Pressure immobilization after North American Crotalinae snake envenomation

AMERICAN COLLEGE OF MEDICAL TOXICOLOGY, AMERICAN ACADEMY OF CLINICAL TOXICOLOGY, AMERICAN ASSOCIATION OF POISON CONTROL CENTERS, EUROPEAN ASSOCIATION OF POISON CONTROL CENTRES AND CLINICAL TOXICOLOGISTS, INTERNATIONAL SOCIETY ON TOXINOLOGY & ASIA PACIFIC ASSOCIATION OF MEDICAL TOXICOLOGY

To cite this article: AMERICAN COLLEGE OF MEDICAL TOXICOLOGY, AMERICAN ACADEMY OF CLINICAL TOXICOLOGY, AMERICAN ASSOCIATION OF POISON CONTROL CENTERS, EUROPEAN ASSOCIATION OF POISON CONTROL CENTRES AND CLINICAL TOXICOLOGISTS, INTERNATIONAL SOCIETY ON TOXINOLOGY & ASIA PACIFIC ASSOCIATION OF MEDICAL TOXICOLOGY (2011) Pressure immobilization after North American Crotalinae snake envenomation, Clinical Toxicology, 49:10, 881-882, DOI: 10.3109/15563650.2011.610802

To link to this article: http://dx.doi.org/10.3109/15563650.2011.610802

Published online: 08 Nov 2011.
Pressure immobilization after North American Crotalinae snake envenomation

AMERICAN COLLEGE OF MEDICAL TOXICOLOGY, AMERICAN ACADEMY OF CLINICAL TOXICOLOGY, AMERICAN ASSOCIATION OF POISON CONTROL CENTERS, EUROPEAN ASSOCIATION OF POISON CONTROL CENTRES AND CLINICAL TOXICOLOGISTS, INTERNATIONAL SOCIETY ON TOXINOLOGY, ASIA PACIFIC ASSOCIATION OF MEDICAL TOXICOLOGY

Keywords Snakes; pressure immobilization; Crotalinae; envenoming

Background
The vast majority of venomous snake bites treated at health care facilities in the United States each year involve non-neurotoxic Crotalinae species.1 Large case series reveal the major clinical effect associated with these envenomations to be local tissue injury. Extremity swelling and dermonecrosis are common, with compartment syndrome an infrequent but potentially limb-threatening effect of envenomation.2,3,4,5 Life-threatening systemic toxicity and death are rare.

Historically, many first-aid measures have been employed in the treatment of snake bites, but none has been shown to improve patient outcome. Pressure immobilization is a technique routinely employed in the pre-hospital management of neurotoxic snake species in Australia. First described by Sutherland and colleagues in the 1970s, pressure immobilization involves wrapping the entire extremity with a bandage and then immobilizing the extremity with a splint.6 The bandage should generate a pressure between 40–70 mm Hg in the upper extremity and 55–70 mmHg in the lower extremity in order to effectively delay systemic absorption of venom.7

Several animal studies have demonstrated delayed systemic absorption of venom with pressure immobilization.6,7,8 However, studies have also revealed that pressure immobilization bandages are commonly applied incorrectly, even in a simulated setting following provider instructions and training.9,10,11,12 Although the more common error is to apply the bandage too loosely, the bandage may function as a tourniquet when applied too tightly, causing limb ischemia, and may also increase systemic absorption of venom.7

Animal models of North American Crotalinae envenomation demonstrate delayed systemic absorption of venom and delayed mortality following application of pressure immobilization bandages.13,14,15 However, the local effects of sequestering cytotoxic venom in the extremity are less clear. In a swine model of pressure immobilization following C. atrox lower extremity envenomation, intracompartmental pressure increased significantly compared to controls, from a non-surgical range to levels that would prompt fasciotomy.13

Position
Given that the primary toxic effect of envenomation is local tissue injury, mortality is not an ideal outcome measure to extrapolate to human crotaline envenomation. Available evidence fails to establish the efficacy of pressure immobilization in humans, but indicates the possibility of serious adverse events arising from its use. The use of pressure immobilization for the pre-hospital treatment of North American Crotalinae envenomation is not recommended.

Acknowledgements
The organizations acknowledge the efforts of Michael Levine, MD, and Michelle Ruha, MD in creating this position statement.

Declaration of interest
The societies endorsing this position statement have no conflicts to report. This work has been endorsed by American College of Medical Toxicology, American Academy of Clinical Toxicology, American Association of Poison Control Centers, European Association of Poison Control Centres and Clinical Toxicologists, International Society of Toxicology and Asia Pacific Association of Medical Toxicology

References

This position statement is being published jointly and simultaneously with Journal of Medical Toxicology


