
</tr>
<tr>
<td>Lead</td>
<td>46</td>
</tr>
<tr>
<td>L-ergothioneine</td>
<td>41</td>
</tr>
<tr>
<td>Lipid emulsion therapy</td>
<td>22</td>
</tr>
<tr>
<td>Litchi chinesis</td>
<td>52</td>
</tr>
</tbody>
</table>
Lithium ... 32, 47
Loperamide .. 32
Lormetazepam ... 28
LSD ... 31
Lychee ... 52
Management, general 22
Manclob ... 49
Manganese ... 47
Marijuana ... 28
MDMA .. 24
Mechanisms .. 15
Memantine ... 32
Mephedrone ... 30
Meproprazine ... 32
Mercury .. 47
Metabolism ... 15
Metal working fluids ... 41
Metals, general .. 44
Methacrylate .. 41
Methadone ... 34
Methanol .. 41
Methcathinone .. 32
Methotrexate ... 27
Methylenecyclopropylglycine 41
Methylene .. 30
Methylphenidate ... 23, 32
Metronidazole .. 31
Microorganisms .. 52
Monoclonal antibodies 23
Morphine ... 34
Moxifloxacin .. 26
Muscle relaxants ... 32
Mushrooms .. 52
Mustard gas ... 51
Mycotoxin .. 52
Myristica fragrans .. 52
Naloxone .. 23, 34
Naltrexone ... 23
Neonicotinoids .. 50
Nephrotoxicity ... 15
Nerve agents ... 51
Neurotoxicity .. 15
Nickel .. 48
Nicotine .. 32
Nilotinib .. 27
Nitrofurantoin ... 26
Nitrogen dioxide ... 42
Nitrosamine ... 42
N-nitrosamines ... 42
NSAIDs .. 32
Nutmeg .. 52
Occupational toxicology 16
Ocular toxicity .. 18
Opioid maintenance therapy 23
Opioids .. 33
Organochlorine pesticides, general 50
Organophosphorus esters 42
Organophosphorus insecticides, general 50
Oximes ... 42
Ozone ... 42
Paediatric toxicology ... 18
Parabens .. 42
Paracetamol .. 35
Paraaxon .. 50
Paraquat .. 50
Pentachlorophenol .. 50
Perfluorinated compounds 42
Pesticides and cancer ... 18
Pesticides, general ... 49
Petrol .. 42
Phenylpyrazole .. 50
Phosphate .. 42
Phosphate .. 42
Phosphine .. 42
Phosphorus .. 42
Phthalate esters ... 42
Piperonyl butoxide .. 51
Plants, general .. 52
Plasma exchange ... 22
PM10 .. 42
Poison information centres 21
Poisons information .. 21
Pollution .. 37
Polybrominated diphenyl ethers 43
Polychlorinated biphenyls 43
Polyurethane .. 43
Ponatinib .. 27
Procaainamide .. 25
Prochloraz .. 49
Propylthiouracil ... 27
Psilocin ... 31
Psychiatric aspects .. 21
Pyrethroid insecticides, general 51
Pyriostigmine ... 22
Quetiapine .. 27
Radiation .. 43
Rattlesnake .. 53
Reprotoxicity .. 21
Resin cements ... 43
Riot control agents ... 43
Risk assessment .. 21
Rodenticides ... 51
Rotenone .. 51
Salicylate .. 35
Salvia divinorum .. 35, 52
Sarin .. 52
Scorpions .. 48
Selenium .. 35
Sertraline .. 25
Silica .. 43
Silver ... 48
Smoke .. 43
Snake bites ... 53
Sodium nitroprusside 35, 43
Soluvents .. 43
Soman .. 52
SSRIs ... 35
Statins .. 35
Substance abuse ... 35
Suicide ... 35
Tabun ... 52
Tacrolimus ... 52
Talc ... 43
Tear gas .. 51
Tetrachlorobenzoquinone 43
Thallium ... 48, 51
Theophylline ... 36
Tiagabine .. 26
Titanium dioxide ... 43
Tizanidine .. 32
Tobacco .. 36, 44
Tolperisone ... 32
Toluene .. 44
Topiramate ... 26
Toxicology, general .. 28
Tramadol .. 34
Tricresyl phosphate .. 44
Uranium .. 48
Valproate .. 26
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vancomycin</td>
<td>26</td>
</tr>
<tr>
<td>Varanus komodoensis</td>
<td>52</td>
</tr>
<tr>
<td>Veterinary products</td>
<td>36</td>
</tr>
<tr>
<td>Vincristine</td>
<td>27</td>
</tr>
<tr>
<td>Vipers</td>
<td>53</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>27</td>
</tr>
<tr>
<td>VX</td>
<td>52</td>
</tr>
<tr>
<td>Warfarin</td>
<td>26</td>
</tr>
<tr>
<td>Water pollution</td>
<td>37</td>
</tr>
<tr>
<td>Welding fumes</td>
<td>44</td>
</tr>
<tr>
<td>Zinc</td>
<td>49</td>
</tr>
</tbody>
</table>

Current Awareness in Clinical Toxicology is produced monthly for the American Academy of Clinical Toxicology by the Birmingham Unit of the UK National Poisons Information Service, with contributions from the Cardiff, Edinburgh, and Newcastle Units.

The NPIS is commissioned by Public Health England.