Hypoglycemia and lactic acidosis outperform King's College criteria for predicting death or transplant in acetaminophen toxic patients

Importance
Acetaminophen toxicity is common and is characterized by hepatic failure. In cases that are not improving with standard medical therapy with N-acetylcysteine, some patients may require hepatic transplant. While there are various criteria to predict patients who might benefit from transplant, the King’s College criteria remain one of the most widely used. However, the King's College criteria have several limitations and do not incorporate glucose, an important marker of hepatic function.

Objective
The primary objective of this study is to compare the presence of hypoglycemia, coagulopathy, and metabolic acidosis with the King's College criteria for predicting a composite endpoint of death or transplant.
Design
This study is a retrospective cohort study of adult patients admitted with a discharge diagnosis of acetaminophen-induced liver failure.

Setting
The patients were admitted at one of six university-affiliated teaching hospitals in the United States.

Results
A total of 334 subjects were identified who met inclusion criteria. Fifty-one subjects (15.3%) met the composite endpoint of death or transplant. Ninety-six (28.7%) subjects met the King's College criteria for transplant. The presence of hypoglycemia increased the odds of reaching the composite endpoint by 3.39-fold. This model performed better than the King's College criteria (pseudo R^2 for the area under the curve of 0.93 vs. 0.20 for the King's College criteria).

Conclusions
The combination of hypoglycemia, coagulopathy, and lactic acidosis performed better than the King's College criteria for predicting death or transplant.

Full text available from: https://doi.org/10.1080/15563650.2017.1420193

Anti-colchicine Fab fragments prevent lethal colchicine toxicity in a porcine model: a pharmacokinetic and clinical study

Background
Colchicine poisoning is commonly lethal. Colchicine-specific Fab fragments increase rat urinary colchicine clearance and have been associated with a good outcome in one patient. We aimed to develop a porcine model of colchicine toxicity to study the pharmacokinetics and efficacy of ovine Fab.

Methods
A Göttingen minipig critical care model was established and serial blood samples taken for colchicine and Fab pharmacokinetics, clinical chemistry, and haematology. Animals were euthanised when the mean arterial pressure fell below 45 mmHg without response to vasopressor, or at study completion.

Results
Initial studies indicated that oral dosing produced variable pharmacokinetics and time-to-euthanasia. By contrast, intravenous infusion of 0.25 mg/kg colchicine over 1 h produced reproducible pharmacokinetics (AUC_{0-20} 343 [SD = 21] μg/L/h), acute multi-organ injury, and cardiotoxicity requiring euthanasia a mean of 22.5 (SD = 3.2) h after dosing. A full-neutralising equimolar Fab dose given 6 h after the infusion (50% first hour, 50% next 6 h [to reduce renal-loss of unbound Fab]) produced a 7.35-fold increase in plasma colchicine (AUC_{0-20} 2,522 [SD = 14] μg/L/h), and removed all free plasma colchicine, but did not prevent toxicity (euthanasia at 29.1 [SD = 3.4] h). Earlier administration over 1 h of the full-neutralising dose, 1 or 3 h after the colchicine, produced a 12.9-fold (AUC_{0-20} 4,433 [SD = 607] μg/L/h) and 6.0-fold (AUC_{0-20} 2,047 [SD = 51] μg/L/h) increase in plasma colchicine, respectively, absence of free plasma colchicine until 20 h, and survival to study end without marked cardiotoxicity.
Conclusions
Colchicine-specific Fab given early, in equimolar dose, bound colchicine, eliciting its movement into the blood, and preventing severe toxicity. Clinical studies are now needed to determine how soon this antidote must be given to work in human poisoning.

Full text available from: https://doi.org/10.1080/15563650.2017.1422510

Accidental pharmacological poisonings in young children: population-based study in three settings

Introduction
Pharmacological poisonings in young children are avoidable. Previous studies report calls to poisons centres, presentations to emergency departments (ED) or hospital admissions. There are limited data assessing concurrent management of poisonings across all three settings. We aimed to describe accidental pharmacological poisonings in young children across our Poisons Information Centre (PIC), EDs and hospitals.

Methods
A population-based study in New South Wales, Australia, of PIC calls, ED presentations and hospital admissions for accidental pharmacological poisoning in children aged <5 years, 2007–2013. We examined trends, medicines responsible and subsequent management. Medicines were coded using ICD10-AM diagnosis codes (T36-50).

Results
Over 2007-2013, pharmacological poisonings accounted for 67,816 PIC calls, 7739 ED presentations and 2082 admissions. Rates (per 10,000 children) of PIC calls declined from 220 to 178; ED presentations were stable (~22–24), with a decrease in emergency cases offset by an increase in semi- or non-urgent presentations; hospital admissions declined (8–5). Most PIC calls related to "non-opioid analgesics" (25%), and "topical agents" (18%). Nearly every day, one child aged <5 years was admitted to hospital for poisoning. "Benzodiazepines", "other and unspecified antidepressants", "uncategorised antihypertensives", and "4-aminophenol derivatives" accounted for over one-third of all admissions. Most PIC calls (90%) were advised to stay home, 6% referred to hospital. One-quarter of ED presentations resulted in admission.

Conclusions
Poisonings reported to PIC and hospitals declined, however, non-urgent ED presentations increased. Strategies to reduce therapeutic errors and access to medicines, and education campaigns to improve Poisons Centre call rates to prevent unnecessary ED presentations are needed.

Full text available from: https://doi.org/10.1080/15563650.2017.1422509

Context
Recent restrictions in access to and availability of dextromethorphan (DXM) cough and cold medications may correlate with changes in abuse exposures.

Objective
To extend and update existing knowledge about DXM abuse, we describe recent trends and patterns of calls to poison control centers involving DXM abuse, by demographics, geography, common brands, and medical outcomes.

Methods
We utilized data from the National Poison Data System (NPDS) maintained by the American Association of Poison Control Centers (AAPCC), which captures data on calls to U.S. poison centers on a near real-time basis. We analyzed demographic, geographic, brand and medical outcome data for single-substance DXM cough and cold product intentional abuse exposure calls in multiple age groups reported to NPDS from 2000 to 2015.

Results
The annual rate of single-substance DXM intentional abuse calls tripled from 2000 to 2006 and subsequently plateaued from 2006 to 2015. The highest abuse call rate was observed among adolescents 14–17 years old, where the mean annual number of calls was 1761 per year, corresponding to an annual rate of 103.6 calls per million population. From 2006 to 2015, the rate for single-substance DXM abuse calls among adolescents 14–17 years decreased by 56.3%, from 143.8 to 80.9 calls per million population.

Conclusion
DXM intentional abuse exposure call rates have declined among adolescents 14–17 years, since their peak in 2006. The observed decline in DXM abuse call rates corresponds to a period of growing public health efforts to curtail the abuse of over-the-counter (OTC) DXM containing products, particularly among adolescents. Further evaluation of state-level sales and abuse trends among adolescents would be valuable to better understand how restricted availability of OTC DXM cough and cold products and other efforts may affect abuse rates.

Full text available from: https://doi.org/10.1080/15563650.2017.1416124

Assessing the public health impact of using poison center data for public health surveillance

Context
The National Poison Data System (NPDS) is a database and surveillance system for US poison centers (PCs) call data. The Centers for Disease Control and Prevention (CDC) and American Association of Poison Control Centers (AAPCC) use NPDS to identify incidents of potential public health significance. State health departments are notified by CDC of incidents identified by NPDS to be of potential public health significance. Our objective was to describe the public health impact of CDC’s notifications and the use of NPDS data for surveillance.
Methods

We described how NPDS data informed three public health responses: the Deepwater Horizon incident, national exposures to laundry detergent pods, and national exposures to e-cigarettes. Additionally, we extracted survey results of state epidemiologists regarding NPDS incident notification follow-up from 1 January 2015 to 31 December 2016 to assess current public health application of NPDS data using Epi Info 7.2 and analyzed data using SAS 9.3. We assessed whether state health departments were aware of incidents before notification, what actions were taken, and whether CDC notifications contributed to actions.

Discussion

NPDS data provided evidence for industry changes to improve laundry detergent pod containers safety and highlighted the need to regulate e-cigarette sale and manufacturing. NPDS data were used to improve situational awareness during the 2010 Deepwater Horizon oil spill. Of 59 health departments and PCs who responded to CDC notifications about anomalies (response rate = 49.2%), 27 (46%) reported no previous awareness of the incident, and 20 (34%) said that notifications contributed to public health action.

Conclusions: Monitoring NPDS data for anomalies can identify emerging public health threats and provide evidence-based science to support public health action and policy changes.

Full text available from: https://doi.org/10.1080/15563650.2017.1413194

Serum neuron-specific enolase levels at presentation and long-term neurological sequelae after acute charcoal burning-induced carbon monoxide poisoning

Moon JM, Chun BJ, Lee SD, Jung EJ. Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1415347:

Objective

This study aimed to investigate whether clinical parameters and serum neuron-specific enolase (NSE) levels measured at emergency department (ED) presentation help stratify the risk of acute or delayed persistent severe neurological sequelae after acute carbon monoxide (CO) poisoning induced by charcoal burning.

Methods

This retrospective study included 236 patients who suffered from CO poisoning. Demographic information, serum NSE levels measured in the ED, treatment, clinical course, and long-term neurological outcomes were recorded.

Results

The median serum NSE level at presentation was 15.5 (10.9–22.7) ng/mL. No differences were observed in the duration of CO exposure; the initial Glasgow Coma Scale (GCS) score; the levels of arterial HCO$_3^-$, white blood cells (WBCs), C-reactive protein (CRP) or troponin I; or the frequency of abnormal diffusion-weighted imaging finding at presentation among the groups with different serum NSE levels at presentation. The incidences of acute and delayed persistent neurologic sequelae assessed at 22.3 months after acute charcoal CO poisoning were 5.1% and 8.5%, respectively. No difference in the NSE level was observed between patients stratified according to long-term neurological status. According to the multinomial logistic regression analysis, age, serum CRP levels and the initial GCS score were risk factors for the two types of persistent severe neurological sequelae, whereas troponin I levels were associated only with the acute persistent severe neurological sequelae. However, the adjusted NSE level was not a risk factor for any persistent neurological sequelae.
Conclusions

Serum NSE levels at presentation were not correlated with the risk of acute or delayed persistent neurological sequelae. Further studies with blood sampling at optimal time points and serial measurements should be conducted. Age, initial GCS score, and CRP levels may be risk factors for persistent severe neurological sequelae.

Full text available from: https://doi.org/10.1080/15563650.2017.1415347

Analysis of the development and progression of carbon monoxide poisoning–related acute kidney injury according to the Kidney Disease Improving Global Outcomes (KDIGO) criteria

Context

Acute kidney injury (AKI) can occur after carbon monoxide (CO) intoxication; however, limited data are available. This study aimed to evaluate the prognostic value of the development and progression of AKI in patients with acute CO poisoning.

Materials and methods

We conducted a retrospective cohort study using a prospective registry of CO poisoning between January 2010 and December 2015. AKI was defined and classified according to the Kidney Disease Improving Global Outcomes (KDIGO) criteria. Multivariate logistic regression analysis was conducted to determine the association between AKI and adverse outcomes, defined as neurological deficits at discharge or 28-day mortality.

Results

A total of 661 patients were evaluated. According to KDIGO criteria, 114 patients (17.2%) had AKI (initial: stage 1, 70.2%; stage 2, 26.3%; stage 3, 3.5%) on admission and 119 (18.0%) finally developed AKI during their hospital stay (maximum: stage 1, 68.9%; stage 2, 23.5%; stage 3, 7.6%). Almost all patients (99.2%) were diagnosed as having their highest KDIGO stage within three days (median, one day). AKI development was associated with adverse outcomes (odds ratio (OR) 17.53, 95% confidence interval 45.00–77.14). Both initial and maximum AKI stages demonstrated a stepwise increase of adjusted OR for adverse outcomes. AKI stage progression occurred in 8.4% of patients with AKI and was an independent factor for adverse outcomes.

Conclusion

CO poisoning–related AKI occurred in 18% and was mostly detected within one day after CO intoxication. The development and progression of AKI had a strong association with adverse outcomes and deserve further prospective investigation.

Full text available from: https://doi.org/10.1080/15563650.2018.1424890
Evaluation of relationship between coronary artery status evaluated by coronary computed tomography angiography and development of cardiomyopathy in carbon monoxide poisoned patients with myocardial injury: a prospective observational study

Objectives
Whether coronary artery changes are a main mechanism in the development of carbon monoxide (CO)-induced cardiomyopathy remains unknown. We investigated the effects of coronary artery stenosis on the presence or patterns of cardiomyopathy in CO-poisoned patients with myocardial injury defined as elevation of troponin I.

Materials and methods
This prospective observational study collected data from consecutive patients who were diagnosed with CO poisoning and myocardial injury during the 24-month study period. Transthoracic echocardiography (TTE) and coronary computed tomography angiography (CCTA) were performed to evaluate cardiac function and coronary artery status.

Results
TTE and CCTA were performed in 32 consecutive patients. The observed echocardiographic patterns included non-cardiomyopathy (59.4%), left ventricular global dysfunction (25%), Takotsubo cardiomyopathy (6.3%), and cardiomyopathy matching the distribution of the left anterior descending (LAD) artery (9.4%). Four patients had more than moderate stenosis, while stenoses of the LAD, left circumflex, and right coronary arteries were observed in two (6.3%), three (9.4%), and zero patients, respectively. Patients with coronary artery stenosis did not develop cardiomyopathy except for one patient; this patient also did not have regional wall motion abnormalities (RWMA) matched with the stenosis territory.

Conclusions
Because there was no difference in coronary artery stenosis according to the presence or patterns of CO-induced cardiomyopathy, coronary artery stenosis is not the main mechanism for the development of CO-induced cardiomyopathy. Thus, the evaluation of coronary arteries is not necessary in all patients with CO-induced cardiomyopathy unless there is RWMA consistent with ischemic changes in electrocardiograms and elevated troponin I levels.

Full text available from: https://doi.org/10.1080/15563650.2017.1337910

Baclofen in gamma-hydroxybutyrate withdrawal: patterns of use and online availability

Abstract and full text available from: http://dx.doi.org/10.1007/s00228-017-2387-z
Superior efficacy of lipid emulsion infusion over serum alkalinization in reversing amitriptyline-induced cardiotoxicity in guinea pig
Abstract and full text available from: http://dx.doi.org/10.1213/ANE.0000000000002707

Pregnancy outcomes in women on metformin for diabetes or other indications among those seeking teratology information services
Abstract and full text available from: http://dx.doi.org/10.1111/bcp.13481

Facts and fallacies in the debate on glyphosate toxicity
Abstract and full text available from: http://dx.doi.org/10.3389/fpubh.2017.00316

The in vitro impact of the herbicide Roundup on human sperm motility and sperm mitochondria
Abstract and full text available from: http://dx.doi.org/10.3390/toxics6010002

Phosphine induced acute cardiotoxicity in children: a need for health awareness
Abstract and full text available from: http://jpma.org.pk/full_article_text.php?article_id=8498

Pediatric poisoning by ingestion: developmental overview and synopsis of national trends
Abstract and full text available from: http://dx.doi.org/10.3928/19382359-20171121-01
TOXICOLOGY

General

Analytical toxicology

Bade R, White JM, Gerber C. Qualitative and quantitative temporal analysis of licit and illicit drugs in wastewater in Australia using liquid chromatography coupled to mass spectrometry. Anal Bioanal Chem 2017; online early: doi: 10.1007/s00216-017-0747-2:

Wing LK, Wong ZCF, Ho JYM, Yip AWS, Cheung JKH, Ho KKL, Duan R, Tsim KWK. Surveillance of drug abuse in Hong Kong by hair analysis using LC-MS/MS. Drug Test Anal 2017; online early: doi: 10.1002/dta.2345:

Biomarkers

Rodrigues JLG, Bandeira MJ, Araújo CFS, Dos Santos NR, Anjos ALS, Koin NL, Pereira LC, Oliveira SSP, Merger D, Menezes-Filho JA. Manganese and lead levels in settled dust in elementary schools are correlated with biomarkers of exposure in school-aged children. Environ Pollut 2017; online early: doi: 10.1016/j.envpol.2017.10.132:

Biomarkers for pulmonary inflammation and fibrosis and lung ventilation function in Chinese occupational refractory ceramic fibers-exposed workers.

Zubel T, Bürkle A, Mangenich A.
Mass spectrometric analysis of sulfur mustard-induced biomolecular adducts: are DNA adducts suitable biomarkers of exposure?
Toxicol Lett 2017; online early:
doi: 10.1016/j.toxlet.2017.12.014:

Body packers
Wankhade VK, Chikhalkar BG.
Body packing and intra-vaginal body pushing of cocaine: a case report.
Leg Med 2017; 31: 10-3.

Carcinogenicity
The INTEROCC case-control study: risk of meningioma and occupational exposure to selected combustion products, dusts and other chemical agents.

Cardiotoxicity
Almuhim KN.
Fatal butane toxicity and delayed onset of refractory ventricular fibrillation.

Aliq M, Shaikh AS.
Phosphine induced acute cardiotoxicity in children: a need for health awareness.

Bayram Z, Güner A, Dogan C, Yilmaz F, Özdemir N.
Severe cardiac toxicity following alcohol intake in a patient using therapeutic dose of propafenone.
Turk Kardiyol Dern Ars 2017; 45: 752-4.

Clin Toxicol 2018; 56: 30-6.

Kumanan T, Guruparan M, Vithiya R, Gawarammana I.
Mechanisms involving myocardial injury in tropical stings and bites.

Magdy T, Burridge PW.
The future role of pharmacogenomics in anticancer agent induced cardiovascular toxicity.
Pharmacogenomics 2017; 19: 79-82.

Walker C, Biasucci LM.
Cardiovascular safety of non-steroidal anti-inflammatory drugs revisited.
Postgrad Med 2017; online early:
doi: 10.1080/00325481.2018.1412799:

Yakut K, Erdogan I, Varan B, Atar I.
A report of Brugada syndrome presenting with cardiac arrest triggered by verapamil intoxication.

Yang Y, Hu D, Peng D.
Diffuse ST-segment elevation after hydrogen sulfide intoxication.
J Emerg Med 2017; online early:
doi: 10.1016/j.jemermed.2017.11.028:

Dermal toxicity
Heylings JR, Davies DJ, Burton R.
Dermal absorption of testosterone in human and pig skin in vitro.
Toxicol In Vitro 2017; online early:
doi: 10.1016/j.tiv.2017.12.014:

Developmental toxicology
Pesticides exposure through environment and risk of pre-term birth: a study from Agra city.
Drug Chem Toxicol 2017; online early:
doi: 10.1080/01480545.2017.1413107:

Carignan CC, Mínguez-Alarcón L, Williams PL, Meeker JD, Stapleton HM, Butts CM, Toth TL, Ford JB, Hauser R.
Paternal urinary concentrations of organophosphate flame retardant metabolites, fertility measures, and pregnancy outcomes among couples undergoing in vitro fertilization.

Dalsager L, Christensen LE, Kongsholm MG, Kyhl HB, Nielsen F, Schoeters G, Jensen TK, Andersen HR.
Associations of maternal exposure to organophosphate and pyrethroid insecticides and the herbicide 2,4-D with birth outcomes and anogenital distance at 3 months in the Odense Child Cohort.
Reprod Toxicol 2017; online early:
doi: 10.1016/j.reprotox.2017.12.008:

Prenatal exposure to maternal smoking during pregnancy and attention-deficit/hyperactivity disorder in offspring: a meta-analysis.
Reprod Toxicol 2017; online early:
doi: 10.1016/j.reprotox.2017.12.010:

Pregnancy outcomes in women on metformin for diabetes or other indications among those seeking teratology information services.
Br J Clin Pharmacol 2017; online early:
doi: 10.1111/bcp.13481:

Shenai N, Shulman J, Gopalan P, Cheng E, Cerimele M.
Fetal outcomes in intentional over-the-counter medication overdoses in pregnancy.
Psychosomatics 2017; online early:
doi: 10.1016/j.psym.2017.11.007:

Wong J, Clark H, Corns R, Tyldesley S.
Assessing health implications of the potential radiation exposure in the community during pregnancy: a case study.
Cureus 2017; 9: e1770.

Epidemiology

Ngo DA, Ait-Daoud N, Rege SV, Ding C, Gallion L, Davis S, Holstege CP. Differentials and trends in emergency department visits due to alcohol intoxication and co-occurring conditions among students in a U.S. public university.

Drug Alcohol Depend 2017; 183: 89-95.

Forensic toxicology

Genotoxicity

Hepatotoxicity

Inhalation toxicity

Kinetics

Mechanisms of toxicity

Medication errors

Mullins ME. Ergot toxicity from high-dose dihydroergotamine for intractable migraine headache. Toxicol Commun 2018; 2: 3-5.

Nephrotoxicity
Berkovitch M, Shain Y, Kozer E, Goldman M, Abu-Kishk I.
Hyperbaric oxygen treatment and nephrotoxicity induced by gentamicin in rats.

Chowdry AM, Azad H, Najar MS, Mir I.
Acute kidney injury due to overcorrection of hypovitaminosis D: a tertiary center experience in the Kashmir Valley of India.

Ekambaram S, Chandan Kumar KM, Mahalingam V.
Acute kidney injury: a rare complication of mothball (Naphthalene) poisoning.

Elinder C-G, Nordberg GF.
Re: Byber et al. in Critical Reviews in Toxicology 2016;46:191-240 [Cadmium or cadmium compounds and chronic kidney disease in workers and the general population: a systematic review].

Gupta P, Verma PK.
Acute kidney injury following rhabdomyolysis and sepsis after non-poisonous desert monitor bite.

Kamal F, Snook L, Saikumar JH.
Rhabdomyolysis-associated acute kidney injury with normal creatine phosphokinase.

Analysis of the development and progression of carbon monoxide poisoning–related acute kidney injury according to the Kidney Disease Improving Global Outcomes (KDIGO) criteria.

Sikma MA, Hunault CC, Kerkhofs JH, Verhaar MC, Kesecioglu J, de Lange DW.
Association of whole blood tacrolimus concentrations with kidney injury in heart transplantation patients.

Vervaat BA, D’Haese PC, Verhulst A.
Environmental toxin-induced acute kidney injury.

Yadla M, Sailaja S, Ahmed N, Uppin M, Arlappa N.
An unusual case of insecticide poisoning presenting as acute kidney injury.

Neurotoxicity
Green AJ, Planchart A.
The neurodevelopmental toxicity of heavy metals: a fish perspective.

Moon JM, Chun BJ, Lee SD, Jung EJ.
Serum neuron-specific enolase levels at presentation and long-term neurological sequelae after acute charcoal burning-induced carbon monoxide poisoning.
Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1415347:

Occupational toxicology
Cote J, Bouchard M.
Dose reconstruction in workers exposed to two major pyrethroid pesticides and determination of biological reference values using a toxicokinetic model.

Elinder C-G, Nordberg GF.
Re: Byber et al. in Critical Reviews in Toxicology 2016;46:191-240 [Cadmium or cadmium compounds and chronic kidney disease in workers and the general population: a systematic review].

Johnson MS.
Toward development of occupational exposure levels for insensitive munition components.
Toxicol Ind Health 2018; 34: 1.

Kasi V, Elango N, Ananth S, Vemthu B, Poornima JG.
Occupational exposure to photocopieters and their toners cause genotoxicity.

The INTEROCC case-control study: risk of meningioma and occupational exposure to selected combustion products, dusts and other chemical agents.

Neupane D, Jars E, Brandt LPA.
Plasma cholinesterase levels of Nepalese farmers following exposure to organophosphate pesticides.

Salomone A, Bozzo A, Di Corcia D, Gerace E, Vincenti M.
Occupational exposure to alcohol-based hand sanitizers: the diagnostic role of alcohol biomarkers in hair.

Pulmonary injury associated with spray of a water-based nano-sized waterproofing product: a case study.

Organophosphate flame retardants in dust collected from United States fire stations.
Environ Int 2018; 112: 41-8.

Association of telomere length with chromosomal damage among Chinese workers exposed to vinyl chloride monomer.

Ocular toxicity
Foroozan R.

Paediatric toxicology
Abdul Samad NI, Md Isa Z, Hod R.

Aliq M, Shaikh AS.

Biggs JM, Morgan JA, Lardieri AB, Kishk OA, Klein-Schwartz W.

Boerner RM, Young DL, Gnagi SH, White DR, Halstead LA.

Chornomydz I, Boyarchuk O, Chornomydz A.

Curran CP, Marczinski CA.

De Bruyne P, Ito S.

Glatstein M, Bonifacio Rino P, de Pinho S, Scolnik D, Pivko-Levi D, Hoyte C.

Hageman JR.

Hauptman M, Woolf AD.

Hines EQ.

Kashani P, Safari S, Hatamabadi H, Arhami Dolatabadi A, Manouchehrifar M, Dokht Tabrizi M.

Lee VR, Connolly M, Calelo DP.

Lowry JA.

Lowry JA, Burns M, Calelo DP.

Maio MDCLS, Osorio-de-Castro CGS, de Andrade CLT.

McMichael JR, Stoff BK.

O'Donnell KA.

Patel MM, Travers CD, Stockwell JA, Numur EA, Geller RJ, Kmat PP, Grunwell JR.
Reducing childhood admissions to the PICU for poisoning (ReCAP2) by predicting unnecessary PICU admissions after acute intoxication. Pediatr Crit Care Med 2017; online early: doi: 10.1097/PCC.0000000000001410:

Rodrigues JLG, Bandeira MJ, Araújo CFS, Dos Santos NR, Anjos ALS, Koin NL, Pereira LC, Oliveira SSP, Mergler D, Menezes-Filho JA.

Valeur KS, Hertel SA, Lundstöm KE, Holst H. The cumulative daily tolerance levels of potentially toxic excipients ethanol and propylene glycol are commonly exceeded in neonates and infants. Basic Clin Pharmacol Toxicol 2017; online early: doi: 10.1111/bcpt.12950:

Yurt KK, Kaplan S. As a painkiller: a review of pre- and postnatal non-steroidal anti-inflammatory drug exposure effects on the nervous systems. Inflammopharmacology 2017; online early: doi: 10.1007/s10787-017-0434-0:

Poisons information and poison information centres

Psychiatric aspects

Reprotoxicity

Risk assessment
Mutyar PK, Gupta SK, Mittal AK. Fate of pharmaceutical active compounds (PhACs) from River Yamuna, India: an ecotoxicological risk assessment approach. Ecotoxicol Environ Saf 2017; 150: 297-304.

Suicide

MANAGEMENT General

Anti-colchicine Fab fragments prevent lethal colchicine toxicity in a porcine model: a pharmacokinetic and clinical study.
Clin Toxicol 2018; online early: doi: 10.1080/15563650.2017.1422510:

Glutathione
Siegert M, Kranawetvogel A, Thiermann H, John H.
Glutathione as an antidote for sulfur mustard poisoning: mass spectrometric investigations of its potency as a chemical scavenger.

Hydroxocobalamin
Houzé P, Laforge M, Baud FJ.
Lactate blood measurement in acute cyanide poisoning: effect of preanalytical delay and hydroxocobalamin use as treatment.

Hyperbaric oxygen therapy
Berkovitch M, Shain Y, Kozer E, Goldman M, Abu-Kishk I.
Hyperbaric oxygen treatment and nephrotoxicity induced by gentamicin in rats.

Lipid emulsion therapy
Tsujikawa S, Matsuura T, Hori K, Mori T, Kuno M, Nishikawa K.
Superior efficacy of lipid emulsion infusion over serum alkalinization in reversing amitriptyline-induced cardiotoxicity in guinea pig.
Anesthesiol 2017; online early: doi: 10.1213/ane.0000000000002707:

Naloxone
Blandthorn J, Bowman E, Leung L, Bonomo Y, Dietze P.
Managing opioid overdose in pregnancy with take-home naloxone.

Acetylcystein
Find A, Woods RM, Dervay K.
Intravenous N-acetylcystein for acetaminophen toxicity.

DMTS
Sealing effects on the storage stability of the cyanide antidotal candidate, dimethyl trisulfide.
Drugs in R&D 2017; online early: doi: 10.1007/s40268-017-0220-x:

Fab fragments

Antidotes
Cully M.
Milestone 13: Putting on the brakes: NOAC antidotes.
Nat Rev Cardiol 2017; online early: doi: 10.1038/nrcardio.2017.183:

Milestones
McElrath K, Joseph H.
Medication-assisted treatment (MAT) for opioid addiction: introduction to the special issue.
Subst Use Misuse 2017; online early: doi: 10.1080/10826084.2017.1404106:

Moore K, Boulet M, Lev J, Papadomanolakis-Pakis N.
A public health outbreak management framework applied to surges in opioid overdoses.

Pattinson JP, Kong VY, Bruce JL, Oosthuizen GV, Bekker W, Laing GL, Wood D, Bysiewicz P, Clarke DL.
Defining the need for surgical intervention following a snakebite still relies heavily on clinical assessment: the experience in Pietermaritzburg, South Africa.

Rose D, Schmidt A, Brandenburger M, Sturmheit T, Zille M, Bolzle J.
Sulfur mustard skin lesions: a systematic review on pathomechanisms, treatment options and future research directions.

Wall M, Lambert S, Horan A.
An evaluation of practitioner’s experience of service users seeking community detoxification from benzodiazepines.

Weinstein SA, Mirtschin PJ, Tristram H, Lawton L, White J.
Local morbidity from red-bellied black snake (Pseudechis porphyriacus, Elapidae) envenoming: two cases and a brief review of management.
Toxicol 2017; 142: 34-41.
L-carnitine
Glatstein M, Bonifacio Rino P, de Pinho S, Scolnik D, Pivko-Levi D, Hoyte C.

Liothyronine

Melatonin
Zamani N, Hassanian-Moghaddam H.

Minocycline
Pretreatment with minocycline improves neurogenesis and behavior performance after midazolam exposure in neonatal rats. Neuropept 2017; online early: doi: 10.1097/WNP.0000000000000937:

Opioid maintenance therapy
Farahmand P, Modesto-Love V, Chaplin MM.

Krawczyk N, Picher CE, Feder KA, Saloner B. Only one in twenty justice-referred adults in specialty treatment for opioid use receive methadone or buprenorphine. Health Aff 2017; 36: 2046-53.

Marotta PL, McCullagh CA. A cross-national analysis of the association between years of implementation of opioid substitution treatments and drug-related deaths in Europe from 1995 to 2013. Eur J Epidemiol 2017; online early: doi: 10.1007/s10654-017-0342-z:

Buprenorphine
A systematic, intensive statistical investigation of data from the Comprehensive Analysis of Reported Drugs (CARD) for compliance and illicit opioid abstinence in substance addiction treatment with buprenorphine/naloxone.
Subst Use Misuse 2017; online early: doi: 10.1080/10826084.2017.1400064:

Methadone

Woods JS, Joseph H.

From narcotic to normalizer: the misperception of methadone treatment and the persistence of prejudice and bias.

Subst Use Misuse 2017; online early: doi: 10.1080/10826084.2017.1400068:

Pirfenidone

Pirfenidone protects against paraquat-induced lung injury and fibrosis in mice by modulation of inflammation, oxidative stress, and gene expression.

Vitamin C

Dhibar DP, Sahu KK, Jain S, Kumari S, Varma SC.

Methemoglobinemia in a case of paint thinner intoxication, treated successfully with vitamin C.

DRUGS

General

Bade R, White JM, Gerber C.

Qualitative and quantitative temporal analysis of licit and illicit drugs in wastewater in Australia using liquid chromatography coupled to mass spectrometry.

Anal Bioanal Chem 2017; online early: doi: 10.1007/s00216-017-0747-2:

Clin Toxicol 2018; online early: doi: 10.1080/15563650.2017.1422509:

Bohnert ASB, Walton MA, Cunningham RM, Ilgen MA, Barry K, Chermack ST, Blow FC.

Overdose and adverse drug event experiences among adult patients in the emergency department.

Addict Behav 2017; online early: doi: 10.1016/j.addbeh.2017.11.030:

Liver Int 2017; online early: doi: 10.1111/liv.13662:

Fugelstad A, Ramstedt M, Thiblin I, Johansson LA.

Drug-related deaths: statistics based on death certificates miss one-third of cases.

Hines EQ.

Pediatric poisonings: the risk of over-the-counter pharmaceuticals.

Holt CT, McCall KL, Cattabriga G, Tu C, Smalley EK, Nichols SD.

Using controlled substance receipt patterns to predict prescription overdose death.

Lowry JA, Burns M, Calello DP.

Pediatric pharmaceutical ingestions.

Maggo SD, Chua EW, Chin P, Cree S, Pearson J, Doogue M, Kennedy MA.

A New Zealand platform to enable genetic investigation of adverse drug reactions.

Mutiya PK, Gupta SK, Mittal AK.

Fate of pharmaceutical active compounds (PhACs) from River Yamuna, India: an ecotoxicological risk assessment approach.

Ecotoxicol Environ Saf 2017; 150: 297-304.

Pellegrini M, Graziano S, Mastrobattista L, Minutillo A, Busardo FP, Scarsella G.

Stability of drugs of abuse in urine samples at room temperature by use of a salt mixture.

Drug-induced cardiac abnormalities in premature infants and neonates.

Am Heart J 2018; 195: 14-38.

Scroggin TL, McMillin GA.

Quantitation of cocaine and metabolites, phencyclidine, butalbital and phenobarbital in meconium by liquid chromatography-tandem mass spectrometry.

J Anal Toxicol 2017; online early: doi: 10.1093/jat/bkx097:

Shenai N, Shulman J, Gopalan P, Chopp E, Cerimele M.

Fetal outcomes in intentional over-the-counter medication overdoses in pregnancy.

Psychosomatics 2017; online early: doi: 10.1016/j.psym.2017.11.007:

Shiels MS, Freedman ND, Thomas D, de Gonzalez AB.

Ann Intern Med 2017; online early: doi: 10.7326/M17-1812:

Controversies in serotonin syndrome diagnosis and management: a review.

Wolgast E, Josephson A, Josephsson M, Lilliecruzt C, Reis M.

Drug use in pregnant women—a pilot study of the coherence between reported use of drugs and presence of drugs in plasma.

Eur J Clin Pharmacol 2017; online early: doi: 10.1007/s00228-017-2402-4:

Acetaminophen (see paracetamol)

Anaesthetics

Rubin DS, Matsumoto MM, Weinberg G, Roth S.

Reg Anesth Pain Med 2017; online early: doi: 10.1097/AAP.0000000000000684:
Antiarrhythmic drugs

Disopyramide
Iguchi S, Yamaguchi N, Takami H, Komatsu T, Ookubo H, Sekii H, Inoue K, Okazaki S, Okai I, Maruyama S, Nomura T, Sugita M.
Higher efficacy of direct hemoperfusion using coated activated-charcoal column for disopyramide poisoning: a case report.
Medicine (Baltimore) 2017; 96: e8755.

Propafenone
Bayram Z, Güner A, Dogan C, Yilmaz F, Özdemir N.
Severe cardiac toxicity following alcohol intake in a patient using therapeutic dose of propafenone.
Turk Kardiyol Dern Ars 2017; 45: 752-4.

Verapamil
Yakut K, Erdogan I, Varan B, Atar I.
A report of Brugada syndrome presenting with cardiac arrest triggered by verapamil intoxication.

Antibiotics

Aminoglycosides
O'Sullivan ME, Cheng AG.
Mind your ears: a new antidote to aminoglycoside toxicity?

Gentamicin
Berkovitch M, Shain Y, Kozer E, Goldman M, Abu-Kishk I.
Hyperbaric oxygen treatment and nephrotoxicity induced by gentamicin in rats.

Nitrofurantoin
Mir E, Malik JA, Lone SA, Mohi-Ud-Din R, Khalil M.
Spontaneous resolution of nitrofurantoin-induced chronic pulmonary toxicity presenting with respiratory failure.

Anticoagulants
Cully M.
Milestone 13: Putting on the brakes: NOAC antidotes.

Warfarin
Lim GB.
Milestone 2: Warfarin: from rat poison to clinical use.

Anticonvulsants
Daly C, Griffin E, Ashcroft DM, Webb RT, Perry II, Arensman E.
Intentional drug overdose involving pregabalin and gabapentin: findings from the National Self-Harm Registry Ireland, 2007–2015.

Perampanel
Li K, Lasoff DR, Smollin CG, Ly BT.
Perampanel overdose causing a prolonged coma.

Pregabalin
Ianni F, Aroni K, Gili A, Sarrella R, Bacci M, Lancia M, Natalini B, Gambelunghe C.
GC-MS/MS detects potential pregabalin abuse in susceptible subjects' hair.

Valproate
Glatstein M, Bonifacio Rino P, de Pinho S, Scolnik D, Pivko-Levi D, Hoyte C.
Levocarnitine for the treatment of valproic acid-induced hyperammonemic encephalopathy in children: the experience of large, tertiary care pediatric hospital and a poison center.

Vigabatrin
Foroozan R.
Vigabatrin: lessons learned from the United States experience.

Antidepressants

Bupropion
A Lazarus effect: a case report of bupropion overdose mimicking brain death.

Antineoplastic drugs
Magdy T, Burridge PW.
The future role of pharmacogenomics in anticancer agent induced cardiovascular toxicity.
Pharmacogenomics 2017; 19: 79-82.

Bleomycin
Acute lung toxicity after intralesional bleomycin sclerotherapy.

Methotrexate
Okazaki Y, Watabu T, Endo K, Oiwa H.
Hypersegmented neutrophils in methotrexate toxicity.

Antipsychotics

Clozapine
Menkes DB, Glue P, Gale C, Lam F, Hung C-T, Hung N.
Steady-state clozapine and norclozapine pharmacokinetics in Maori and European patients.
EBioMedicine 2017; online early:
Baclofen

Benzodiazepines

Midazolam

Beta-blockers

Carvedilol

Botulimum

Dextromethorphan
Karami S, Major JM, Calderon S, McAninch JK.

Dihydroergotamine
Mulinos ME.
Ergot toxicity from high-dose dihydroergotamine for intractable migraine headache.
Toxicol Commun 2018; 2: 3-5.

Dihyroxybutyrate
Dias AS, Castro AL, Melo P, Tarelho S, Domingues P, Franco JM.
A fast method for GHB-GLUC quantitation in whole blood by GC-MS/MS (TQD) for forensic purposes.

Flumazenil
Reyes D, Barrera F.
Is flumazenil an alternative for the treatment of hepatic encephalopathy?
Medwave 2017; 17: e7113.

Gamma-hydroxybutyrate
Baclofen in gamma-hydroxybutyrate withdrawal: patterns of use and online availability.

Hallucinogens
Mohr ALA, Frisica M, Yeakel JK, Logan BK.
Use of stimulants and hallucinogens in a cohort of electronic dance music festival attendees.

Herbal medicines, ethnic remedies and dietary supplements
Biggs JM, Morgan JA, Lardieri AB, Kishk OA, Klein-Schwart W.
Abuse and misuse of selected dietary supplements among adolescents: a look at poison center data.

Mastic gum
Toxicity and toxicokinetic study of RPh201 in Sprague-Dawley rats.

Heroin (diacetylmorphine)
Mars SG, Ondocsin J, Ciccarone D.
Sold as heroin: perceptions and use of an evolving drug in Baltimore, MD.

Hypoglycaemic drugs
Metformin
Pregnancy outcomes in women on metformin for diabetes or other indicaWtions among those seeking teratology information services.

Immunosuppressants
Tacrolimus
Sikma MA, Hunault CC, Kerkels JH, Verhaar MC, Kesecioglu J, de Lange DW.
Association of whole blood tacrolimus concentrations with kidney injury in heart transplantation patients.

Insulin
Chenmanam J, Isaacs M, Jones GR, Greenfield JR, Burt MG.
Interpreting insulin immunoassays during investigation of apparent spontaneous hypoglycaemia and insulin overdose.

Kratom
Singh D, Müller CP, Murugaiyah V, Hamid SBS, Vicknasingam BK, Avery B, Chear NJY, Mansor SM.
Evaluating the hematological and clinical-chemistry parameters of kratom (Mitragyna speciosa) users in Malaysia.

Lithium
Zaworski J, Delannoy P-Y, Boussekey N, Thellier D, Georges H, Leroy O.
Lithium: one drug, five complications.
J Intensive Care 2017; 5: 70.

Methadone
Kashani P, Safari S, Hatamabadi H, Arhami Dolatabadi A, Manouchehrifar M, Dokht Tabrizi M.
Characteristics of methadone intoxicated children presenting to emergency department; a cross sectional study.
Emerg (Tehran) 2017; 5: e80.
Electronic cigarette: a recent update of its toxic effects on humans.

Novel psychoactive substances

Synthetic cannabinoids

Babi M-A, Robinson CP, Maciel CB. A spicy status: synthetic cannabinoid (spice) use and new-onset refractory status epilepticus—A case report and review of the literature. SAGE Open Med Case Rep 2017; 5:

doi: 10.1177/2050313X17745206:

Synthetic cathinones

Synthetic opioids

NSAIDs

Walker C, Biasucci LM. Cardiovascular safety of non-steroidal anti-inflammatory drugs revisited. Postgrad Med 2017; online early:

doi: 10.1080/00325481.2018.1412799:

Yurt KK, Kaplan S.
As a painkiller: a review of pre- and postnatal non-steroidal anti-inflammatory drug use effects on the nervous systems. Inflammopharmacology 2017; online early: doi: 10.1007/s10787-017-0434-0

Ibuprofen

Opioids

Marotta PL, McCullagh CA. A cross-sectional analysis of the association between years of implementation of opioid substitution treatments and drug-related deaths in Europe from 1995 to 2013. Eur J Epidemiol 2017; online early: doi: 10.1007/s10654-017-0342-z:

Opiate use disorders and overdose: medical students' experiences, satisfaction with learning, and attitudes toward community naloxone provision.
Addict Behav 2017; online early: doi: 10.1016/j.addbeh.2017.11.028:

Fentanyl

Tapentadol

Paracetamol (acetaminophen)

Proton pump inhibitors

Psychoactive drugs

Salicylates

Sedatives
Zolpidem

Sildenafil

SSRIs and SNRIs

Substance abuse

Pharmacoepidemiol Drug Saf 2017; online early: doi: 10.1002/pds.4366:

Testosterone
Heylings JR, Davies DJ, Burton R. Dermal absorption of testosterone in human and pig skin in vitro. Toxicol In Vitro 2017; online early:
Tricyclic antidepressants

Amitriptyline
Tsujikawa S, Matsuura T, Hori K, Mori T, Kuno M, Nishikawa K.
Superior efficacy of lipid emulsion infusion over serum alkalization in reversing amitriptyline-induced cardiotoxicity in guinea pig.

Vasodilators

Nicorandil
Trechot P, Conart JB, Petitpaine N, Trechot F.
Severe headaches and 3rd or 6th nerve palsy associated with nicorandil: a hypothesis.

Vitamins

Calciferol
Chowdry AM, Azad H, Najar MS, Mir I.
Acute kidney injury due to overcorrection of hypovitaminosis D: a tertiary center experience in the Kashmir Valley of India.

Chemicals

General

Grandjean P, Bellanger M.
Calculation of the disease burden associated with environmental chemical exposures: application of toxicological information in health economic estimation.
Environ Health 2017; 16: 123.

Alcohol (ethanol)

Bayram Z, Güner A, Dogan C, Yilmaz F, Özdemir N.
Severe cardiac toxicity following alcohol intake in a patient using therapeutic dose of propafenone.
Turk Kardiyol Dern Ars 2017; 45: 297-304.

Air pollution

Ichitsubo H, Kotaki M.
Indoor air quality (IAQ) evaluation of a novel tobacco vapor (NTV) product.
Regul Toxicol Pharmacol 2018; 92: 278-94.

Exhaust fumes

Assessment of lung cell toxicity of various gasoline engine exhausts using a versatile in vitro exposure system.
Environ Pollut 2018; 235: 253-71.

Pollution and hazardous waste

Mutiyar PK, Gupta SK, Mittal AK.
Fate of pharmaceutical active compounds (PhACs) from River Yamuna, India: an ecotoxicological risk assessment approach.
Ecotoxicol Environ Saf 2017; 150: 297-304.

Water pollution

Li Y, Fletcher T, Mucs D, Scott K, Lindh CH, Tallving P, Jakobsson K.
Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water.

CHEMICALS A
ND POLLUTION

Air pollution

Ichitsubo H, Kotaki M.
Indoor air quality (IAQ) evaluation of a novel tobacco vapor (NTV) product.
Regul Toxicol Pharmacol 2018; 92: 278-94.

Kunkler PE, Zhang L, Johnson PL, Oxford GS, Hurley JH.
Induction of chronic migraine phenotypes in a rat model after environmental irritant exposure.

Exhaust fumes

Assessment of lung cell toxicity of various gasoline engine exhausts using a versatile in vitro exposure system.
Environ Pollut 2018; 235: 253-71.

Pollution and hazardous waste

Mutiyar PK, Gupta SK, Mittal AK.
Fate of pharmaceutical active compounds (PhACs) from River Yamuna, India: an ecotoxicological risk assessment approach.
Ecotoxicol Environ Saf 2017; 150: 297-304.

Water pollution

Li Y, Fletcher T, Mucs D, Scott K, Lindh CH, Tallving P, Jakobsson K.
Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water.

CHEMICALS

General

Grandjean P, Bellanger M.
Calculation of the disease burden associated with environmental chemical exposures: application of toxicological information in health economic estimation.
Environ Health 2017; 16: 123.

Gross L, Birnbaum LS.
Regulating toxic chemicals for public and environmental health.

Krimsky S.
The unsteady state and inertia of chemical regulation under the US Toxic Substances Control Act.

Lanphear BP.
Low-level toxicity of chemicals: no acceptable levels?

The INTEROCC case-control study: risk of meningioma and occupational exposure to selected combustion products, dusts and other chemical agents.

Vervaet BA, D’Haese PC, Verhulst A.
Environmental toxin-induced acute kidney injury.

Alcohol (ethanol)

Bayram Z, Güner A, Dogan C, Yilmaz F, Özdemir N.
Severe cardiac toxicity following alcohol intake in a patient using therapeutic dose of propafenone.
Turk Kardiyol Dern Ars 2017; 45: 752-4.

Medical emergencies related to ethanol and illicit drugs at an annual, nocturnal, indoor, electronic dance music event.
Prehosp Disaster Med 2017; online early: doi: 10.1017/S1049023X17007099.

Comparing levels of blood alcohol concentration and indicators of impairment in nightlife patrons.

Alcohol screening in a national referral hospital: an observational study from Qatar.

Valeur KS, Hertel SA, Lundstrøm KE, Holst H. The cumulative daily tolerance levels of potentially toxic excipients ethanol and propylene glycol are commonly exceeded in neonates and infants. Basic Clin Pharmacol Toxicol 2017; online early: doi: 10.1111/bcpt.12957:

Batteries

Benzalkonium chloride

Carbon monoxide

Moon JM, Chun BJ, Lee SD, Jung EJ. Serum neuron-specific enolase levels at presentation and long-term neurological sequelae after acute charcoal burning-induced carbon monoxide poisoning. Clin Toxicol 2017; online early; doi: 10.1080/15563650.2017.1415347:

Ceramic fibres

Chlorine
Contrast media

Cosmetics

Cyanide

Dimethiconol

Dust
Rodrigues JLG, Bandeira MJ, Araújo CFS, Dos Santos NR, Anjos ALS, Koin NL, Pereira LC, Oliveira SSP, Mergler D, Menezes-Filho JA. Manganese and lead levels in settled dust in elementary schools are correlated with biomarkers of exposure in school-aged children. Environ Pollut 2017; online early: doi: 10.1016/j.envpol.2017.10.132:

E-cigarettes and e-liquids

Ethylene glycol

Flame retardants

Fluoride

Fragrance chemicals

N,N-dimethylformamide

Nanoparticles

Naphthalene

Oxygen

Paint thinner

Parabens

Paraphenylenediamine

Perfluorinated compounds
Petrol (gasoline) and petroleum oils
Chambers DM, Reese CM, Thornburg LG, Sanchez E, Rafson JP, Blount BC, Ruhl JRE, De Jesus VR.
Distinguishing petroleum (crude oil and fuel) from smoke exposure within populations based on the relative blood levels of benzene, toluene, ethylbenzene, and xylenes (BTEX), styrene and 2,5-dimethylfuran by pattern recognition using artificial neural networks.
Environ Sci Technol 2017; online early: doi: 10.1021/acs.est.7b05128:

Benzene
Gross SA, Paustenbach DJ.
Shanghai Health Study (2001–2009): what was learned about benzene health effects?

Butane
Almulhim KN.
Fatal butane toxicity and delayed onset of refractory ventricular fibrillation.

Diesel
Leong WC, Cheong BM.
Siphoning diesel: a fatal mistake.

Photocopier toner
Kasi V, Elango N, Ananth S, Vembhu B, Poornima JG.
Occupational exposure to photocopiers and their toners cause genotoxicity.
Hum Exp Toxicol 2017; online early: doi: 10.1177/096032717693068:

Phthalates
Li N, Li Y, Meng H, Sun H, Wu D.

Polycyclic aromatic hydrocarbons
Wilson HK, Buckeridge SA, You W, Howeth EW, Gato WE.
Investigating the toxic effects of 2-aminoanthracene ingestion in pregnant Sprague Dawley dams.

Propylene glycol
Bianchetti DGAM, Amelio GS, Lava SAG, Bianchetti MG, Simonetti GD, Agostoni C, Fossali EF, Milan GP.
D-lactic acidosis in humans: systematic literature review.
PediaDr Nephrol 2017; online early: doi: 10.1007/s00467-017-3844-8:

Valeur KS, Hertel SA, Lundstrøm KE, Holst H.
The cumulative daily tolerance levels of potentially toxic excipients ethanol and propylene glycol are commonly exceeded in neonates and infants.
Basic Clin Pharmacol Toxicol 2017; online early: doi: 10.1111/bcpt.12950:

Radiation
Wong J, Clark H, Corns R, Tyldesley S.
Assessing health implications of the potential radiation exposure in the community during pregnancy: a case study.
Cureus 2017; 9: e1770.

Silver diamine fluoride
Duangthip D, Fung MHT, Wong MCM, Chu CH, Lo ECM.
Adverse effects of silver diamine fluoride treatment among preschool children.

Taurine
Curran CP, Marczinski CA.
Taurine, caffeine, and energy drinks: reviewing the risks to the adolescent brain.

Tea
Hollbourn A, Hurdman J.
Kombucha: is a cup of tea good for you?
BMJ Case Rep 2017; doi:10.1136/bcr-2017-221702:

Tobacco
Borger J.
The danger of carbon monoxide poisoning associated with hookah use: an emergency physician's perspective.

Prenatal exposure to maternal smoking during pregnancy and attention-deficit/hyperactivity disorder in offspring: a meta-analysis.

Cognitive, physical, and mental health outcomes between long-term cannabis and tobacco users.
Addict Behav 2018; 79: 178-88.

Protecting young children from tobacco smoke exposure: a pilot study of Project Zero exposure.
Pediatrics 2018; 141: S107-S117.

Triclosan
Environmental levels of triclosan and male fertility.
Environ Sci Pollut Res Int 2017; online early: doi: 10.1007/s11356-017-0866-5:

Pernoncini KV, Montagnini BG, de Góes MLM, Garcia PC, Gerardin DCC.
Evaluation of reproductive toxicity in rats treated with triclosan.

Trifluoroacetic acid
Sun C, Corbett B.
Trifluoroacetic acid: three times the fluoride, three times the toxicity?
Vinyl chloride

Weatherproofing aerosols

METALS
General

Aluminium

Arsenic

Cadmium

Chromium

Cobalt

Lead

Lithium

Mercury

PESTICIDES
General

Aluminium phosphate

Bipyridyl herbicides
Paraquat

Fipronil

Glyphosate

Neonicotinoids
Imidacloprid

Oxyfluorfen

Organophosphorus insecticides
General
Costa LG. Organophosphorus compounds at 80: some old and new issues. Toxicol Sci 2017; online early: doi: 10.1093/toxsci/kfx266:

Phosphine

Pyrethroid insecticides
General
Cote J, Bouchard M. Dose reconstruction in workers exposed to two major pyrethroid pesticides and determination of biological reference values using a toxicokinetic model. J Exp Sci Environ Epidemiol 2017; online early: doi: 10.1038/s41370-017-0004-y:

Rodenticides

CHEMICAL WARFARE, BIOLOGICAL WARFARE AND RIOT CONTROL AGENTS
Chemical warfare
General

Mustard gas

Phosgene
Chen L, Wu D, Yoon J. Recent advances in the development of chromophore-based chemosensors for nerve agents and phosgene. ACS Sens 2017; online early: doi: 10.1021/acssensors.7b00816:

Nerve agents
Chen L, Wu D, Yoon J. Recent advances in the development of chromophore-based chemosensors for nerve agents and phosgene. ACS Sens 2017; online early: doi: 10.1021/acssensors.7b00816:

PLANTS
Mitragyna speciosa (Kratom)

Ricinus communis (Castor oil plant)

ANIMALS

Fish/marine poisoning

Algae
Smith GJ, Daniels V. Algal blooms of the 18th and 19th centuries. Toxicon 2018; 142: 42-4.

Jellyfish
Thaikruen L, Ssantidherakul S. The public health impact of a new simple practical technique for collection and transfer of toxic jellyfish specimens and for nematocyst identification. J Public Health Policy 2017; online early: doi: 10.1057/s41271-017-0112-x:

Frogs

Scorpions

Snake bites

Crotalinae (Pit vipers)
Elapidae
Intravascular hemolysis induced by phospholipases A2 from the venom of the Eastern coral snake, Micrurus fulvius: functional profiles of hemolytic and non-hemolytic isoforms.
Toxicol Lett 2017; online early: doi: 10.1016/j.toxlet.2017.11.037:

Weinstein SA, Mirtschin PJ, Tristram H, Lawton L, White J.
Local morbidity from red-bellied black snake (Pseudechis porphyriacus, Elapidae) envenoming: two cases and a brief review of management.
Toxicon 2017; 142: 34-41.

Viperinae (True vipers)
Wium CA, Marks CJ, Du Plessis CE, Muller GJ.

INDEX

Acetaminophen .. 24
Acetylcysteine .. 16
Air pollution .. 26
Alcohol ... 26
Algae ... 33
Aluminium .. 31
Aluminium phosphide ... 32
Aminoglycosides ... 19
Amitriptyline ... 26
Anaesthetics .. 18
Analytical toxicology ... 9
Animals, general ... 33
Antiarrhythmic drugs ... 19
Antibiotics ... 19
Anticoagulants ... 19
Anticonvulsants ... 19
Antidepressants ... 19
Antidotes .. 16
Antineoplastic drugs .. 19
Antipsychotics .. 19
Arsenic ... 31
Baclofen ... 17, 20
Batteries .. 27
Benzalkonium chloride .. 27
Benzone ... 30
Benzodiazepines ... 20
Beta-blockers .. 20
Biological warfare ... 32
Biomarkers .. 9
Bipyridyl herbicides .. 32
Bleomycin .. 19
Body packers .. 20
Botulism ... 20
Buprenorphine .. 17
Bupropion .. 19
Butane ... 30
Cadmium .. 31
Caffeine .. 20
Calciferol ... 26
Cannabis .. 20
Carbon monoxide ... 27
Carcinogenicity .. 10
Cardiotoxicity .. 10
Carvedilol .. 20
Castor oil plant ... 33
Ceramic fibres .. 27
Chemical warfare, general .. 32
Chemicals, general .. 26
Chlorine .. 27
Chromium .. 31
Clodipogrel ... 20
Clozapine ... 19
Cobalt ... 31
Cocaine ... 20
Colchicine ... 20
Contrast media .. 28
Cosmetics .. 28
Crotalinae ... 33
Cyanide ... 28
Dermal toxicity .. 10
Desert monitor lizard ... 34
Developmental toxicology .. 10
Dextromethorphan ... 21
Diacetylmorphine .. 21
Diethythergatamine ... 21
Dimethiconol .. 28
Diphenidine ... 21
Disopyramide .. 19
DMTS ... 16
Drugs, general .. 18
Dust ... 21
E-cigarettes and e-liquids .. 28
Elapidae .. 34
Epidemiology .. 11
Ethanol ... 26
Ethnic remedies ... 21
Ethylene glycol ... 28
Exhaust fumes .. 26
Extracorporeal membrane oxygenation 17
Extracorporeal treatments .. 17
Fab fragments .. 16
Fentanyl ... 24
Fipronil ... 32
Fish/marine poisoning ... 33
Flame retardants ... 28
Flumazenil .. 21
Fluoride .. 28
Forensic toxicology .. 11
Frog's ... 33
Gamma-hydroxybutyrate ... 21
Gasoline ... 30
Genotoxicity .. 12
Gentamicin ... 19